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Abstract 

Background  Precisely predicting the water levels of rivers is critical for planning and supporting flood hazard 
and risk assessments and maintaining navigation, irrigation, and water withdrawal for urban areas and industry. In 
Hungary, the water level of rivers has been recorded since the early nineteenth century, and various water level pre-
diction methods were developed. The Discrete Linear Cascade Model (DLCM) has been used since 1980s. However, 
its performance is not always reliable under the current climate-driven hydrological changes. Therefore, we aimed 
to test machine learning algorithms to make 7-day ahead forecasts, choose the best-performing model, and compare 
it with the actual DLCM.

Results  According to the results, the Long Short-Term Memory (LSTM) model provided the best results in all time 
horizons, giving more precise predictions than the Baseline model, the Linear or Multilayer Perceptron Model. 
Despite underestimating water levels, the validation of the LSTM model revealed that 68.5‒76.1% of predictions 
fall within the required precision intervals. Predictions were relatively accurate for low (≤ 239 cm) and flood stages 
(≥ 650 cm), but became less reliable for medium stages (240–649 cm).

Conclusions  The LSTM model provided better results in all hydrological situations than the DLCM. Though, LSTM 
is not a novel concept, its encoder–decoder architecture is the best option for solving multi-horizon forecasting 
problems (or “Many-to-Many” problems), and it can be trained effectively on vast volumes of data. Thus, we recom-
mend testing the LSTM model in similar hydrological conditions (e.g., lowland, medium-sized river with low slope 
and mobile channel) to get reliable water level forecasts under the rapidly changing climate and various human 
impacts.

Highlights 

•	 The actual use of the DLCM predicts water stages less precisely than the LSTM model.
•	 The LSTM underestimates water stages on each predicted horizon (1–7 days).
•	 The LSTM model reacts too late or  incorrectly in certain hydrological situations (rising limb of floods, medium 

stages).
•	 The most precise forecast was given for low stages, followed by floods.
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•	 The lowest accuracy was provided for medium stages.
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Underestimation

Graphical Abstract

Introduction
The precise prediction of river stages is fundamental 
to supporting flood protection, navigation, and water 
withdrawal. The first stage predictions were based on 
regression curves between water levels at neighbouring 
gauging stations [15, 40], their accuracy was subsequently 
improved using stage data from tributaries [35]. Their 
reliability is influenced by impoundment, slope changes 
during a flood [22, 23], changes in channel morphology 
and roughness [11, 14],or the changing nature of hydro-
logical events [3, 5].

The Discrete Linear Cascade Model (DLCM) is widely 
used to predict water stages [7, 30, 34, 36]. It is based 
on mass and energy conservation principles, with inter-
connected compartments representing an element of 
the hydrological system and incorporating the concept 
of time lags [16, 29, 31, 37]. Statistical methods (i.e., 

regression or maximum likelihood estimation [34, 38], 
are used to estimate its parameters. The DLCM is sim-
ple with low computational efficiency [30, 34], it does, 
however, assume linear correlations between the hydro-
logical components [7, 31], though hydrological systems 
are often nonlinear and exhibit time-varying behaviour, 
especially under extreme events [13, 16]. Besides, the 
DLCM cannot handle downstream disturbances, such as 
hydraulic structures, tributaries, or impoundments [34].

Therefore, numerically based water level forecast mod-
els were developed [6, 39], applying predefined upper 
and lower boundary conditions. Their accuracy is highly 
dependent on the available elevation and roughness 
data. Most machine learning (ML) algorithms perform a 
transformation on the input data, extracting the underly-
ing information and then predict the water stages using 
even a simple regression model. Moradkhani et  al. [26] 
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achieved excellent one-step-ahead prediction by applying 
a neural network approach with a nonlinear relationship 
between the input and output data and a proper cross-
validation framework.

Forecasts based on data-driven algorithms open up 
new perspectives in hydrology. Though at-a-site meas-
urements produce a massive amount of data, only a 
small portion is processed for forecasting. To predict 
water levels, data-driven methods use orders of magni-
tude more data. As the relationships between the data 
change (due to climate or human-driven morphologi-
cal or hydrological alteration), these methods refine the 
network of relationships; thus, the forecast is based 
on the most accurate relationships. Mosavi et  al. [27] 
highlighted that ML models could outperform physics-
based or statistical models. They are cost-effective and 
can help find the optimal parametrization of a data-
driven model to support forecasts [9, 33].

The artificial neural network (ANN) could pre-
dict water stages using one hidden layer. The trained 
model of Chen et  al. [10] was compared with 2D and 
3D hydrodynamic models, proving that the data-driven 
models provided reliable results. Wei et al. [42] used the 
ANN with other simple (“lazy”) and complex (“eager”) 
models to predict hourly hydrological data. It was 
determined that the more complex models produced 
more precise results, and the ANN approach provided 
accurate results at the expense of lower computational 
efficiency during the parameter optimization.

An ensemble of multilayer perceptron (MLP) models 
was used for a one-step-ahead forecast [25]. First, a sin-
gular spectrum analysis of the multi-dimensional input 
(multiple time series) was performed. Then, trained 
models were selected based on accuracy and diversity, 
and average predictions were calculated. However, the 
proposed methodology needs to be tested for multi-
step ahead forecasts.

The combination of the autoregressive integrated 
moving average (ARIMA) model and ML models, 
such as the random forest (RF), support vector regres-
sion (SVR), recurrent neural network (RNN), and 
long short-term memory model (LSTM), led to reli-
able hourly water stage prediction [32]. The main 
idea behind the hybrid model was that the ARIMA 
model could handle the linear components of the data, 
whereas the ML models used nonlinear relations.

Several authors compared the accuracy of water level 
forecasts produced by various models. Kim et  al. [20] 
compared ML and classical approaches, concluding 
that the LSTM-RNN model gave the best flood fore-
cast, outperforming the support vector machine (SVM) 
and gradient boosting (GB) models. Adikari et  al. [1] 
used convolutional neural network (CNN), LSTM, and 

wavelet decomposition (WD) functions combined with 
the adaptive neuro-fuzzy interface system (ANFIS). 
Their findings indicate that the CNN model, which 
deals with complex data dependencies, could be used 
for short-term hydrological predictions. Ahmed et  al. 
[2] developed 7-day, 14-day, and 28-day forecasts. 
The input data were fed to a CNN encoder and a bi-
directional LSTM decoder. They concluded that the 
recursive encoder–decoder model provided accurate 
short-term prediction, but failed at longer time hori-
zons due to the cumulative error in the recursive pro-
cess [12].

Hungarian hydrologists have recently been confronted 
by end-users with the issue of the inaccuracy of the Dis-
crete Linear Cascade Model (DLCM), which has been 
used to predict stages of Hungarian rivers since the 1980s 
[4]. The predictions on the Tisza River are especially 
incorrect due to deteriorating slope conditions, periodi-
cal channel changes, hydrological extremities, and fre-
quent impoundments [14, 23, 24, 41]. The combination 
of rising flood levels and long-duration floods exposes 
the population to greater flood risk [24],hence, predicting 
water levels, particularly peak flood levels, is crucial for 
flood hazard management and warning systems.

Therefore, the primary aim of the research was to 
assess the applicability of the LSTM model under various 
hydrological situations and prediction horizons to esti-
mate water levels. To understand the limitations of the 
LSTM model, its performance was compared to a naive 
(Baseline) model and simpler ML models (Linear and 
MLP). Our specific goals are as follows: (1) test various 
ML algorithms to make a 7-day-ahead water level fore-
cast; (2) analyse and compare their results; (3) assess the 
performance of the best algorithm in predicting recent 
floods; and (4) compare the results of the best algorithm 
with the predictions of the DLCM used by authorities.

Although LSTM is not a novel concept, its encoder–
decoder architecture is the most effective at solving 
multi-horizon forecasting (“Many-to-Many”) challenges. 
Still, the LSTM model is cutting-edge in time-series 
forecasting: newer transformer models do not outper-
form cell-based RNNs in performance, because they 
can be trained on large amounts of data and lack mem-
ory (which is required to incorporate patterns from the 
past). The novelty of the research is that in specific flu-
vial environments (i.e., very low slope conditions, fre-
quent impoundments, hydrological extremities), the 
performance of the model has not been tested yet, and 
the Tisza River, with its new hydrological challenges, pro-
vides a great opportunity for that. The proposed LSTM-
LSTM model is not an existing model. The approach of 
building the LSTM model is well-known since encoder–
decoder architectures are the current best practices in all 
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fields using deep learning, and the model’s final structure 
and hyperparameters allow for an understanding of the 
patterns in the time series data for such a lowland river, 
like the Tisza River.

Study area
The Tisza River is a Danube tributary (length: 962  km), 
that drains an area of approximately 157.200 km2 in Cen-
tral Europe (Fig. 1). The Tisza River has a lowland char-
acter, as its mean water slope is just 2 cm/km; thus, the 
flow velocity is 0.6‒1.3  m/s. The slope has a declining 
trend, as the mean slope was 2.1  cm/km in 1900–1910 
and 1.4 cm/km in 2000–2010 [23]. The discharge of the 
Tisza varies between 58 and 4346 m3/s at Szeged (mean 
825 m3/s). Based on daily water level measurements 
since 1 January 1900, the absolute water level change at 
the Szeged gauging station is 12.59 m (varying between 
−  250 and + 1009  cm). The bankfull level at Szeged is 
550 cm; however, the flood warning levels are 650, 750, 
and 850  cm. Floods have been recorded 80  years since 
1900, with a mean duration of 45  days, but the longest 
flood lasted for 173 days [23].

Flood levels have increased by over 4 m since 1900, due 
to catchment-scale run-off changes [18] and decreas-
ing flood conductivity [21, 24]. Thus, in 120  years, six 

new record flood levels were set at Szeged in 1907, 1913, 
1919, 1932, 1970, and 2006 [23]. However, climate change 
has also an impact on hydrology. High and long lasting 
floods occurred at the beginning of the 2first century 
(1998‒2006), but since then, only two small overbank 
floods have been recorded (2010 and 2013), and only 
below-bankfull flood waves have developed.

Impoundment also has an impact on flood levels. The 
Danube and the largest tributary of the Tisza, the Maros, 
can block the floods on the Tisza. This impoundment 
increases the flood levels by 30‒40 cm, and it lasts until 
the water level of the Danube or Maros drops [41]. The 
impoundment influences the Tisza along its 300‒350 km 
long section (from its confluence with the Danube to 
Szolnok). The floods in 2006 and 2013 were impounded 
ones [24], therefore, though the 2006 flood was the high-
est on record (H: 1009 cm, it had a lower peak discharge 
(Q: 3780 m3/s) than the second largest flood in 1970 (H: 
959 cm; Q: 3820 m3/s).

Another essential feature of the Tisza that influences 
the stages is its intense cross-sectional area change 
during floods. The channel is sand-bedded and deeply 
incised. Therefore, during the rising limb of the floods 
the channel incises up to 1.5‒3 m, giving it a maximum 
depth of 18.5‒19.1 m. However, when the flow velocity 

Fig. 1  The study area is the Tisza River in Central Europe. The input data of the model created for Szeged originate from 11 upstream 
and downstream gauging stations
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drops during the flood’s peak (due to impoundment), 
large amount of sand is deposited on the bottom, 
reducing the maximum depth to 17.6 m and the cross-
sectional area by approximately 10%. As the impound-
ment terminates, the flow velocity increases, and the 
channel slightly incises again thus during the falling 
limb. These cross-sectional changes influence the dis-
charge-stage curves: during the rising stages, the inci-
sion results in a lower stage of a given discharge than 
during flood peak or falling stages, when the in-channel 
aggradation results in water level increase of the same 
discharge [23].

Methods
Data
The models were created for the Szeged gauging station 
(173 river  km). The present study employed daily water 
levels measured at 12 gauging stations along the Tisza 
and its two tributaries (Körös and Maros) near the Sze-
ged station (Fig. 1), see list of the gauging station in Addi-
tional file 1: S1

. The water level is measured using fluviometers, with 
the “0” point set arbitrarily. The daily measured water 
stage data between 1 January 1951 and 31 December 2020 
were used in the modelling. It is a common approach to 
divide the data into two parts to track the performance 
of a model on unseen data [8]. The general approach for 
data without a temporal component is to keep 80% of the 
data randomly selected for finding the best parametriza-
tion of the model (training dataset) and the remaining 
20% for testing the predicting ability (validation dataset). 
However, randomly slicing time-dependent data would 
cause issues. First, it separates time essential properties 
such as trend and seasonality. Second, it may cause look-
ahead bias, which is associated with using data from the 

future. Thus, the correct method for splitting time-series 
data is to choose a date, for which the previous values are 
used in the parameter search (training), and the dates 
after that day serve as validation. We selected 21 April 
2004, as the splitting point because we wanted to include 
the flood in 2006 in the validation (Fig. 2). Thus, 76% of 
the data (1 January 1951–21 April 2004) was used for 
parametrization and 23% for validation (1 January 2005–
31 December 2020), and a gap was introduced between 
the training and validation sets, as suggested by Cer-
queira et al. [8]. In this way, floods appeared both in the 
parametrization period (in 1970, 2000 and 2001) and the 
validation period (in 2006 and 2013). Finally, we normal-
ized each gauging station’s dataset separately, and nor-
malization parameters were calculated from the training 
set and then applied to both the training and validation 
sets. Since the validation set is assumed to be unknown 
to the model, we cannot consider normalization param-
eters from the validation set.

Modelling
The modelling’s main challenge was to map the input 
multivariate sequence (time-series of multiple features) 
to the target univariate sequence (time-series of a single 
feature). Thus, a suitable model should have considered 
the temporal nature of the data, handled multivariate 
time series and have been able to forecast for multiple 
horizons ahead. Classical ML models, such as feedfor-
ward neural networks cannot preserve the sequence’s 
temporal structure. Statistical models, such as Autore-
gressive Integrated Moving Average (ARIMA), typi-
cally provide a robust solution for univariate problems 
but cannot handle multivariate time series. Recurrent 
Neural Networks (RNNs) meanwhile, are well-suited 
for our problem because they have a built-in memory 

Fig. 2  Water stages measured at Szeged between 1951 and 2020. The data were split to training and validation datasets with a gap in between
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mechanism that allows them to maintain context and 
retain information about previous elements in the 
sequence. Moreover, processing multivariate (variable-
length) input data is straightforward and arbitrarily 
long predictions are produced iteratively in RNNs. Long 
Short-Term Memory (LSTM) is a cell-based RNN model 
[17], described in more detail in Additional file  1: S1. 
We built a multilayer LSTM model by stacking multiple 
LSTM cells. Thus, the layers are LSTM cells, receiving 
the output from the previous layer as its input and gener-
ating its own output. This allows the model to learn more 
complicated data representations. More specifically, we 
implemented an LSTM encoder–decoder architecture 
[28], where a stacked LSTM model processed the input 
data (encoder) and another stacked LSTM model gener-
ated the predictions (decoder), as shown in Fig. 3. We will 
refer to the LSTM-based encoder–decoder model later as 
the LSTM model.

The encoder receives the historical data as input vec-
tors ( xt−T , xt−T+1, . . . xt−1 ), where T  is the number 
of data points used from the past for one prediction. 
The encoder is responsible for learning complex pat-
terns in the input and providing the decoder with valu-
able, condensed information through the hidden states 
of the LSTM cells. The decoder is expected to decode 
the encoded information and provide predictions 
( ̂yt,0, ŷt,1, . . . ŷt,P−1 ), where P is the length of the predic-
tion ( P-step ahead forecast). The decoder’s input in the 
first time step is the known target value from the previ-
ous time step ( yt−1 ). The decoder’s subsequent inputs are 
the predictions from the previous time step ( ̂yt,i).

In addition to the LSTM model, we developed sim-
pler models to compare their performance. The Base-
line model was developed to assess the performance 
of more advanced ML models by providing a constant 
extrapolated forecast based on the most recent water 
level observation at the Szeged gauging station. The 
Linear model is based on the long-term data of 12 
gauging stations, taking all feature values from the past 
time window (15  days), flattening this data, and then 
applying a transformation (matrix multiplication) to 
obtain the 7-day ahead forecast. The Multilayer Percep-
tron (MLP) model was also developed as a third model, 
which transforms data using a neural network with two 
hidden layers (256 and 128 units) and ReLU activation 
functions. More details on the model and training are 
described in Additional file 1: S2.

Statistical analysis
The global performance of different models was evalu-
ated based on four evaluation metrics: the mean abso-
lute error (MAE in cm), root mean square error (RMSE 
in cm), R2 correlation, and Willmott’s Index (WI). 
Smaller MAE and RMSE values, as well as R2 and WI 
values closer to 1.0, indicate to a better fit. To compare 
each prediction with the measured data at the Szeged 
gauging station, quantile–quantile (QQ) plots were 
applied. The suitability of the model was evaluated 
for low (≤ 239  cm), medium (240‒649  cm) and high 
(≥ 650  cm) water levels (650  cm is the lowest thresh-
old of the warning system). The required precisions 

Fig. 3  Architecture of the LSTM encoder–decoder model. T  is the number of past data, P is the length of the prediction (forecast horizon). The yt−1 
is the real (known) target data at the t‒1 time point, and ŷt ,i is the prediction given at the time t‒1 for the date t + i
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for the 7-day ahead forecast on its first day is ± 5  cm, 
on its third day is ± 15 cm, and on the fifth and seventh 
days are ± 25 and ± 35  cm, respectively. These preci-
sion intervals were specified by hydrologist and field 
experts.

The project’s ultimate goal was to develop models for 
precise flood forecasting. Thus, measured and forecasted 
water levels for the 2006 and 2013 floods were compared. 
The forecast on the first, third, fifth, and seventh days of 
the 7-day ahead forecast was compared to the measured 
water level. The confidence intervals of the π-day before 
predictions for each day t [denoted by σπ(t) ] were calcu-
lated according to the following formula:

The absolute differences between the π-day before fore-
cast value for day t [denoted by ŷπ (t) ] and the measured 
data for the day t [i.e., y(t) ] were averaged over the past 
15 days. Thus, the confidence interval is the average per-
formance of the model for the last 15 days.

Finally, the performance of the best model was com-
pared to the results of the official prediction (DLCM) 
made by the Hungarian Directorate of Water Manage-
ment (OVF). The DLCM predictions were available for 
2014‒2019. The DLCM provides a 6-day forecast with a 
6-h frequency [4]. As our models provide one data per 
day, the predictions for 6:00 am were selected from the 

(1)σπ(t) =
1

15

15∑

i=1

ŷπ (t − i)− y(t − i)

DLCM and compared with the results of our best-per-
forming model.

Results
Comparison of different models
The performance of the applied models was evaluated for 
the 2006‒2020 period (Fig. 4 and Table 1). As the forecast 
moves further ahead, the Baseline model’s performance 
deteriorates. For example, the MAE is 9.7 cm on the first 
day, while it is 51.1  cm on the seventh day. The Linear 
model is based on long-term data from several gauging 
stations. As a result, compared to the Baseline model, 
there is a significant improvement based on all four met-
rics, particularly for the longer-term forecasts. However, 
there was only a slight improvement on the first day of 
the 7-day ahead forecast (MAE: 7.7 cm).

The MLP model resulted in further refinement on the 
third‒seventh days of the 7-day ahead forecast (e.g., MAE 
is between 14.9 and 38.4  cm, respectively). However, it 
resulted in a less precise forecast on the first and second 
days (e.g., the MAE was higher than in the case of the 
Linear model, as it was 9.9 and 12.3 cm, respectively).

When compared to other models, the LSTM model’s 
excellent performance on the first and second days of the 
7-day ahead forecasts (e.g., MAE: 4.2 and 7.6 cm, respec-
tively). Besides, the MAE was not only the lowest on the 
first day but also throughout the forecasted horizons, 
remaining 34.7 cm on the seventh day.

Fig. 4  Performance of the 7-day ahead forecasts using the LSTM, MLP, Linear and Baseline models on the test set over different forecast horizons 
(1‒7 days) using different evaluation metrics: A MAE, B RMSE, C R2 correlation and D WI
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Aside from the easily interpretable MAE, which 
describes the average magnitude of the errors, the other 
values showed similar trends. RMSE, which gives a 
higher weight to larger errors and thus emphasizes outli-
ers, showed higher values but similar trends as MAE. The 
R2, which measures how much of the total variance of the 
data is explained by the model, and the Willmott’s Index 
(WI), which represents the ratio of the mean square error 
and the potential error, were almost identical until the 
fifth day of the 7-day forecasts and only slightly differed 
on the sixth and seventh days. Compared to the Baseline 
model, the LSTM model improved the R2 and WI values 
similarly: from 0.992 to 0.999 on the first day and from 
0.79 to 0.89 on the seventh day of the forecast.

Global performance of the LSTM model
The validation dataset contained 5471  days (between 
01 January 2005 and 24 December 2019). Considering 
all days, 68.4‒76.2% of the predicted data fall within 
the required precision intervals on given days of the 
7-day ahead forecast (Table  2). The best performance 
was found on the third day of the forecast. The model 
generally tends to underestimate the water stages on 
each predicted horizon, as 14.1‒20.1% of the data were 
underestimated; however, only 9.7‒13.0% of the data 
were overestimated by as much as 334 cm.

The global performance of the LSTM model was fur-
ther investigated based on general quantile–quantile 
(QQ) plots (Fig.  5) and violin plots (Fig.  6A). There 
was no significant deviation in the slopes of linear fits 
(Fig. 5: red line) on the first and third days of the 7-days 
ahead forecasts, and the R2 values were close to 1.0. On 

Table 1  Performance of the 7-day ahead forecasts using the LSTM, MLP, Linear and Baseline models on the test set over different 
forecasting horizons (1‒7 days) using different evaluation metrics: MAE, RMSE, R2 correlation, and WI

Day MAE (cm) RMSE (cm)

LSTM MLP Linear Baseline LSTM MLP Linear Baseline

First 4.2 9.9 7.7 9.7 6.0 13.7 10.3 15.2

Second 7.6 12.3 11.4 18.4 11.4 16.6 15.5 29.0

Third 11.3 14.9 16.0 26.4 17.6 20.6 22.3 41.4

Fourth 16.3 19.6 21.6 33.5 26.2 28.1 30.5 52.4

Fifth 22.4 25.6 28.6 40.0 36.3 37.5 40.2 62.2

Sixth 28.7 32.2 36.1 45.8 46.3 47.1 50.5 70.9

Seventh 34.7 38.4 41.4 51.1 55.5 55.8 58.4 78.7

Day R2 (−) WI (−)

LSTM MLP Linear Baseline LSTM MLP Linear Baseline

First 0.9987 0.9935 0.9963 0.9920 0.9988 0.9937 0.9964 0.9920

Second 0.9955 0.9906 0.9918 0.9709 0.9956 0.9907 0.9919 0.9711

Third 0.9893 0.9854 0.9829 0.9408 0.9894 0.9854 0.9828 0.9410

Fourth 0.9763 0.9728 0.9680 0.9051 0.9765 0.9725 0.9676 0.9056

Fifth 0.9545 0.9516 0.9443 0.8666 0.9543 0.9496 0.9419 0.8672

Sixth 0.9260 0.9233 0.9122 0.8268 0.9243 0.9172 0.9061 0.8276

Seventh 0.8937 0.8925 0.8824 0.7865 0.8889 0.8790 0.8693 0.7874

Table 2  Precision of the prediction made by the LSTM model for the validation period (01 January 2005–24 December 2019)

Day Required precision 
(cm)

Proportion (%) of the data relative to the 
required precision intervals

Absolute difference between the measured and 
predicted values (cm)

Inside Lower Higher Median Minimum Maximum

First  ± 5 70.9 16.0 13.1 2.9 0.0 51.1

Third  ± 15 76.1 14.2 9.7 7.0 0.0 143.5

Fifth  ± 25 71.8 17.9 10.3 12.4 0.0 245.2

Seventh  ± 35 68.5 20.2 11.4 18.5 0.0 334.0



Page 9 of 18Vizi et al. Environmental Sciences Europe           (2023) 35:92 	

the contrary, the predicted data were underestimated 
in some cases at the fifth and seventh day ahead hori-
zons, where the slopes of fitted lines were 0.97 and 0.92, 
respectively (Fig. 5).

The performance of the LSTM model was also evalu-
ated in term of view of various hydrological situa-
tions. The Tisza at Szeged is dominated by low stages 
(≤ 239  cm), accounting for 69% of all data. The results 
show that 76.7–83.2% of the predicted low-level data 
fall within the required precision intervals (Table  3, 
Fig. 6B). The best results were achieved on the third and 
fifth days of the 7-day ahead forecasts. In the case of low 
stages, the underestimation of the water levels is almost 
three times more common (12.6‒17.4%) than overesti-
mation (4.0‒7.9%). Although the median absolute dif-
ference between predicted and measured stages is only 

2.5‒12.7 cm, the maximum difference could be as high as 
43‒304 cm.

Medium stages (240‒649 cm) were less common than 
low stages, accounting for only 27% of all data during the 
validation period. The prediction of these stages was the 
least precise, as only 44.7‒57.6% of the data fell within 
the acceptable intervals (Table  4, Fig.  6C). The predic-
tion of medium stages was the best on the first and third 
days of the forecast. Furtermore, the underestimation 
(17.8‒26.6%) was slightly less common than overestima-
tion (24.1‒28.6%). The median errors of the estimated 
stages (4.4‒40.6 cm) and their maxima (51‒335 cm) were 
the highest of the entire dataset.

Only 4% of all validation data exceeds the warn-
ing level (≥ 650  cm), and 60.1‒73.7% of the predicted 
flood stages fall within the required precision interval 
(Table 5, Fig. 6D). The forecast was most precise on the 

Fig. 5  General quantile–quantile (QQ) plots of the 7-day ahead forecasts obtained using the LSTM model on the test set over different forecasting 
horizons (1‒7 days). The gray band indicates the required precision of a given day’s forecast, and the red linear fit indicates the average deviation 
of the predicted data from the observed data
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Fig. 6  Probability density of the results of the 7-day ahead forecasts obtained using the LSTM model over different forecasting horizons (1‒7 days) 
for the entire test set (A), for low stages (B), medium stages (C), and floods (D). Green stripes indicate the required precision of a given day’s forecast

Table 3  Precision of the prediction of low stages (< 240 cm) obtained using LSTM model for the validation period (1 January 2005–24 
December 2019)

Day Required precision 
(cm)

Proportion (%) of the data relative to the 
required precision intervals

Absolute difference between the measured and 
predicted values (cm)

Inside Lower Higher Median Minimum Maximum

First  ± 5 76.7 15.4 7.9 2.5 0.0 43.5

Third  ± 15 83.2 12.6 4.2 5.6 0.0 143.5

Fifth  ± 25 80.2 15.7 4.0 9.0 0.0 245.2

Seventh  ± 35 77.8 17.4 4.7 12.7 0.0 304.6

Table 4  Precision of the prediction of medium stages (240‒649  cm) obtained using the LSTM model for the validation period (01 
January 2005–24 December 2019)

Day Required precision 
(cm)

Proportion (%) of the data relative to the 
required precision intervals

Absolute difference between the measured and 
predicted values (cm)

Inside Lower Higher Median Minimum Maximum

First  ± 5 55.7 17.8 26.5 4.5 0.0 51.1

Third  ± 15 57.6 18.3 24.1 12.6 0.02 108.8

Fifth  ± 25 50.4 23.1 26.5 24.8 0.1 215.4

Seventh  ± 35 44.8 26.6 28.6 40.7 0.02 334.0
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third day and became less precise on the subsequent 
horizons. The proportion of overestimated and under-
estimated data was similar (12.3‒16.2%) in the first half 
of the 7-day ahead prediction; however, underestimation 
became dominant in its second half. The median abso-
lute differences between the predicted and actual high 
stages (3.2‒26.2 cm) were significantly higher than for the 

medium stages, particularly in the later days of the fore-
cast. Furthermore, the maximum error has decreased, 
indicating that the model performs well.

Forecast of flood levels of selected flood events
The highest water level on record at Szeged was meas-
ured in 2006, and since this period was not included in 

Table 5  Precision of the prediction of high stages (> 650 cm) obtained using the LSTM model for the validation period (01 January 
2005–24 December 2019)

Day Required precision 
(cm)

Proportion (%) of the data relative to the 
required precision intervals

Absolute difference between the measured and 
predicted values (cm)

Inside Lower Higher Median Minimum Maximum

First  ± 5 68.4 16.2 15.4 3.3 0.05 16.1

Third  ± 15 73.7 14.0 12.3 9.6 0.1 43.1

Fifth  ± 25 65.4 20.6 14.0 18.8 0.3 69.9

Seventh  ± 35 60.1 25.4 14.5 26.2 0.3 92.2

Fig. 7  Hydrograph and the time-series forecast obtained using the LSTM model for the 2006 flood

Table 6  Mean absolute error of the prediction for the different hydrological phases of the record-breaking 2006 flood and the flood in 
2013

Day Required precision 
(cm)

MAE (cm) for the phases of the 2006 flood MAE (cm) for the phases of the 2013 flood

Rising Peak Falling Rising Peak Falling

First  ± 5 6.2 2.2 3.4 6.2 2.2 2.1

Third  ± 15 17.6 9.7 13.2 18.2 9.3 5.0

Fifth  ± 25 39.2 31.1 21.2 43.0 15.4 12.3

Seventh  ± 35 70.6 55.3 34.3 78.7 21.3 30.3
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the training data, it gave us a challenging test case to 
evaluate the model. In addition, the flood in 2013 was 
thoroughly investigated, though it only reached the II 
level of the flood warning at Szeged. In the case of the 
2006 flood, the model systematically underestimated 
the water levels, particularly during the rising limb of 
the flood (Fig. 7). Thus, on every day of the 7-day ahead 
forecast for the rising limb of the flood wave (< 980 cm, 
until 18 April 2006), the modelled water levels were 
below the required precision (Table  6). However, for 
the peak of the flood (≥ 980  cm, between 18 and 29 
April 2006), the prediction was within the required 
precision range on the first and third days of the 7-day 
ahead forecast, and slightly below in the second half 
(fifth‒seventh days) of the forecast. Despite the under-
estimation, much better precision was obtained during 
flood’s peak than during its rising limb, as evidenced by 
the overlap of the confidence interval and the required 
precision (Fig. 7). In contrast to the rising limb or peak 
phase of the flood, the descending water levels (falling 
limb, after 29 April, 2006) were predicted with greater 
accuracy on each day of the 7-day ahead forecast 
(Table 6), and the prediction overlaps with the required 
precision interval of the measured data on most days.

While the 2006 flood reached the highest stage in 
history (1009  cm), the 2013 flood was much smaller 
(762 cm), and it was also much shorter, as 55 days were 
above 600  cm in 2006, and only 34  days in 2013. Dur-
ing the training period, several similar floods as the 2013 
one occurred (in 1958, 1962‒1967, 1970, 1974, 1977, 

1979–1982, and 1999‒2000), and accordingly, a fairly 
precise forecast was given for the 2013 flood (Table  6). 
During the rising limb of the 2013 flood (< 700 cm, until 4 
April 2013), the LSTM model slightly underestimated the 
stages (Fig. 8), comparable to the prediction of the 2006 
flood. However, during the peak phase (≥ 700  cm, from 
4 April until 3 May 2013) and in the falling limb, the pre-
diction remained within the required precision interval 
on each day of the 7-day ahead forecast, with minor over-
shoot. Furthermore, the precision of the peak and falling 
stage prediction in 2013 was much better than in 2006 
across all forecast horizons.

Comparison of the LSTM model to the DLCM used 
by the Hungarian authorities
For 2014‒2019, the predictions generated by our LSTM 
model and the official DLCM were compared. It must be 
noted that within these 6 years, no high stages (≥ 650 cm) 
appeared (max. stage was 616 cm); thus, the assessment 
of the models is valid just for low (≤ 239 cm) and medium 
stages (240‒649  cm). The statistical metrics (MAE, 
RMSE, R2 and WI) reflect that the LSTM model outper-
formed the DLCM on the first‒fourth days of the predic-
tion (Fig. 9). On the fifth day, our LSTM model still had 
a lower MAE than the DLCM; however, the other three 
metrics showed better performance of the DLC model. 
The DLCM was more accurate on all four metrics on the 
sixth day of the forecast.

Based on general quantile–quantile (QQ) plots, the 
LSTM model’s global performance was compared to that 

Fig. 8  Hydrograph of the 2013 flood and its forecast obtained using the LSTM model. Forecasting horizons: A first day; B third day; C fifth day; D 
seventh day
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of the DLCM (Fig.  10). On each day of the 6-day head 
forecast, our LSTM model outperformed the DLCM, 
as 74.9‒79.9% of all data fell within the required preci-
sion interval for the LSTM model, whereas it was only 
64.1‒73.7% for the DLCM.

The LSTM model generated excellent results for lower 
stages (< 240  cm), with 78.9‒84.2% of the data falling 
within the required precision interval, compared to just 
70.4‒80.2% for the DLCM (Table 7). Similar to the gen-
eral data, underestimation was more common than over-
shooting in both models. However, it was more common 
in the case of the DLCM, particularly on the first days 
of the forecast. Meanwhile, both models struggled with 
the prediction of medium stages (240‒649  cm), as only 
53.8‒62.6% of the predicted data by the LSTM model fell 
within the required precision ranges, though it was even 
worse for the DLCM (39.1‒48.2%). It is also worth not-
ing that both models overestimated the actual situation 
in the case of medium stages, and the median absolute 
differences of the models were also similar (LSTM model: 
4.2‒28.1  cm; DLCM: 7.0‒29.0  cm), gradually increasing 
on the latter days of the forecast.

Though no overbank floods occurred during the com-
parison period (2014‒2019), some subsequent, at/below-
bankfull level flood waves appeared in 2019 (Fig. 11). The 
hydrograph shows a typical flood-wave sequence: small 
flood peaks with gradually increasing heights appeared 
(on 7 May: 348 cm and on 14 May: 477 cm), with rela-
tively rapid rising and falling limbs, and the last, larg-
est flood-wave had a peak phase (from 7 to 11 June 

2019) when the flood level remained almost the same 
(603‒615 cm).

Both models made similar prediction errors, but to 
varying degrees. Their forecasts were hampered by 
delays, so the rising, peak and falling stages were all pre-
dicted for later. For the days of the observed peak of the 
first two flood waves, the performance of both models 
were moderately good: some predictions were better 
for the DLCM, some were more precise for the LSTM 
model (similar trend can be seen in Fig. 9). Both models 
performed well in the case of the largest, bankfull flood, 
though our model had much smaller errors.

Discussions
Performance of the tested models
According to the models evaluation metrics, the very 
simple Baseline model was slightly outperformed by 
the Linear model on the first and last days of the 7-day 
ahead forecast, while the Linear model provided more 
precise forecast on the other days. The results of the 
Linear model indicate that data from previous observa-
tions at various points along the river contain relevant 
information for the forecast. Unlike the Linear model, 
the MLP model can detect nonlinear connections in data 
owing to its nonlinear ReLU activation functions, which 
is very useful in case of lowland rivers, where previously 
unpredictable impoundments can occur. The MLP model 
produced good results for the third‒seventh days of the 
forecast, but the results for the first and second days of 
the 7-day ahead forecast were quite inaccurate. This 
could be because the training loss function included all 

Fig. 9  Comparison of the performance of the LSTM model (7-day ahead forecast) and the DLCM (6-day ahead forecast) for 2014‒2019. The 
evaluation metrics were calculated for different forecast horizons (first-sixth days). A MAE, B RMSE, C R2 correlation and D WI
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Fig. 10  General quantile–quantile (QQ) plots for water stages measured at Szeged (2014‒2019) and predicted using the LSTM model and DLCM. 
The comparisons were made for the first, third and fifth days of the 7- and 6-day ahead forecasts
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seven forecasts with equal weights, and while the MLP 
model generally performed better than the Linear model, 
the focus was slightly shifted to longer time horizons.

The best results were obtained using the LSTM model 
regarding all time horizons. Setting the last obser-
vation of the water level at Szeged as the first input 
of the decoder, was a significant contribution to this 

achievement, forcing the model to use this essential 
information. Therefore, the MAE was not only the low-
est on the first day but also throughout the forecasted 
horizons. Similar good performance of the LSTM model 
was described by Adikari et al. [1], Cui et al. [12] and Kim 
et al. [20], especially for extreme hydrological conditions.

Table 7  Proportion (%) of the modelled data relative to the required precision intervals for the prediction of low and medium stages 
obtained using the LSTM model and DLCM for the validation period (2014–2019)

Day Req. prec. (cm) Low stages (< 240 cm) Medium stages (240‒649 cm)

LSTM model DLCM LSTM model DLCM

Inside Lower Higher Inside Lower Higher Inside Lower Higher Inside Lower Higher

First  ± 5 78.9 13.1 8.0 70.4 16.3 8.9 59.2 13.7 27.1 39.1 28.1 29.3

Third  ± 15 84.2 11.2 4.6 76.8 15.1 7.4 62.6 11.7 25.7 45.5 24.0 28.9

Fifth  ± 25 82.7 13.2 4.1 80.2 13.8 5.4 53.8 18.3 29.1 48.2 22.0 29.1

Fig. 11  Comparison of time-series forecasts of the LSTM model and the DLCM for the 2019 floods up to the sixth day of the 7- and 6-day ahead 
forecast horizons
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The LSTM model tends to underestimate the water 
stages on each predicted horizon. The median differences 
on each day were within the required precision. However, 
the largest absolute differences increase in the different 
horizons: on the first day of the forecast, the maximum 
difference was half meter, but on the seventh day it could 
be over three meters. Forecasts were more consistent on 
the first and third day of the 7 days ahead forecast, while 
predictions began to fail more on the fifth and seventh 
days. Since the LSTM model is especially well-suited 
to predict low stages, even in later (third and fifth days) 
forecast horizons, it is an useful tool for predicting water 
stages during droughts. As droughts become more often 
and more severe in Europe, it will become increasingly 
vital to predict low water stages precisely to facilitate 
water withdrawal, and our LSTM model could serve this 
purpose.

Forecast of floods by the LSTM model
The hydrologists are particularly interested in medium-
term flood prediction, as they need 3‒5 days to prepare 
adequate flood protection. Thus, they need an exact fore-
cast on the fifth‒seventh days of the 7-day ahead forecast, 
as they would like to know the peak level of a flood or 
its duration. Therefore, the performance of the LSTM 
model was studied for selected flood events (2006 and 
2013). The record high 2006 flood was higher (1009 cm) 
than any previous flood (e.g., the previous largest was in 
1970 with 961  cm); hence, such an extreme event was 
not included in the training dataset. However, during 
the peak of the flood, our predictions were within the 
required precision interval on the first‒fourth days of 
the 7-day ahead forecasts, but not on the fifth‒seventh 
days. Meanwhile, the prediction of the 2013 flood was 
much more precise, as the model was trained for such 
a hydrological event by several previous similar flood 
events. Therefore, if the model will be used for flood-level 
prediction in the future, a better performance for flood 
waves could be expected if the training period includes 
similar flood events.

In the case of floods, the LSTM model consistently 
underestimated the stages during the rising; however, 
the peak was precisely predicted, and the prediction of 
the falling limb was the most accurate. It implies that the 
model cannot handle periods of such rapid water level 
increase (18‒27 cm/day) as it occurred during the rising 
limbs (the drop of the falling limb was only 10‒13  cm/
day). However, the model performs much better under 
even conditions, as in the case of the Tisza the flood-peak 
lasted 12 days in 2006, and only minor stage fluctuations 
(< 7  cm) happened since the Danube impounded the 
Tisza.

Performance of the LSTM model and the DLCM used 
in practice
The DLCM has been used to predict the stages of the 
Hungarian rivers since the 1980s, but due its unreliabil-
ity, we compared its performance with our LSTM model. 
The LSTM model outperformed the DLCM just on the 
first four days of the prediction, on the fifth day, they 
provided similar results; however, later on, the DLCM 
turned out to be more accurate. Both models tended to 
slightly underestimate the water stages, though it was 
more dominant for the DLCM (LSTM: 11.0‒14.3%; 
DLCM: 15.4‒18.6%). The forecast of low stages by the 
LSTM model was more precise than those by the DLCM; 
78.9‒84.2% of the data fell into the required precision 
interval in the case of the LSTM model, though it was 
only 70.4‒80.2% for the DLCM. However, both models 
had problems predicting medium stages, as they usu-
ally overshoot. The LSTM and the DLC models provided 
acceptable general performance as they captured the 
main trends during the investigated period, especially 
during higher water levels. The results indicate that the 
LSTM model (7-day ahead forecast) is more precise than 
the DLC model (6-day ahead forecast) up to the fifth day 
of the forecast, and the DLC model is more accurate only 
on the sixth day of the forecast.

Conclusions
The advantage of the developed LSTM-based encoder–
decoder model to predict the water stages of a low-
land river (Tisza) is that it outperforms other models 
(i.e., Baseline, Linear, MLP and DLCM). However, its 
disadvantage is that the model tends to underestimate 
water levels; though, most of the predictions are within 
the required precision interval. Another benefit of the 
usage of the model that satisfactory results could be 
achieved on the first three days of a 7-day ahead fore-
casts. Therefore, hydrologists are advised to use this 
ML algorithm in hydrological predictions. The model 
likely works well in hydrological conditions similar to 
the Tisza River, thus it is suitable to predict the stages 
of lowland rivers with low slopes, large water level fluc-
tuations, long duration of floods, and dry periods.

The proposed LSTM model can achieve satisfactory 
performance on low-stage and flood data but has dif-
ficulties forecasting medium-stage data. Thus, during 
hydrological predictions, simplification steps must be 
performed to avoid very complicated and not tractable 
models, as there is a maximum complexity that a given 
model can handle. Therefore, we suggest building sepa-
rated models for long-lasting hydrological situations 
(e.g., drought, flood) and for periods with medium 
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stages when rapid water level changes occur. An oppor-
tunity to reduce the loss value in medium-stage data 
is to introduce a more elaborated loss function in the 
training procedure, which gives more weight to the 
medium-stage water levels.
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