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A B S T R A C T   

Advances in the field of genomics and transcriptomics have enabled researchers to identify gene signatures 
related to development and treatment of Small Cell Lung Cancer. In most cases, complex gene expression patterns 
are identified, comprising of genes with differential behavior. Most tools use single-genes as predictors of drug 
response, with only limited options for multi-gene use. Here we examine the potential of predicting drug 
response using these complex gene expression signatures by employing clustering and signal enrichment in Small 
Cell Lung Cancer. Our results demonstrate clustering genes from complex expression patterns helps identify 
differential activity of gene groups with alternate function which can then be used to predict drug response.   

1. Introduction 

Small Cell Lung Cancer (SCLC) is a highly aggressive and rapidly 
progressing form of lung tumor. While historically its classified pri-
marily based on its microscopic appearance, recent advances in geno-
mics and molecular biology have revealed that SCLC is a complex 
disease comprised of distinct molecular subtypes (Govindan et al., 2006; 
Rudin et al., 2019). These subtypes are characterized by unique genetic 
alterations (George et al., 2015; Thomas et al., 2020; Tlemsani et al., 
2021), transcriptional profiles (George et al., 2015; Lissa et al., 2022; 
Wooten et al., 2019), and phenotypic features (Borromeo et al., 2016; 
Huang et al., 2018; Pongor et al., 2023), which have significant impli-
cations for diagnosis, prognosis, and treatment strategies (Gay et al., 
2021; Roper et al., 2021; Schultz et al., 2023; Takahashi et al., 2020; 
Thomas et al., 2020, 2021; Tlemsani et al., 2021). 

SCLC tumors are predominantly neuroendocrine (NE), characterized 
by using immunohistochemistry targeting markers such as 
chromogranin-A (CHGA) or synaptophysin (SYP). A small subset of 
SCLC tumors present low levels of NE markers, defined as non- 
neuroendocrine (non-NE) tumors (Gazdar et al., 2017; McColl et al., 
2017). A recently proposed classification scores and differentiates tu-
mors based on the expression signature of 50 genes, comprised of 25 NE 
and 25 non-NE specific genes (Zhang et al., 2018). The SCLC subtypes 
can be further classified based on the expression of four markers: 
achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 1 

(NEUROD1), POU class 2 homeodomain box 3 (POU2F3) and 
Yes-associated protein 1 (YAP1), where the first two are enriched in NE 
tumors, while the latter two are enriched in non-NE tumors (Rudin et al., 
2019; Tlemsani et al., 2020; Wooten et al., 2019). Recently, a new 
‘inflamed’ subtype has been identified, enriched predominantly with 
non-NE tumors, which showed better response to 
chemo-immunotherapy treatment (Gay et al., 2021; Roper et al., 2021). 

Cell line models are a cost-effective way to test tens- to hundreds of 
drugs. To this end, there several databases are available, where users can 
compare genomic features (gene expression, copy-number status, 
mutational status and methylation) with response to drugs or metastatic 
potential (Barretina et al., 2012; Garnett et al., 2012; Iorio et al., 2016; 
Jin et al., 2020; Polley et al., 2016; Pongor et al., 2022; Rajapakse et al., 
2018; Tlemsani et al., 2020). In addition, there have been efforts to 
identify additional drivers by employing CRISPR and gene silencing 
screens, where growth rates were used as readouts (Tsherniak et al., 
2017). With these tools, we can easily test if a candidate gene is essen-
tial, or if it correlates with other genetic features or drug response. 

In many instances it becomes necessary to condense complex data-
sets into a singular vector of values. Such examples are correlation an-
alyses, or comparing signal distribution between sample sets, used to 
identify therapeutic targets and drug combinations. Single-sample Gene 
Set Enrichment Analysis (ssGSEA) (Barbie et al., 2009), an extension of 
GSEA (Mootha et al., 2003; Subramanian et al., 2005), offers an elegant 
and straightforward method for assessing and comparing the activity of 
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Contents lists available at ScienceDirect 

Journal of Biotechnology 

journal homepage: www.elsevier.com/locate/jbiotec 

https://doi.org/10.1016/j.jbiotec.2024.01.010 
Received 11 January 2024; Accepted 23 January 2024   



Journal of Biotechnology 383 (2024) 86–93

87

molecular pathways. One challenge is utilization of gene expression 
patterns, where genes exhibit diverse behaviors, such as upregulation or 
downregulation, which can be further categorized based on their tem-
poral dynamics. To address this, we employ gene clustering before 
performing ssGSEA analysis, which can be used to predict drug response. 
This preprocessing step aids in the identification of gene sets within 
these expression signatures, which, in turn, can be harnessed for pre-
dictive modeling of drug responses. We demonstrate the usefulness by 
interrogating commonly used gene expression signatures used for clas-
sification of SCLC. 

2. Materials and methods 

2.1. Data preparation 

Comprehensive gene expression datasets, including those from the 
NCI, Broad Institute/MIT, and Sanger/Massachusetts General Hospital 
(MGH) (Barretina et al., 2012; Garnett et al., 2012; Iorio et al., 2016; 
Polley et al., 2016; Tlemsani et al., 2020), and SCLC patient data 
(Cerami et al., 2012; George et al., 2015), were acquired. Along with the 
gene expression data, associated annotations and drug response data 
were also downloaded. The datasets were downloaded from the Cell-
MinerCDB and SCLC-CellMinerCDB websites (https://discover.nci.nih. 
gov/rsconnect/cellminercdb/, https://discover.nci.nih.gov/rsconnect/ 
SclcCellMinerCDB/) (Rajapakse et al., 2018; Tlemsani et al., 2020). 
Gene signatures used for clustering and ssGSEA analysis in this study 
were: (1) the NE score gene set (Zhang et al., 2018), (2) 
Epithelial-mesenchymal Transition (EMT) genes (Kohn et al., 2014) and 
(3) inflamed signature (Gay et al., 2021). 

2.2. Data analysis 

Data manipulation and analysis were conducted using custom R 
(version 4.3.2). In the initial stages, data cleaning processes such as 
removing missing values (using the ’dropna’ function) or subsetting 
datasets to include only common samples during cross comparison were 
carried out. We also subset datasets by gene signatures. In case of data 
visualization through heatmaps, a z-scoring procedure was applied to 
standardize the data, ensuring a uniform scale. The ssGSEA was per-
formed utilizing the GSVA (version 1.48.3) package (Hänzelmann et al., 
2013), with the ’ssGSEA’ method specified. Additionally, k-means 
clustering was implemented via the stats package (version 4.3.2). For 
data visualization, we employed the ComplexHeatmap (version 2.16.0) 
package (Gu et al., 2016) and the ggplot2 package (version 3.4.3). The 
EMT score was calculated using the EMTscore function from https://gith 
ub.com/korkutlab/imogimap (Bozorgui et al., 2023), the NEscore was 
calculated based on (Zhang et al., 2018). Gene ontology analysis was 
calculated using the following packages: clusterProfiler (version 4.8.3) 
(Yu et al., 2012), org.Hs.eg.db (version 3.17.0), enrichplot (version 
1.20.3), and DOSE (version 3.26.1) (Yu et al., 2015). 

For the final phase of our analyses, we focused on determining the 
correlation between variables. This was achieved by employing the 
Spearman correlation method (ggplot2 package), a non-parametric 
measure. This approach allowed us to assess the strength and direc-
tion of the association between the datasets under study. 

3. Results and discussion 

3.1. Clustering genes prior to ssGSEA models 

To demonstrate the advantages of clustering prior to ssGSEA anal-
ysis, we tested the clustering-based enrichment analysis using three 
distinct scenarios. Since ssGSEA compares the expression of the signa-
ture genes to the entire gene set, we simulated random expression 
matrices of 50 „samples” and 2k „genes”, of which 50 genes were the 
interrogated sets. 

In the first scenario, we investigated the impact of augmenting the 
signal within two gene sets that exhibited contrasting expression pat-
terns between ’A samples’ and ’B samples.’ For each case, we introduced 
incremental changes of 0.01, 0.05, 0.1, 0.25, 0.5, and 1, equivalent to 
signal increases of 1%, 5%, 10%, 25%, 50%, and 100%, respectively 
(illustrative examples are presented in Fig. 1A). Notably, at the 0.1 
increment level, discernible differences in gene expression between the 
two sample groups become visually evident, leading to noticeable var-
iations in ssGSEA enrichments (Fig. 1B). On the other hand, when 
conducting the analysis using all genes without prior clustering, the 
opposing expression patterns of the two gene sets nullify the enrichment 
effect. This observation underscores the critical significance of the 
clustering step, which enables the capture of even a moderate difference 
in signal. 

In the second scenario, we investigated the influence of negatively 
correlated genes on the enrichment score. To explore this, we initially 
constructed an expression matrix wherein the overall gene expression 
levels increased across the samples (referred to as ’Original’). Subse-
quently, we systematically reversed the expression patterns of 5, 25, 45, 
and eventually, all genes (see Figure S1A). As indicated by the ssGSEA 
enrichment score above the heatmaps, the reversal of only 5 genes had a 
relatively minor impact, with the enrichment score showing little 
change. However, when half of the genes (25 genes) exhibited reversed 
behavior, the enrichment effect was entirely nullified. Conversely, when 
genes were subjected to clustering, it notably emphasized the contrast-
ing enrichment scores between the two modeled groups. 

The third scenario focused on examining the impact of introducing 
noise to a gene signature, a situation often encountered in real-world 
scenarios where an identified gene set is tested on different datasets or 
data sources. The original matrix represented an expression dataset 
where the overall gene expression of the signature genes increased 
across the samples. In each modeling iteration, we randomly shuffled 
the order of either 5, 25, 45, or all genes (as illustrated in Fig. 1C). As an 
increasing number of genes were subjected to shuffling, the range of 
enrichment scores for all genes experienced a substantial reduction (as 
shown in Fig. 1D). Furthermore, the correlation between the enrichment 
scores of the shuffled signal and the original unshuffled signal signifi-
cantly decreased (representative examples in Fig. 1D left, Figure S1B left 
for all cases). Conversely, when we employed gene clustering to isolate 
the actual signature genes, it helped preserve the correlation with the 
unshuffled signal (representative examples in Fig. 1D right, Figure S1B 
right for all cases). 

3.2. Neuroendocrine score 

A recently developed neuroendocrine score (NE score) (Zhang et al., 
2018) relies on correlating the expression of samples to a gene signature 
comprising of 25 genes highly expressed in NE cells and 25 genes highly 
expressed in non-NE cells (Fig. 2A). Zhang and colleagues provide the 
mean expression of the signature for a set of neuroendocrine samples as 
well as non-neuroendocrine samples that serve as basis for the com-
parison. In short, the NE score of a sample is determined through a 
three-step process: 1) calculating the sample’s gene expression correla-
tion with both NE and non-NE gene sets, 2) deducting the correlation 
coefficient of the non-NE gene set from that of the NE gene set, and 3) 
dividing the value by two. 

Since the gene signature is comprised of two gene categories, this 
allows the assessment of enrichment in each category through ssGSEA 
(TableS1). This results in a negative correlation between the two gene 
groups, as depicted in Fig. 2B. To verify the consistency of this method, 
we compared enrichment scores obtained from the NCI-SCLC dataset 
with those from the CCLE and GDSC databases, illustrated in Fig. 2C and 
Figure S2A. Our analysis across different datasets revealed correlation 
coefficients between 0.81 and 0.95, underscoring the effectiveness of 
ssGSEA. However, minor variations in results might be attributed to the 
heterogeneous cell morphologies in these samples (Krohn et al., 2014; 
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Pongor et al., 2023). 
Comparing the proposed NE score with the enrichment scores, we 

found a strong positive correlation of 0.86 (p<e-16) when using the NE 
gene set, and a strong negative correlation of − 0.89 (p<e-16) with the 
non-NE gene set enrichment score, as shown in Figure S2B. As antici-
pated, the ASCL1+ and NEUROD1+ cell lines displayed higher NE 
enrichment scores, consistent with their neuroendocrine characteristics 
(see Fig. 2D and Figure S2C). We also evaluated these scores in relation 
to the effectiveness of the mTOR inhibitor INK-128, previously shown to 
have higher activity on non-NE cells (Tlemsani et al., 2020). In line with 
expectations, the NE score and NE ssGSEA enrichment score showed a 

positive correlation (Fig. 2E-F), while the non-NE enrichment score was 
inversely correlated with the response to INK-128 (Fig. 2G). These 
findings highlight that the gene signature clustering can effectively be 
used for calculating enrichment without the necessity for creating 
specialized scoring methods. 

3.3. Epithelial-mesenchymal transition 

Epithelial-mesenchymal transition (EMT) is an important process 
where epithelial cells acquire motile and invasive characteristics seen in 
mesenchymal cells. To assess EMT status, a gene set can be used that 

Fig. 1. Clustering and ssGSEA models. A) Heatmaps of random genes, where signal is increased in the two sample groups. B) ssGSEA score distribution in ‘Upre-
gulated’ and ‘Downregulated’ genes. Boxplots are grouped based on columns: condition ‘A’ in red, condition ‘B’ in green, and for reference ssGSEA score was also 
calculated with all genes shown in blue. C) Heatmaps where genes are shuffled in increasing numbers. Top annotation shows the ssGSEA scores for all genes, shuffled 
genes only, or ‘signature’ genes only. D) ssGSEA score distribution comparison as more genes are shuffled. All genes are used in each case to calculate ssGSEA scores. 
E) Correlation comparison of ssGSEA signal for All genes (left) or clustered genes (right) when 5, 25 or 45 genes are shuffled with the ssGSEA signal of the completely 
unshuffled samples. 
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includes genes predominantly expressed in either epithelial or mesen-
chymal states, as identified in studies (such as Byers et al., 2013; Kohn 
et al., 2014; Liberzon et al., 2015). The gene signature established by 
Kohn and colleagues is presented in Fig. 3A (Table S2). There was a 
negative correlation between the enrichment scores of these two gene 
sets, as shown in Fig. 3B. Notably, cell lines positive for ASCL1 and 
POU2F3 exhibited higher epithelial enrichment (Fig. 3C and 
Figure S3A). When correlating these scores across NCI, CCLE, and GDSC 
datasets, there was a strong correlation observed (with coefficients 
ranging from 0.82 to 0.96, p<e-16, as seen in Figure S3B). Additionally, 

cell lines with lower epithelial enrichment showed improved responses 
to the drugs docetaxel and elesclomol, which targets mitochondrial 
metabolism (Fig. 3D). 

We observed tight correlation with the epithelial score enrichment 
and the EMT signature (Bozorgui et al., 2023), while the mesenchymal 
enrichment score had significantly worse negative correlation (Fig. 3E). 
To test if this is an artifact of the calculation, we compared the EMT 
score across 1035 cell lines of the CCLE database. Based on the expres-
sion pattern (Figure S3C), some cancer types have elevated epithelial 
gene expression (such as SCLC, Bowel, Breast), while other cancer types 

Fig. 2. Neuroendocrine score analysis. A) Heatmap of the NE signature genes. B) Correlation of the ssGSEA scores calculated for NE genes and non-NE genes. C) 
Distribution of ssGSEA scores in the four SCLC subtypes. D) Cross-correlation of ssGSEA scores between data sources. E-G) Correlation of INK-128 with the E) NE 
score, F) NE ssGSEA score and G) non-NE ssGSEA score. 
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display elevated mesenchymal expression levels (such as Bone, Brain 
and Skin). Both the epithelial and mesenchymal enrichment scores 
correlated very tightly with the EMT score (Figure S3D), where the 
epithelial score displayed negative correlation. 

3.4. Inflamed subtype 

Recently a new classification has emerged, that classified samples 
into different subtypes using a gene expression signature of approxi-
mately 1300 genes. The four identified subtypes were the ASCL1-driven, 
NEUROD1-driven, POU2F3-driven and Inflamed subtype, where the 

Inflamed subtype benefitted significantly from treatment with carbo-
platin/etoposide (EP) plus the PD-L1 antibody atezolizumab. 

Cluster analysis of the gene signature using the primary SCLC tumor 
cohort was able to separate five gene groups: 1) neuroendocrine specific 
genes (NE-high), 2) ASCL1 enriched genes (ASCL1-high), 3) NEUROD1 
specific genes (NEUROD1-high), 4) POU2F3 enriched genes (POU2F3- 
high) and 5) inflamed high genes (Inflamed) (Table S3). Clustering cell 
lines based on the grouping from tumor samples produced similar 
expression patterns, with one marked difference, where the inflamed 
specific genes can be further separated into two groups: one with vari-
able expression among cell lines (termed Inflamed V1), and one with low 

Fig. 3. Analysis of the EMT scores. A) Expression heatmap of EMT genes developed by Kohn and colleagues. B) Correlation of the ssGSEA scores of the epithelial and 
mesenchymal genes. C) Epithelial and mesenchymal ssGSEA score distribution in the SCLC subtypes. D) Correlation of the epithelial ssGSEA score against docetaxel 
(top) and elesclomol (bottom). E) Correlation of EMT score and the epithelial (left) or mesenchymal (right) ssGSEA scores. 
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variability (termed Inflamed V2) (Z-scored heatmap in Fig. 4A, log2 
transformed expression in Figure S4A). Contrary to the cell lines, the 
Inflamed V2 genes had variable expression among the tumor samples, 
potentially expressed by non-cancer cells such as immune cells. Despite 
the strong differential expression patterns seen in the two inflamed 
groups, no significant differential pathway enrichment was observed 
using gene ontology analysis (Table S4). 

The SCLC subtypes further highlighted the differential enrichment 
scores of the clustered gene sets (Fig. 4B). The ASCL1+and NEUROD1+

subtypes both had strong enrichment of the NE-high genes. The ASCL1- 
high genes were more enriched in ASCL1+ cell lines, while the 
NEUROD1-high genes were more enriched in the NEUROD1+ cell lines. 
As expected, the POU2F3-high genes were elevated in the POU2F3+ cell 
lines. The Inflamed V1 signature was enriched in the non-NE POU2F3+
and YAP1+ cell lines. The inflamed V2 signature presented with very 
low enrichment in all subtypes, resulting from the lower expression level 
of these genes. Similar results were seen when using data from both the 
CCLE and GDSC databases (Figure S4B). Pairwise comparison across the 

Fig. 4. Inflamed subtype signature. A) Expression heatmap (Z-scored) of primary SCLC tumors (left) and cell lines (right). The order of the gene groups (slices) is the 
same in the two heatmaps, but the gene order within the slices is not the same. B) Comparison of enrichment score distribution of gene clusters in the four SCLC 
subtypes. C) Correlation of drug response with ssGSEA scores. (Top) ABT-737 response vs ‘NE high’ ssGSEA scores; (Center) AZD-8055 response vs ‘Inflamed v1’ 
ssGSEA scores; BMN-673 response vs ‘POU2F3 high’ ssGSEA scores. 
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different data sources generated correlation coefficients above 0.89 in 
all cases (range [0.89–0.97]) excluding the Inflamed V2 gene set com-
parisons (Figure S5). 

The NE-high genes correlated positively with response to the ABT- 
737 BCL2 inhibitor, while the inflamed-V1 enrichment correlated 
positively with the AZD-8055 mTOR inhibitor. Although there was no 
significant correlation with the PARP inhibitor and POU2F3-high 
enrichment score, the POU2F3+ cell lines had strong enrichment 
scores and response sensitivity. 

Overall, our results demonstrate that clustering gene signatures can 
help condense diverse gene expression patterns, which can then be used 
to identify drug candidates. The enrichment scores are highly repro-
ducible between databases which employed different expression quan-
tification methods (microarray and RNA-seq), as long as gene groups are 
correctly identified. Using this method on complex gene expression 
signatures can help identify gene groups and pathways that can further 
differentiate SCLC subtypes, potentially helping in finding responder 
patients and refining treatment strategies to improve patient care. 
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