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Empirical models capable of predicting the lift and drag coefficients of circular-arc 

cambered plate blades are presented, together with the detailed documentation of the related 

wind tunnel technique and data evaluation. The blade profiles are equipped with rounded 

leading and trailing edges. The empirical models offer an easy-to-use tool for preliminary 

design of low-solidity, low-speed blade cascades. By means of the models, the lift coefficient 

range of 0 - 1.3 is covered, associated with the drag coefficient varying between 0.02 and 0.14. 

The validity ranges of the empirical models are as follows: Reynolds number between 40 000 

and 140 000; relative camber ranging from 0% to 8%; angle of attack between 0° and 8°. The 

force coefficients are expressed as a function of relative camber, angle of attack and Reynolds 

number. The models assume linear relationships between the Reynolds number and the force 

coefficients, as inspired by the literature and justified by statistical means. The dependence of 

the force coefficients on the angle of attack and the relative camber is expressed by 

incorporating second-order polynomials. The trends of force changes with Reynolds number 

are analyzed. The cases of apparently extraordinary trends in the Reynolds number 

dependence, i.e. increasing drag and decreasing lift with increasing Reynolds number, are 

discussed in detail. A method for the determination of the confidence intervals related to the 

models is presented, and a detailed uncertainty analysis is provided. On this basis, the relative 

errors of the force coefficients can be quantified in a case-specific, empirical manner. 
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Nomenclature 

a(Re) = approximate function for the C(Re) relationship [-] 

𝓐, 𝓑, 𝓒, 𝓓, 𝓔, 𝓕, 𝓖 = coefficients [-] 

AR = aspect ratio [-] 

BP = base point [-] 

c = chord [m] 

C = force coefficient (lift or drag) [-] 

CL = increment of lift coefficient, Fig. A1 [-] 

E = expected value [-] 

f(Re) = functional relationship between Re and C 

h = camber [m] 

i,j = indices 

H = confidence interval [-] 

K = geometrical parameter for wind tunnel correction [-] 

l = height of the wind tunnel [m] 

m(Re) = difference function [-] 

M = measured data point [-] 

n = number of measurement points [-] 

p = probability [-] 

P = true data point [-] 

q2, ract/crit, s*2 = statistics for the Abbe test [-] 

r = rounding radius [m] 

R = force [N] 

Re = chord-based Reynolds number for the blade profiles [-] 

Re’ = diameter-based Reynolds number for a circular cylinder [-] 

𝓢 = slope [-] 

tact/crit = statistics for the one-sample t test [-] 

T = thickness [m] 



U = absolute uncertainty [varies] 

v = velocity [m/s] 

α = angle of attack [°] 

δ = deviation [-] 

ε = error for f(Re) [-] 

μ = error for Re [-] 

ν = kinematic viscosity [m2/s] 

σ = standard deviation [-] 

Subscripts and Superscripts 

D = drag 

F = force 

L = lift 

mod = modelled 

out = outflow 

pdyn = dynamic pressure 

S = span 

t = tunnel 

* = reference case in confirmation of h/c 

0 = zero-lift value for α; zero-lift state  

 = free-stream 

‘ = derivative 

⬚̅ = average 

  



I. Introduction 

HE present paper aims at establishing empirical models for the estimation of the lift (CL) and drag (CD) 

coefficients of individual cambered plates with circular arc camber line, operating at low Reynolds number, within 

the angle-of-attack (α) range of interest in preliminary design of axial flow rotors. Force measurements, conducted in 

a wind tunnel, serve as a basis for the models. The investigations were performed at chord-based Reynolds numbers 

(Re) between 40 000 and 140 000. The chord-based Reynolds number is defined as follows: 

 

 𝑅𝑒 =
𝑣𝑐

𝜈
 (1) 

 

where v is the free-stream velocity, c is the chord of the blade, and ν is the kinematic viscosity of the fluid. The 

investigated parameters correspond to low-speed and/or small-scale turbomachinery, ranging from low-speed axial 

fans [1] to the rotors of micro arial vehicles [2]. 

The lift and drag coefficients, and the lift-to-drag ratio deduced from them, play an important role in the 

preliminary design of turbomachinery. Measurements on individual blade models are applicable to low-solidity (low 

chord-to-spacing ratio) rotors up to a solidity of 0.7 [3]. The magnitude of the lift coefficient is related to the 

aerodynamic performance exhibited by the turbomachine, while the lift-to-drag ratio affects the aerodynamic 

efficiency. 

According to the studies in [4], at low Reynolds numbers, cambered plate blades of circular arc camber line are 

aerodynamically competitive compared to more complex blade cross sections, e.g. the NACA series. As the Reynolds 

number decreases, the drag coefficient of airfoil profiles increases significantly, which is not characteristic of 

cambered plates. The lift coefficient decreases moderately with decreasing Reynolds number, both for airfoils and 

plates. The Reynolds number dependence of the lift and drag coefficients becomes pronounced in the vicinity of Re = 

100 000. In [5] the use of cambered plates with sharp leading edge was proposed in the design of Mars helicopters, as 

they manifest laminar-to-turbulent transition in their boundary layer much earlier compared to airfoils, which results 

in better aerodynamics performance. The advantages of cambered plates over airfoils at low Reynolds number is also 

supported by the findings in [6]. 

T 



Recent research has focused on the aerodynamics of various profiles, investigating the forces acting on the blades 

at low Reynolds number. In [7] the effect of turbulence intensity was examined at low Reynolds number, as the 

turbulence intensity has a significant impact on boundary layer characteristics, which affects the lift and drag acting 

on the blade. There has already been an attempt for the estimation of the drag of airfoils at low Reynolds numbers [8]. 

However, this study only focused on airfoil profiles with high relative thickness (10%-20%) and Reynolds numbers 

between 400 000 and 4 000 000. The literature still lacks a drag prediction method for circular-arc cambered plates, 

operating around the critical Reynolds number vale of 100 000. 

In fluids engineering practice, organized data sets originating from thoroughly documented systematic 

measurements, and associated with appropriately limited, analyzed, and reported experimental errors, are essential. 

The validity of such measurement data is a priori superior to the validity of Computational Fluid Dynamics (CFD) 

data, since CFD results may be highly exposed to modelling uncertainties, related to the reliability of the turbulence 

model, quality of the mesh, etc. The superiority of measurement data to CFD data is justified by the fact that 

engineering CFD tools are validated against experiments, such as in [6]. In view of the above, well-established 

measurement data are to be made available for the fluids engineering community as a primary reference. 

The authors’ intention is to contribute to the open literature in this regard. To the authors’ best knowledge, the 

novelty of the present paper is that it documents a systematic, comprehensive measurement and evaluation campaign 

with the following features. a) Circular-arc cambered plate profiles of relative camber h/c within the range of 0 % to 

8 %. b) Angle of attack  within the range of 0° to 8°. c) Chord-based Reynolds number Re within the range of 40 000 

to 140 000. d) Rounded, i.e. circular leading and trailing edges. The above Re range is relevant in the operation of 

low-speed fans [1], and also in certain aeronautical applications [2, 5]. The examined parameters incorporate 

reasonably high lift-to-drag ratios, allowing the results to be suitable for the application in preliminary aerodynamic 

design and optimization of airfoils and low-speed rotors. The simultaneity of features a) to d) represents a supplement 

to the experimental literature available on cambered plates. More specifically, the open literature is confined to the 

following case studies, in terms of the aforementioned features. [3]: Re between 300 000 and 600 000. [9]: h/c between 

0 % and 4 %; non-circular leading and trailing edges. [10]: h/c = 6 %; non-circular-arc camber line. 

Based on the authors’ previous investigations [11, 12], a linear trend is proposed between the Reynolds number 

and the lift and drag coefficients. In the models, the relative camber, the angle of attack corrected for the free stream, 

and the Reynolds number dependence are taken into account. The established empirical models can directly be used 



in the preliminary design stage of low-speed turbomachinery, helping the selection of the most suitable cambered 

plate geometry for the prescribed aerodynamic requisites. The predicted drag coefficient plays an important role also 

in the field of aeroacoustics since it may serve as a basis for the prediction of the frequency of vortices shed from the 

rotor blades [13]. By knowing the frequency of the vortices, actions can be taken to eliminate them, thus enabling the 

design of more silent fans, which is still a topic of recent research [14]. 

II.Case Study 

A. Blade Geometry 

The subjects of the present investigation are three rectilinear models of circular-arc cambered plates, termed herein 

as low-camber, mid-camber, and high-camber cases. The models were produced from plane steel sheet metal elements 

by means of plastic cold forming, being a common method e.g. in the manufacturing of circular-arc plate blades for 

industrial axial fans. The models were equipped with rounded leading and trailing edges, being a widespread edge 

layout for plate blades of low-speed axial fans [3]. The cross-section of a blade model is shown in Fig. 1. The most 

important geometrical parameters are also defined in the Figure, namely the chord, c, the thickness, T, and the camber, 

h. The rounding radius is indicated with r. The relative thickness of the blades was T/c = 3%. 

 

Fig. 1 Representative cross-section of the investigated cambered plates, with the indication of characteristic 

quantities 

 

The aerodynamic performance of the blade profile is sensitive to the relative camber, h/c. This is illustrated e.g. 

by the inviscid approximation for the lift coefficient of a circular-arc cambered plate [15]: 

 

 𝐶𝐿 𝑖𝑛𝑣  = 2𝜋 (𝛼 +
2ℎ

𝑐
) (2) 

 

The above emphasize that special attention is to be paid to the thorough documentation of the relative camber of 

the airfoil models used in the measurements. Idealistically accurate h/c values can be specified in CFD studies, e.g. 



[6]. However, as far as experimental studies are concerned, the actual geometry of the measured airfoil models, 

incorporating h/c, is to be documented with a reasonably high resolution. Geometrical uncertainties are to be 

considered in the error propagation analysis reported for the measurements. 

For determination of h/c, the manufactured airfoil models were subjected to measurements using a precision caliper 

probe. The results of such geometrical studies on h/c were confirmed via aerodynamic considerations detailed in 

Appendix A. The relative camber values determined by the above means are h/c = 0.4 %, 4.7 %, and 7.1 % for the 

low-camber, mid-camber, and the high-camber cases, respectively. The effect of any uncertainty of h/c, estimated as 

being within the 0.1 % resolution limit of the h/c data specified above, is considered to propagate into the measured 

lift and drag data, and thus, is included in the experimental uncertainty reported later for CL and CD. 

Table 1 gives an overview on the h/c values of cambered plates for which aerodynamic data have been made 

available either in the open literature or in the present study. The minimum and maximum Re values of studies, 

considering all related references, are also specified in the table. The data demonstrates that the present study gives a 

reasonable supplement to the open literature in terms of the h/c values under investigation. 

Table 1 Literature data on cambered plate blades 

 

References h/c [%] min. Re/105 max. Re/105 

[3,6,9] 0 0.1 10 

present study: low-camber 0.4 0.4 1.4 

[3] 2 3 - 

[3,6] 3 0.1 3 

[3,9] 4 0.6 6 

present study: mid-camber 4.7 0.4 1.4 

[3,6,10] 6 0.1 10 

present study: high-camber 7.1 0.4 1.4 

[3] 8 3 6 

[6] 9 0.1 - 

[3] 10 3 - 

 

B. Wind tunnel technique 

[9] has been considered as a basic reference for the lift and drag measurements termed in [9] as two-dimensional 

(2D) tests. Accordingly, the wind tunnel arrangement in [9] has been reproduced herein, enabling the study of 

rectlilinear airfoil models of aspect ratio, AR = 1.5 spanning the tunnel sidewalls. The measurement setup is shown in 

Fig. 2. The test section of the wind tunnel has a length and height of 1 m, its spanwise dimension is 0.15 m. The free-

stream turbulence intensity at the inlet of the test section was measured to be 1 %, using hot wire anemometry [16]. 



As instructed in [17,18], the „walled sides”, bounding the airfoil models of constant chord spanning completely the 

test section from tunnel sidewall to sidewall, serve for preserving two-dimensionality, by practically eliminating the 

trailing vortices [17]. However, for the measurement of aerodynamic forces acting on the blades, the models should 

not be in direct contact with the sidewall at the tip. According to [9], a tip gap size below 0.005 times the span does 

not have an effect on the result, and the measurement can be considered as two-dimensional. Consequently, the tip 

gap was set to 0.5 mm. The velocity was measured with a Pitot-static probe in the test section. Three load cells were 

measuring the forces acting on the blade sections, two in the vertical. and one in the horizontal directions. The 

aerodynamic forces were recorded for 30 s in each measurement point, with a sampling frequency of 1 000 Hz. Each 

resultant force value was calculated by taking the arithmetic mean of the acquired dataset. The angle of attack was set 

manually, using the built-on protractor of the test section. The angle of attack, t was defined as the angle between 

the chord of the blade sections and the velocity vector of the wind tunnel. Preliminary studies in [11] are referred to 

for more information regarding instrumentation of the wind tunnel. 

 

Fig. 2 [12] Measurement setup. 1: motor, 2: frequency converter, 3: radial fan, 4: inlet bell mouth, 5: guide 

vanes, 6: flexible connector, 7: split diffuser, 8: honeycomb, 9: turbulence reduction screens, 10: transition 

element, 11: closed test section. 

 

The test section of the wind tunnel setup has been implemented with open top and bottom. Following the 

instructions and application examples in [18,19], the use of such open tunnel setup has been dictated by the 

requirements of aeroacoustic studies, carried out in addition to the aerodynamic measurements presented herein, and 

reported by the authors in separate papers, e.g. [20]. By means of the open tunnel arrangement, the internal acoustic 

reflections were aimed to be moderated in the acoustic studies. 

The uncertainty of the CL and CD measurements has been estimated by considering the errors related to the 

alignment of the angle of attack, the force and pressure measurements, and the measurement of the geometric 



dimensions of the profiles. The propagation of the error was calculated based on the method in [21], using the 

approximate variance formula [22]. The uncertainties of the measured quantities, and the overall calculated 

uncertainties for the lift and drag coefficients are listed in Table 2. 

Table 2 Estimation of average uncertainties over the full range of investigation 

 

Absolute uncertainty Unit Magnitude 

UF N ±6∙10-3 

Updyn Pa ±1∙100 

Uc m ±5∙10-4 

US m ±5∙10-4 

Uα deg ±5∙10-1 

UCL - ±3∙10-2 

UCD - ±2∙10-2 

 

C. Wind tunnel corrections 

The wind tunnel corrections consider that the airfoil under investigation is exposed to flow conditions being 

different from those valid in an idealistic, infinite free stream. The necessity and methodology for wind tunnel 

corrections is outlined qualitatively in Fig. 3. The inflow is characterized by the velocity vector v of known (set) 

magnitude. The direction of v is determined from directional probe measurements, is considered to be fixed, and can 

be approximated in Fig. 3 as being parallel to the axis of the wind tunnel test section. During a particular experiment, 

the airfoil is aligned by such means that its chordline makes a tunnel angle t [19] with v. In the case of idealistic, 

infinite free flow conditions [19], the free-stream velocity v would be monitored farther upstream and downstream 

of the airfoil as being identical with v, i.e. the airfoil would perform no deflection in the infinite free stream. Lift force 

RLt and drag force RDt are generated on the airfoil placed in the tunnel, and their combination is detected by the in-

built force measuring cells. By definition, the lift and drag forces are normal to and parallel with the free-stream 

velocity, respectively. Considering the fixed and known direction of the v vector as an idealistic representation of free-

stream direction, the force measurement and data processing system has originally been calibrated to establish RLt and 

RDt as being normal to and parallel with v, respectively. Therefore, the “tunnel” coordinate system is fixed to the v 

vector. Primary, “tunnel” lift and drag coefficients, CLt and CDt, are calculated from the aforementioned forces. 

It is to be emphasized at this point that the flow conditions enabled by the wind tunnel jet are different from the 

idealistic, infinite free flow conditions. As can be pointed out qualitatively on the basis of the momentum equation, 

the upward RLt lift force acting on the airfoil is to be associated with a downward deflection of the jet. Such jet 



deflection is enabled by the open jet boundaries due to the open top and bottom of the wind tunnel test section. As a 

result, the outflow velocity vector vout downstream of the airfoil is directed downward with respect to the inflow 

velocity v. Such downward flow deflection is interpreted with use of the concept of “boundary induced downwash” 

in [19]. As a consequence of downward flow deflection, the free-stream velocity v can no longer be represented by 

v but is to be interpreted as a combination of v and vout. The “tunnel” coordinate system fixed to v is to be transformed 

into a corrected coordinate system fixed to v, and the conditions and results of the force measurements are to be 

corrected accordingly. 

 

Fig. 3 Flow conditions around a blade in a wind tunnel 

 

The items of wind tunnel corrections can be viewed in the vector diagrams in Fig. 3. v tends to make a corrected 

angle of attack  with the airfoil chordline being less than t set geometrically for the particular experiment, as 

presented in Eq. (3). Such trend of need for angle-of-attack correction is confirmed by reference [17] stating that the 

angle of attack is decreased in an open jet as compared to the conditions in an infinite stream. 

 

 𝛼 = 𝛼𝑡 − Δ𝛼 (3) 

 

The transformation of the “tunnel” coordinate system to the corrected coordinate system represents a rotation by , 

being a clockwise rotation in Fig. 3. Therefore, the geometrical relationships between the “tunnel” forces and the 

corrected forces are as follows: 



 

 𝐶𝐿 = 𝐶𝐿𝑡 ⋅ 𝑐𝑜𝑠Δ𝛼 + 𝐶𝐷𝑡 ⋅ 𝑠𝑖𝑛Δ𝛼 (4) 

 

 𝐶𝐷 = 𝐶𝐷𝑡 ⋅ 𝑐𝑜𝑠Δ𝛼 − 𝐶𝐿𝑡 ⋅ 𝑠𝑖𝑛Δ𝛼 (5) 

 

According to the small  values, the approximations of cos  = 1 and sin  =  are valid. Furthermore, CDt ∙ 

is more orders of magnitude smaller than CLt, and therefore, is negligible relative to CLt. With these considerations, 

Eqs. (4) and (5) are re-written as follows: 

 

 𝐶𝐿 = 𝐶𝐿𝑡 (6) 

 

 𝐶𝐷 = 𝐶𝐷𝑡 − 𝐶𝐿𝑡 ⋅ Δ𝛼 = 𝐶𝐷𝑡 − Δ𝐶𝐷 (7) 

 

Eq. (6) expresses that there is no practical need for lift correction in the present case. Such circumstance is 

interpreted in [19] as “equal lift” condition. Furthermore, a virtually induced additional drag, due to “boundary induced 

downwash” [19], occurs in the “tunnel” coordinate system, and Eq. (7) reflects the need for the removal of such 

additional drag term, in accordance with [19]. Such trend of need for drag correction is confirmed by reference [17] 

stating that an open jet makes the drag too large in comparison to an unbounded stream. 

The term  serving for angle-of-attack correction in Eq. (3) is calculated as follows [17,19]: 

 

 Δ𝛼 =
√3𝐾

𝜋
𝐶𝐿𝑡 +

−2𝐾 

𝜋
𝐶𝐿𝑡 (8) 

 

where K is a geometrical parameter characteristic of the wind tunnel and the blade section. Its value is K=(π2/48)/(c/l)2, 

where c is the chord of the blade section, and l is the height of the wind tunnel test section. 



Eq. (13) for description of  in reference [19] also contains a term incorporating the moment coefficient at quarter 

chord. However, as demonstrated in [17] (p. 362, Example 9.1), the moment coefficient is about one order of 

magnitude less than the lift coefficient. This fact, supplemented by further analysis of Eq. (13) in [19], implies that 

the term incorporating the moment coefficient is negligible when calculating , leading to Eq. (8), being in 

accordance with Eq. (9.35) in [17]. 

The angle-of-attack and drag corrections discussed above cover all needs for wind tunnel corrections being relevant 

for the presented measurements, since streamwise (“horizontal”) buoyancy as well as solid and wake blockage are 

considered negligible in the case of open jets [17,19]. 

For a force coefficient dataset corresponding to a given camber at a fixed t value, the  value is different for 

each measurement case, since it is calculated with use of the obtained lift coefficient values being Reynolds number 

dependent. However, the variation of  within a dataset, due to Reynolds number dependence, is minor. The 

corrected  angles were arithmetically averaged for each dataset related to a fixed h/c and t. The maximum 

discrepancy between the averaged and actual  values was calculated to be 0.15°, which is significantly below the 

precision limit of t setting (0.5°, conf. Table 2). Based on the above, the  values averaged for a given h/c and t are 

used from this point onwards in the paper. 

The measurement results, corrected for the wind tunnel effects, have been compared to the sparse data available 

in the literature for cambered plates at comparably low Reynolds numbers, as shown in Fig. 4. Error bars indicate the 

measurement errors for the drag coefficient of the own measurements. For the other quantities, out of the own 

measurements and also the literature data [9, 10], the error bars are in the size range of the markers, and are thus 

omitted from the figure. 

The left-hand side of Fig. 4 a) provides a comparison between CL data in [10] for h/c = 6% as well as for the own 

measurements for h/c = 4.7% and 7.1%. Comparative data for Re  40 000 and 140 000 are presented. The figure 

provides also the inviscid approximation, manifested in Eq. (2), for the own measurement cases. Behaving as expected, 

the inviscid CL diagrams represent an upper envelope for each measurement case in Fig. 4. The trend of increase of 

CL with Re observed for [10] is demonstrated well also for the own measurements. The CL diagrams for h/c = 6% in 

[10] are in between the diagrams of the own measurements for h/c = 4.7% and 7.1%, being in accordance with the 

intermediate value of h/c in [10]. 



The right-hand side of Fig. 4 a) serves for comparison between the CD data in the aforementioned cases. The trend 

of decrease of CD with Re observed for [10] dominates the own measurements as well. The drag is higher for the own 

measurements than that for [10]. This is explained by the different camber applied in [10], i.e. the blade is of non-

circular camber line, the maximum camber height is at 40% chord. 

The left-hand side of Fig. 4 b) compares the CL data in [9] for h/c = 4% with the own measurements for h/c = 

4.7%, for Re = 60 000 and 140 000. The trend of increase of CL with Re for the own measurements matches the data 

from [9] fairly well. It is worthy to note that the edge layout is different for [9], probably taking an effect on both the 

lift and drag curves. For [9], the leading edge is elliptical and the trailing edge is tapered. 

On the right-hand side of Fig. 4, the trend of decrease of CD with Re observed for [9] at moderate angles of attack 

is valid also for the own measurements. 

a) 

 

b) 

 

Fig. 4 Comparison of the own measurements with literature data. a) [10] and inviscid data, b) [9] and 

inviscid data. 



III. Data Processing, Evaluation of Results 

A. Initial remarks 

Based on the underlying physics, the existence of a functional relationship is assumed between the force coefficient 

C – either for the lift or for the drag force – and Re, at a given corrected angle of attack : 

 

 C = 𝑓(𝑅𝑒) (9) 

 

The mathematical construction of a particular C = f(Re) is unknown. As a consequence, it is theoretically 

inappropriate to fit any intuitively defined trendline to the set of the (C, Re) data points with use of the least squares 

method ([23], p. 149), in the view that the least squares method is to be applied for the establishment of the free 

parameters of a f(Re) function of known mathematical construction. For a statistically appropriate approximation of 

C = f(Re), the methodology described in [24] has been adopted to the measurement datasets, in the following manner. 

As an approximation of the Reynolds number dependence of either CL or CD at any given , a linear trend function 

has been chosen, on an iterative, trial-and-error basis: 

 

 𝑎(𝑅𝑒) = 𝐶𝐿,𝐷,𝑚𝑜𝑑 = 𝐵𝑃𝐿,𝐷 − 𝓢𝐿,𝐷(105 − 𝑅𝑒) (10) 

 

where BP is a base point and 𝓢 is the slope. 

Although the choice of such linear trend function is arbitrary, it has been inspired by the data reported in [10], and 

processed in [16]. Fig. 5 shows the lift and drag coefficients of a representative cambered plate geometry with 6% 

relative camber discussed in [10]. Thin black lines indicate approximate linear trend functions. The origins for the 

drag coefficients related to various  values are shifted along the vertical axis for better visibility; see the explanation 

related to Fig. 6. The visual inspection of the figure suggests that a linear trend between the Reynolds number and the 

lift or drag coefficient is a suitable approximation within the Reynolds number range under investigation. The 

appropriateness of such approximation has statistically been justified in the procedure detailed in the Appendix. It is 

noted that the statistical methodology presented herein is not confined to linear approximate trend functions. 



The measurement results in function of the Reynolds number are shown in Fig. 6. The boundaries of the confidence 

intervals related to 95% level of confidence are indicated by couples of parallel hairlines for each dataset of given . 

The linear trends fitted to the data points, discussed quantitatively later on, are to be considered as lines at mid-position 

of the confidence intervals, being parallel to the boundaries. The size of the confidence intervals was determined 

according to the method detailed in the Appendix. The angles of attack are corresponding to the average corrected 

angles, as discussed previously. The figure also presents the magnitude of the measurement uncertainty, using error 

bars. For those cases where the error bar is not visible, the uncertainty falls within the range of the size of the symbols 

indicating the measurement results. An increased uncertainty can be observed at Re = 40 000, which is caused by the 

decrease in the magnitude of the measured force and dynamic pressure values, consequently increasing the uncertainty 

in the determination of the coefficients. In the case of the drag coefficients, the data corresponding to various angles 

of attack are presented with shifted horizontal axes, for better visibility. The origin for each angle of attack is shifted 

by a drag coefficient value of 0.02 relative to the origin of the diagram corresponding to the previous angle of attack. 

The origin of the CD(Re) coordinate system for the various  values is indicated with black dots over the vertical axis 

in the diagrams on the right-hand side of Fig. 6. The corresponding  values are indicated in labels.  

 

Fig. 5 Linear lift and drag coefficient trends of a h/c=6% cambered plate for various angles of attack. 

Reproduced from data in [10] 

 

B. Re-dependence of CD 

According to the qualitative interpretation in [3], the decrease in skin friction with increasing Re results in a thinner 

boundary layer, thus reducing the profile drag. This implies that CD tends to decrease as Re increases at a given . 



Such tendency is demonstrated in the majority of the measurement cases presented herein. However, CD appears to 

remain constant or even to increase with increasing Re at the highest incidences for the low-camber and mid-camber 

models. 

 

Fig. 6 Measured lift and drag coefficients as function of Reynolds number for different cambers and angles 

of attack. The origins of the drag curves are shifted for better visibility. 

 

An increase of CD with increasing Re is also observed for certain incidences and Re ranges in the following 

references. [3]: circular-arc cambered plates of h/c = 4 %, 6 %, and 8 %; RAF 6E airfoil. [6]: NACA0012 airfoil; 

cambered plate of h/c = 6 %. [9]: flat plate. [25]: decelerating (diffuser) cascade, accelerating (turbine) cascades. [26]: 

flat plate with laminar-to-turbulent transition; NACA0012, NACA65(421)-420, and NACA66(2X15)-216 airfoils. 



In order to provide a qualitative explanation for such behavior, it is recalled that Re is calculated with the molecular 

viscosity . However, the turbulent flow being present over a significant portion of the airfoil surface manifests itself 

in apparent, virtual stresses, i.e. Reynolds stresses, represented by the eddy viscosity [27], being orders of magnitudes 

larger than the molecular viscosity, and varying in space. Therefore, the particular trends of CD(Re) are exposed to the 

actual vortical structure of turbulent flow in the vicinity of the profile, and, as such, may incorporate scenarios of CD 

increasing with Re. 

An illustrative example on how the vortical flow structure influences the CD(Re) trend is the measured drag curve 

of a circular cylinder, being well-known from the classic literature [27], and reproduced in later experiments [9]. As 

the diameter-based Reynolds number Re’ increases from 2∙103 to 104, the drag coefficient of the cylinder tends to 

increase more spectacularly. Increasing Re’ further on results in regimes of constant or slightly increasing drag 

coefficient, exhibiting a local maximum at Re’  1.5∙105. Then the drag coefficient drops to minimum within the Re’ 

range between 5∙105 and 106. As noted by the present authors, the regimes of increase of drag coefficient correlate 

with Re’ ranges of development of Von Kármán vortex street shed from the cylinder. As described in [27], the Kármán 

vortex street is regular up to Re’ of 5∙103. Reference [28] notes that the vortex street is fully turbulent up to Re’  

3∙105. In the range of minimum drag coefficient between Re’ of 5∙105 and 106, references [27,28] suggest that no 

vortex street exists. Reference [28] also illustrates the aforementioned trends, and states that a vortex-induced low-

pressure region in the wake relates to drag. The studies in [29] reveal that vortex shedding causes a slight increase in 

viscous drag but a significant increase in pressure drag. 

Adopting the above findings to blade profiles, the peculiarities of the vortical structure of turbulent flow, 

apparently incorporating shed Von Kármán vortices, may give an explanation to the trend of increase of CD with 

increasing Re. 

Thoroughly validated CFD tools, such as the one reported in [6], may provide a means for having a high-resolution 

insight into the vortical structure of the flow in the vicinity of the airfoil, and simultaneously into its aerodynamic 

consequences in terms of CD and CL. By such means, a comprehensive explanation can be formulated for verification 

of the assumption that the increase of CD with increasing Re is associated with Von Kármán vortices shed from the 

profiles, termed as the „profile vortex shedding” phenomenon in [16,30,31]. The comprehensive CFD activity is 

beyond the scope of the present experimental paper, and is thus subject of future research. It is noted that, at moderate 

lift, the CFD results in Fig. 16 in [6] indicate an increase of CD of a 6% cambered plate as Re increases from 40 000 



to 120 000. This airfoil is equipped with non-rounded leading and trailing edges. Reference [6] presents no details on 

the vortical flow structure for the cases studied. In lack of CFD data, the reader is referred to high-resolution hot-wire 

measurements applied for discovering profile vortex shedding in [16,30,31]. These measurements reveal the 

occurrence of profile vortex shedding for a 8 % cambered plate of blunt leading and trailing edges, for Re = 60 000 

and 100 000, for  = 2° and 4°, being in brief agreement with the aforementioned case in [6] for which an increase of 

CD with Re was observed. This supports the view that an increase of CD with Re may be associated with vortex 

shedding. 

C. Re-dependence of CL 

According to the qualitative explanation in [3], the displacement effect of the boundary layer influences the 

effective camber. An increase in Re tends to make the boundary layer thinner on the suction side, thus moderating the 

loss in effective camber, or, in other words, increasing the lift at a given incidence. This suggests that CL tends to 

increase with increasing Re at a given . Such tendency can be observed in the measurements presented herein. The 

only exception is the low-camber model at minimum incidence, showing a slight decrease of CL as Re increases.  A 

decrease of CL with increasing Re is also detected for certain Re ranges and for moderate incidences in the following 

references. [3]: circular-arc cambered plates of h/c = 4 %, 6 %, and 8 %. [6]: NACA0003 airfoil. [32]: NACA0012 

airfoil. At the present state of research, the authors are confined to the following comment. In addition to Re-

dependence of CD as discussed formerly, the specialties of the vortical structure of turbulent flow past the blade 

profiles, potentially including shed Von Kármán vortices, may also influence the Re-dependence of CL. The increase 

of Re may cause the shedding of large-scale coherent vortices causing an increased loss in effective camber, and thus, 

a decrease in lift. The experienced „extraordinary” trends in Re-dependence of both CD and CL, confirmed by literature 

examples, are subject of future research, with incorporation of high-resolution measurements on the flow structure as 

well as CFD studies. 

D. Empirical model fitting 

The base point, BP and the slope 𝓢, of Eq. (10) has been defined as a function of angle of attack and relative 

camber in the following way: 
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Second order polynomials were found to be suitable for the approximation of the dependence on both the angle of 

attack and the relative camber in the above relationships. The slope and base point values in function of angle of attack 

are shown in Fig. 7. The fitted second order polynomials are shown with the hairlines. Using the coefficients of these 

fitted second order polynomials, another second order polynomial fitting was made to determine the dependence on 

the relative camber. Consequently, all the coefficients included in Eqs. (11)-(14) have been calculated. The coefficients 

are summarized in Tables (3)-(6). Eqs. (10) to (14), together with data in Tables 3 to 6, provide empirical models for 

lift and drag prediction. Eq. (10) serves for considering the Reynolds number dependence. Eqs. (11) to (14) represent 

the dependence of the base point and the slope of the force coefficients, incorporated in Eq. (10), on the relative camber 

as well as angle of attack. The quality of empirical model fitting is demonstrated in Fig. 8. The figure shows the 

modelled lift and drag coefficient values as a function of the measured corresponding data. The lines corresponding 

to perfect fit have been indicated in the figure with solid, black lines. 



 

Fig. 7 The slopes and base points as a function of angle of attack for the lift and the drag coefficients 

 

Table 3 Empirical coefficients for the base point of the lift coefficient 

 

  i 

 𝓐 0 1 2 

j 

0 7.25∙10-3 1.45∙10-1 -5.76∙10-3 

1 7.16∙10-2 -2.58∙10-2 2.28∙10-3 

2 6.39∙10-4 3.74∙10-3 -3.59∙10-4 

 

Table 4 Empirical coefficients for the slope of the lift coefficient 

 

  i 

 𝓑 0 1 2 

j 

0 -3.07∙10-7 3.62∙10-7 -3.59∙10-8 

1 -8.72∙10-8 6.53∙10-9 1.00∙10-8 

2 5.23∙10-8 -9.12∙10-9 -8.08∙10-10 

 

  



Table 5 Empirical coefficients for the base point of the drag coefficient 

 

  i 

 𝓒 0 1 2 

j 

0 1.78∙10-2 5.38∙10-3 1.05∙10-3 

1 -2.17∙10-3 -2.31∙10-4 3.94∙10-4 

2 8.41∙10-4 1.42∙10-4 -5.03∙10-5 

 

Table 6 Empirical coefficients for the slope of the drag coefficient 

 

  i 

 𝓓 0 1 2 

j 

0 -1.41∙10-7 1.46∙10-8 -6.09∙10-10 

1 5.30∙10-8 1.69∙10-9 1.04∙10-9 

2 -7.43∙10-9 -1.61∙10-9 1.67∙10-11 

 

 

Fig. 8 Comparison of measured and modelled lift and drag coefficients 

 

Empirical models have also been created for the estimation of the magnitude of the confidence interval valid for 

the models discussed above. The reason for such a model is to offer a simple tool for practicing engineers to obtain 

the lift and the drag coefficient of cambered plates at certain Reynolds numbers, supplemented with the corresponding 

uncertainties. The relative confidence intervals, HL/CL and HD/CD have been determined Reynolds number 

independently in the following way: 
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The exponential characteristic of the relative confidence interval of the lift is justified by the fact that, within the 

studied range of angle of attack, the absolute value of the lift coefficient is monotonously increasing with increasing 

angles of attack. Contrarily, the drag coefficient may increase, as well as decrease with the change of angle of attack, 

which is allowed by the second order polynomial description. The relative confidence intervals are shown in Fig. 9, 

as a function of angle of attack. To enable better visibility, only one value, i.e. the average of the relative confidence 

intervals obtained for various Reynolds numbers, has been indicated for each angle of attack. The fitted exponential 

and second order trendlines are also indicated in the figure with lines in different styles. The coefficients of the fitted 

function of Eqs. (15)-(16) are summarized in Tables (7)-(9). 

 

Fig. 9 Relative confidence intervals as a function of angle of attack for different cambers 

 

Table 7 Empirical coefficients for the relative confidence interval of the lift coefficient 

 i   

 0 1 2 

𝓔 3.89∙10-1 -1.38∙10-1 1.27∙10-2 

 

Table 8 Empirical coefficients for the exponent of the relative confidence interval of the lift coefficient 

 i   

 0 1 2 

ℱ -3.64∙10-1 1.03∙10-1 -1.03∙10-2 

 

  



Table 9 Empirical coefficients for the relative confidence interval of the drag coefficient 

 

  i 

 𝒢 0 1 2 

j 

0 7.29∙10-2 -1.73∙10-2 1.57∙10-3 

1 -1.15∙10-2 -9.97∙10-4 5.99∙10-4 

2 7.01∙10-4 3.31∙10-4 -8.71∙10-5 

The above models for the approximation of the lift and drag coefficients and the corresponding confidence 

intervals are to be utilized in the following manner. The lift and/or the drag coefficient is to be calculated for the given 

camber, Reynolds number and angle of attack with use of Eqs. (10)-(14), using the coefficients in Tables (3)-(6). In 

the next step, the corresponding relative confidence interval, related to 95% level of confidence, shall be determined 

with use of Eqs. (15)-(16), and Tables (7)-(8). By multiplying the relative confidence interval with the calculated lift 

and/or drag coefficient, a case-specific absolute error can be approximated in the following manner: 

 

 𝑈𝑚𝑜𝑑,𝐶𝐿
=  ± 

𝐻𝐿

𝐶𝐿
⋅ 𝐶𝐿,𝑚𝑜𝑑 (17) 

 

 𝑈𝑚𝑜𝑑,𝐶𝐷
=  ± 

𝐻𝐷

𝐶𝐷
⋅ 𝐶𝐷,𝑚𝑜𝑑  (18) 

 

The h/c = 0%, α = 0° configuration, representing a zero-lift theoretical case, causes a singularity in the 

aforementioned method of calculating the absolute modelling error, since the relative error cannot be interpreted for 

CL = 0. By using the model, sensitivity studies were carried out for the estimation of the minimum achievable absolute 

uncertainty in CL model fitting in the vicinity of the h/c = 0, α = 0 case. It has been realized that the absolute 

experimental uncertainty reported in Table 2 for CL, i.e. UCL = ± 0,03, represents also the conservatively estimated 

minimum achievable uncertainty in CL model fitting. 

Therefore, the modelling uncertainty is to be calculated with use of the methodology described in Eqs. (10)- (18). 

If the result of uncertainty calculation is below 0.03, the uncertainty to be considered eventually is as follows: 

 

 𝑈𝑚𝑜𝑑,𝐶𝐿,𝑚𝑖𝑛
=  ± 0.03 (19) 

 



Summarizing the above, the proposed error estimation process is based on a statistical method, however it is not 

over-generalized, i.e., it is not overestimating the magnitude of the error, but still it is adequately strict. 

IV. Conclusions 

Measurement-based empirical models have been established for the determination of the lift and drag coefficients 

of cambered plates at moderate Reynolds numbers between Re =40 000-140 000, for the relative camber range of h/c 

= 0 % – 8 %, and angles of attack α = 0° – 8°. The cambered plates were equipped with rounded leading and trailing 

edges, and the relative thickness was T/c =3%. The models rely on polynomial functions, for which the empirical 

coefficients are reported herein. These coefficients were determined on the basis of systematic wind tunnel 

measurements. The free-stream turbulence intensity was 1 % at the inlet of the test section. The measurement data 

were corrected for infinite free flow conditions, thus allowing for the application of the models for preliminary blade 

design cases assuming low-solidity cascades in 2D flow. The measurement results have been compared with literature 

data. The observed trends of the Reynolds-number dependence of the lift and drag coefficients have been discussed, 

supported by literature references. The main results of the paper are summarized as follows. 

1. The Reynolds number dependence of the lift and drag coefficients at fixed h/c and  values was modelled 

using linear trend lines over the Re range under investigation [Eq. (10)]. Base points and slopes were 

introduced for definition of the linear trend lines. The appropriateness of such linear trendline fitting has 

statistically been proven. 

2. Approximations were introduced for the aforementioned base points and slopes of the force coefficients in the 

form of second-order polynomial function of both h/c and  [Eqs. (11) to (14)]. The appropriateness of such 

polynomial fitting has also been proven. 

3. Empirical values for the coefficients of the aforementioned polynomial fitting have been reported in Tables 3 

to 6. These coefficients, together with Eqs. (10) to (14), enable the determination of the lift and drag 

coefficients over the ranges of validity listed in the first paragraph of the Conclusions section. 

4. An approximation of the confidence intervals has been reported, related to a 95% level of confidence. On this 

basis, a methodology has been documented for case-specific estimation of the uncertainty of the empirical 

models [Eqs. (15) and (16), Tables 7 to 9]. 

5. The observed Re-dependent trends in the lift and drag coefficients have been discussed. 



CFD studies are foreseen for the deeper understanding of the underlying phenomena in the formation of lift and 

drag, providing a comprehensive explanation for the experienced trends of Reynolds number dependence. 

In order to extend the applicability of the empirical model presented herein, experiments are planned to be carried 

out on the effects of the modification of the edge layout of the profiles. For example, the effects of applying blunt 

leading and trailing edges, being relevant to low-speed fan blade cascades [33], is to be tested. The effect of sharp 

leading edges, applied for certain micro-rotors, can also be investigated. 

The purely empirical models presented herein are capable for representing the dependence of lift and drag 

coefficients simultaneously on Re, h/c, and . In contrast to empirical modelling, a semi-empirical modelling 

approach, being developed on the basis of a simplified analytical model, offer the following potential benefits. It may 

comprehensively incorporate the basic physical trends represented by the analytical model. Furthermore, it may enable 

a straightforward mathematical treatment via simple empirical corrections to the analytical model. In what follows, 

examples for the analytical models on lift and drag coefficients are given, potentially serving as basis for further 

development into semi-empirical models. The limitations of these models are also addressed herein. The inviscid 

model for lift in Eq. (2) neglects the effect of viscosity, and thus, considers the effect of h/c and  only. The Blasius 

solution for drag in [27] is restricted to a flat plate at zero incidence, i.e. h/c = 0% and  = 0°; and thus, considers the 

effect of Re only. Even if semi-empirical models could be successfully elaborated on the basis of these analytical 

models, the authors’ view is that the purely empirical models presented herein are competitive to such semi-empirical 

models, in terms of both comprehensiveness and simple mathematical treatment. No need has therefore been arisen 

so far for elaborating such semi-empirical models. 

Appendix A: Aerodynamic considerations for confirmation of h/c 

In order to aerodynamically assess the validity of the h/c results obtained from the geometrical measurements, the 

following considerations were made. The methodology is illustrated in Fig. A1. For a given airfoil cross-section, its 

CL(,Re) lift curves in the vicinity of the zero-lift state tend to be independent of Re over the Re-range under 

investigation. Such tendency is supported by measurements in the following references: [3, 9, 34]. Its presumed 

physical background is that near-zero lift of an airfoil tends to be associated with the moderation of local adverse 

streamwise pressure gradients, thus minimizing the Re-dependent effect of viscosity on the lift via boundary layer 

thickening or separation. On this basis, for a circular-arc cambered airfoil of a given relative camber (h/c)* taken as 



reference, a related zero-lift angle of attack 0*, being dependent on (h/c)* but considered to be independent from Re, 

can be estimated. Therefore, the zero-lift state is described as follows: 

 

 𝐶𝐿{𝛼0
∗[(ℎ/𝑐)∗], (ℎ/𝑐)∗} = 0 (A1) 

 

As inspired by Eq. (2), the lift coefficient in the vicinity of the zero-lift state of any circular-arc cambered plate 

profiles, CL(, h/c), is approximated as being linearly dependent on both  and h/c. The appropriateness of this 

approximation has been justified via processing literature-based as well as own measurement data. Therefore, the lift 

coefficient in the vicinity of the zero-lift state described in Eq. (A1) can be expanded into a Taylor series, and can be 

approximated using first-order terms as follows: 
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Eq. (A2) is valid for any CL, , and h/c; provided that the latter two are in the vicinity of the known, related 0* 

and (h/c)* reference quantities, taken from the literature. CL and the related  are to be taken from the authors’ 

measurements. The partial derivatives in Eq. (A2), taken for the zero-lift state (subscript 0) of the reference case 

(superscript *), are to be determined using literature data. Rearranging Eq. (A2) for h/c, and substituting the 

aforementioned quantities into the equation, h/c related to the profile measured by the authors can be calculated. 

Reference data taken from the literature have been utilized for the above outlined determination of h/c in the 

following way, as outlined in Fig. A1. The CL() data points available in the vicinity of the zero-lift state at any given 

camber – either any (h/c)* reference case, or h/c tested by the authors – enabled a high-precision linear fitting. By 

such means, linearized lift diagrams have been made available, providing a straightforward analytical tool for 

determining 0 and [CL/]0. One example for a linearized lift diagram obtained from the authors’ measurements, 

termed herein “near-zero lift section”, is indicated in Fig. A1 using a dashed line. For circular-arc cambered plates 

with rounded leading and trailing edges, reference [3] provides lift curves for a series of (h/c)* reference camber. Out 

of the pool of such reference lift curves, two neighboring curves of (h/c)*i and (h/c)*i+1 being the closest to the near-



zero lift section over the CL() plane were selected. The linearized lift diagrams related to these reference cases are 

depicted in Fig. A1 using solid lines. The diagrams are labelled using the related cambers in the sequence of (h/c)*i < 

(h/c) < (h/c)*i+1, and reflect the trend that the higher the relative camber, the higher the lift at a given , conf. Eq. (2). 

The quantities to be substituted into Eq. (A2) were obtained in the following procedure. The linear reference lift 

diagram being closer to the near-zero lift section – related to (h/c)*i for the example in the figure – was chosen for 

specification of [CL/]0* – i.e. the first partial derivative –, 0*, and (h/c)* in Eq. (A2).  was set to the vicinity of 

the zero-lift angles under consideration in Fig. A1 as a compromise value for which CL data were originally available 

for each of the three experiments related to the figure. Fig. A1 presents the example for setting  = 0[(h/c)*i]. In the 

view that the lift tends to linearly depend on h/c, conf. Eq. (2), the second partial derivative in Eq. (A2) was 

approximated from the literature reference data as follows, with use of the notation in Fig. A1 in the present example: 

 

 [
𝜕𝐶𝐿

𝜕(ℎ/𝑐)
]

0

∗

=
ΔCL

∗ (𝛼)
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Finally, CL to be substituted into Eq. (A2) was taken from the authors’ measurement as a value related to ., as 

indicated in the figure as CL(). 

 

Fig. A1 Illustration for determination of h/c. 

  



Appendix B: Statistical evaluation 

It is worthy to note that the statistical evaluation process applied herein provides a justification of the 

appropriateness of the C  a(Re) approximation without any explicit need for taking the experimental uncertainty 

reported for Re and C quantitatively into account within the process. The justification implicitly and automatically 

considers that the measurement-based data for Re and C, utilized quantitatively in the statistical evaluation process, 

are associated with the experimental uncertainty reported herein. 

In Fig. B1, the data point Pi represents a perfect match with the true functional relationship in Eq. (9). As such, the 

Rei and f(Rei) coordinates of data point Pi are accurate values. It is to be noted that Fig. B1 represents general functions, 

in order to illustrate the generality of the presented method, even though linear approximation is applied herein. The 

data point Mi provides an example for an actual observation, originated from the measurements, in the vicinity of point 

Pi. The points for the perfect match Pi and for the measurement Mi are different because the measurements are 

associated with errors. Both Rei and f(Rei) are considered as quantities associated with random error of normal 

distribution in the measurements. The errors for Rei and f(Rei) are i and i, respectively, for which i N(0, ), and 

i N(0, ). Therefore, the coordinates of data point Mi are values incorporating errors, and are expressed as (Rei + 

i) and (f(Rei) + i). 

 

Fig. B1 Definition of the statistical quantities 

 

The following difference function m(Re) is introduced for judging the appropriateness of a(Re). a(Re) in Eq. (10) 

is considered to be an appropriate approximation for f(Re) in Eq. (9) provided that m(Re) is suitably small. 



 

 𝑚(𝑅𝑒) = 𝑓(𝑅𝑒) − 𝑎(𝑅𝑒) (B1) 

 

The deviation i is calculated for each point of actual observation, i.e. each measurement data point, using the 

following relationship. Calculation of i for each measurement data point contributes to setting up a statistical sample 

{i} being available for  as a statistical variable. Therefore, the statistical sample{i} is to be generated from the 

measurement data. 

 

 𝛿𝑖 = 𝐶𝑖 − 𝑎(𝑅𝑒𝑖 + 𝜇𝑖),       𝑖 = 1,2, … 6 (B2) 

 

a(Rei + i) is to be substituted into Eq. (B2) as result of the linear approximation in Eq. (10). When using the 

approximation manifested in Eq. (10), Rei + i is to be substituted, being the actually observed, i.e. measurement-

based Re value presented in the measurement diagrams in Fig. 6. Ci is to be considered in Eq. (B2) as the actually 

observed, i.e. measurement-based force coefficient value indicated in the measurement diagrams in Fig. 6. 

The following relationship is valid, utilizing the nomenclature in Fig. B1: 

 

 𝑎(𝑅𝑒𝑖 + 𝜇𝑖) + 𝛿𝑖 = 𝑓(𝑅𝑒𝑖) + 𝜖𝑖 (B3) 

 

The following approximation is generally considered: 

 

 𝑎(𝑅𝑒𝑖 + 𝜇𝑖) ≈ 𝑎(𝑅𝑒𝑖) + 𝜇𝑖𝑎′(𝑅𝑒𝑖) (B4) 

 

In Eq. (B4), a’(Rei) indicates the derivative (slope) of the a(Re) function at Rei. In the case of the linear approximate 

trend function discussed herein, Eq. (B4) expresses not just an approximate but perfect equality. A combination of 

Eqs. (B1), (B3) and (B4) leads to the following relationship: 

 



 𝛿𝑖 = 𝑚(𝑅𝑒𝑖) − 𝜇𝑖𝑎
′(𝑅𝑒𝑖) + 𝜖𝑖 (B5) 

 

Since i N(0, ) and i N(0, ), i.e. the expected values of both i and i are zero, Eq. (B5) implies that, for a 

specified Rei, the expected value of i is as follows: 

 

 𝐸(𝛿𝑖) = 𝑚(𝑅𝑒𝑖) (B6) 

 

At this point, the following null hypothesis is tested with use of the Abbe test ([23], p. 114), utilizing the statistical 

sample {i}: 

 

 H10:   𝐸(𝛿𝑖) = 𝑚0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (B7) 

 

For the execution of the Abbe test, the i values within the {i} sample have been re-arranged in a sequence 

corresponding to increasing Re values, being the independent variable herein. The following statistics have been 

calculated ([23], p. 114): 
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 𝑟𝑎𝑐𝑡 =
𝑞2

𝑠∗2 (B11) 

 



The critical value for r is rcrit(0.95,6) = 0.445, on the basis of [23] (p. 355, Table V). In the aforementioned notation, 

0.95 is the prescribed confidence level, and n = 6 is the sample size. For each case investigated herein, the inequality 

of 

 

 𝑟𝑎𝑐𝑡 > 𝑟𝑐𝑟𝑖𝑡  (B12) 

 

has been established, and therefore, the truth of the (B7) null hypothesis has been assessed. With consideration of Eq. 

(B6), this implies the following: 

 

 𝐸(𝛿𝑖) = 𝑚(𝑅𝑒𝑖) = 𝑚0 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (B13) 

 

The assessment of the truth of the (B7) null hypothesis enables the utilization of the one-sample t test [35] (p. 358), 

by means of which the following null hypothesis is tested. 

 

 H20:   𝑚0 = 0 (B14) 

 

The actual value of the t variable is to be calculated as follows: 

 

 𝑡𝑎𝑐𝑡 =
𝛿̅−𝑚0(=0)

𝑠∗ √𝑛 (B15) 

 

The critical value for t is tcrit (0.95,6) = 2.447, on the basis of [35] (p. 566, Table IV). For each case investigated herein, 

the inequality of 

 

 |𝑡𝑎𝑐𝑡| < 𝑡𝑐𝑟𝑖𝑡 (B16) 

 



has been established, and therefore, the truth of the (B14) null hypothesis has been assessed. In the view of Eq. (B1), 

this implies the acceptance of the a(Re) approximate trend function in Eq. (10). 

A confidence interval is to be defined in the vicinity of the a(Re) approximate function, embedding the unknown 

f(Re) function in the Re range under consideration at a prescribed probability of p = 0.95. The radius of this confidence 

interval is to be calculated as follows 

 

 𝐻(𝑝 = 0.95, 𝑛 = 6) = 𝑡𝑐𝑟𝑖𝑡
𝑠∗

√𝑛
 (B17) 

 

The boundaries of the confidence interval, a(Re) – H and a(Re) + H, are depicted in Fig. 6. 
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