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Abstract: This paper presents a cooperative highway platooning strategy that integrates Multi-Agent
Reinforcement Learning (MARL) with Proximal Policy Optimization (PPO) to effectively manage
the complex task of merging. In modern transportation systems, platooning—where multiple
vehicles travel closely together under coordinated control—promises significant improvements in
traffic flow and fuel efficiency. However, the challenge of merging, which involves dynamically
adjusting the formation to incorporate new vehicles, remains challenging. Our approach leverages
the strengths of MARL to enable individual vehicles within a platoon to learn optimal behaviors
through interactions. PPO ensures stable and efficient learning by optimizing policies balancing
exploration and exploitation. Simulation results show that our method achieves merging with safety
and operational efficiency.

Keywords: deep learning; reinforcement learning; platooning; traffic merging; road traffic control;
multi-agent systems

1. Introduction

With the rise of autonomous driving technology and the communication systems
between them, such as Vehicle-to-vehicle (V2V) [1], Vehicle-to-infrastructure (V2I) [2], or
Vehicle-to-everything (V2X) [3] platooning can play a significant role in the automotive sec-
tor, aspiring to provide safety, fuel and travel time optimization on highway environment.
Vehicle platooning involves connecting multiple vehicles in a convoy using connectivity
technology and automated driving support systems. These vehicles automatically maintain
a close, set distance between each other during specific parts of their journey, such as on
highways. The lead vehicle acts as the guide, with the following vehicles adjusting to
their movements with little to no driver intervention. Initially, drivers will always stay in
control, allowing them to leave the platoon and drive independently. Platooning offers
numerous advantages. By driving in each other’s slipstream, trucks save fuel, reduce costs,
and lower CO2 emissions. This method of travel also improves road efficiency, leading
to smoother traffic flow, time savings, and more dependable road transport. Moreover,
vehicle platooning allows drivers to perform other tasks while driving, improving labor
efficiency. Increased road safety is another benefit, as automated driving in a platoon
minimizes the risk of human error, a leading cause of accidents [4–8]. Participating parties
also share data on a matching platform to form platoons efficiently. The concept of vehicle
platooning dates back to at least the 1970s [9], with research conducted by universities
and government organizations over the decades. Early ideas often involved some form of
mechanical connection between vehicles, similar to a “road train”, before the development
of modern wireless communication, GPS, and radar sensors. Today, with the significant
advancements in autonomous vehicle technology, vehicle platooning is becoming feasi-
ble using a combination of existing technologies. These include steer-by-wire steering,
throttle-by-wire, radar sensors, GPS, cameras, 5G, or different collision avoidance systems.
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These technologies would enable vehicles to communicate with each other, allowing a lead
vehicle to manage the movements of the trailing vehicles.

1.1. Related Work

Extensive work has been undertaken to carry out field experiments on platooning
since the 1970s. The substantial fuel savings associated with vehicle platoons make them
a prime candidate for early adoption in roadway automation. Since the 1980s, numerous
projects have explored the concepts of platooning. Initially, these projects concentrated
on facilitating cooperative driving capabilities and communication-supported cooperative
driving behavior. However, over time, the research focus shifted towards platooning
coordination and, more recently, multi-brand platooning and live demonstrations. Note-
worthy vehicle platoon initiatives encompass projects such as Chauffeur [10], Partners of
Advanced Transit and Highways (PATH ) [11], KONVOI [12], and Energy ITS [13]. The
Path program goal was to develop and implement advanced technologies to improve
transportation efficiency, safety, and sustainability. The Chauffer project was introduced
by Daimler-Benz, Iveco, and several automotive companies, resulting in a second project
called Chauffer II [14] concentrating on communication within the platoon. In contrast to
these projects, the KONVOI project focuses on the applicability, usability, and legal factors
of platooning instead of its establishment. Furthermore, the driver information system
installed on the vehicle communicates with a central server via mobile communications
to locate platoons, showcasing an early instance of platooning coordination. Energy ITS,
initiated in 2008, focuses on utilizing Intelligent Transportation Systems (ITS) technologies
to conserve energy and mitigate global warming. Currently, a platoon comprising three
fully automated heavy trucks and a fully automated light truck operates at a constant
velocity along an expressway specified for testing purposes. The trucks maintain a gap
of up to 4 m, even during executing lane changes. Lateral control is achieved through
computer vision-based lane marker detection, while longitudinal control relies on radar
and lidar for gap measurement, extended by inter-vehicle communications and infrared
technology. The radar and lidar also function as obstacle detection systems. Notably, these
technologies prioritize high reliability, positioning them for imminent integration into
practical applications. In [15], The Cooperative dynamic formation of platoons for safe
and energy-optimized goods transportation (COMPANION) project concentrates on fuel
consumption. The Safe Road Trains for the Environment (SARTRE) project [16] introduces
a platooning system without altering the road infrastructure. The participants of the road
communicate through a remote mobile network, which directs drivers to the closest platoon.
Platoon tests have been conducted on several types of vehicles, such as passenger cars,
trucks, or other types of participants like robots in [17–22]. For the European truck platoon-
ing challenge, Ref. [23] proposes a cross-border platoon from their company headquarters
to Rotterdam in a real-world highway scenario. At the same time, there was a competition
called The Grand Cooperative Driving Challenge (GCDC) [24,25]. Several papers deal
with platoon stability, investigating how to maintain the speed and the desired distance
between the participants in the platoon, also called string stability [26–28]. As with many
other fields of research [29], AI-driven decision-making has also gained importance in this
field. Reinforcement learning is also widely used as a framework for vehicle platooning.
Ref. [30] introduces a platoon-forming strategy classifying the vehicles based on their
speeds. Ref. [31] optimizing gap among the vehicles in the platooning utilizing a Deep
Deterministic Policy Gradient (DDPG) algorithm. In contrast, Ref. [32] proposes a multi-
agent soft actor-critic (PI-MASAC) control framework with a human-leading automated
heavy-duty-truck platoon. Table 1 gives a brief survey on these results.
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Table 1. Related works for the proposed method.

Authors Title Ref.

van Nunen et al. (2016) Sensor safety for the european truck platooning challenge [23]

Englund et al. (2016) The Grand Cooperative Driving Challenge 2016: boosting the
introduction of cooperative automated vehicles [25]

Feng et al. (2019) String stability for vehicular platoon control: Definitions and
analysis methods [27]

Guo et al. (2020) Adaptive fault-tolerant control of platoons with guaranteed
traffic flow stability [28]

Boubakri et al. (2021) Platoons formation management strategies based on
reinforcement learning [30]

Farag et al. (2020) Reinforcement learning based approach for multi-vehicle
platooning problem with nonlinear dynamic behavior [31]

Lian et al. (2024) Predictive Information Multiagent Deep Reinforcement
Learning for Automated Truck Platooning Control [32]

1.2. Contribution

Several papers address Platooning problems utilizing Multi-Agent Reinforcement
Learning (MARL); however, they mainly consider behavior in a formed platoon. This
study shows a new highway platooning approach considering merging vehicles into the
existing platooning. This paper introduces a novel reward mechanism, including the
following distance that dynamically adjusts to the platoon’s velocity and the goal lane.
The following time is used as a following distance rather than relying only on a specified
distance. This adjustment of the following distance is defined by using the following time
rather than relying exclusively on a specified distance. The research paper uses Proximal
Policy Optimization to illustrate how this reward approach is well-suited for a multi-agent
environment. It structures platooning scenarios with minimal velocity differences among
participating vehicles, demonstrating its capability for effective operation. The paper is
structured as follows: Section 2 provides a review of the literature background regarding the
employed methods. Section 3 introduces the implemented environment and the relevant
RL properties. In Section 4, the findings are presented. Lastly, Section 5 offers a summary
of the research and proposes avenues for future development.

2. Methodology

This research introduces a highway platooning technique utilizing the Multi-Agent
Reinforcement Learning framework coupled with the Proximal Policy Optimization algo-
rithm. In Section 2.1, the background literature on Reinforcement Learning is discussed.
Section 2.2 provides an overview of MARL fundamentals. Section 2.3 introduces the Stable
Baseline3 library developed by OpenAI, which provides a stable and reliable set of imple-
mentations for various RL algorithms, while Section 2.4 delves into the rationale behind
employing PPO.

2.1. Reinforcement Learning

Reinforcement Learning (RL) has garnered considerable attention from researchers due
to its notable achievements in various demanding control tasks, including video games [33],
robotics [34], autonomous driving [35] or even controlling wastewater treatment plants [36].
Reinforcement learning constitutes a branch of Machine Learning wherein an agent, acting
as the decision-maker, makes decisions based on environmental observations. The agent’s
actions are either rewarded or penalized depending on their desirability. This learning
paradigm is structured around the Markov Decision Process (MDP), characterized by
< S, A, R, P >:

• S: Set of observable states.
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• A: Set of possible actions the agent can take.
• R: Set of rewards, what the agent receives as a consequence of its action.
• P: Policy is to select an action at a given state.

Reinforcement Learning harnesses the reward signal to refine the agent’s Neural Network,
aiming to achieve the desired behavior. The objective is adjusting a network capable of
generalizing its responses to act in situations not encountered during training appropriately.

2.2. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning represents a subset of RL wherein multiple
agents can influence the environment’s internal state through actions. The mathematical
framework of this approach is formalized as a Markov Game < N, X, Ui, P, Ri, γ >. Figure 1
illustrates the interactions between the agents and the environment.

Figure 1. Multi-Agent Reinforcement Learning training loop.

In complex scenarios, a single agent may prove insufficient to tackle specific challenges.
Multi-Agent Reinforcement Learning (MARL) systems offer a solution by employing
multiple interacting agents within a shared environment. However, as in robotics [37,38],
the effectiveness of MARL systems depends significantly on agent coordination.

2.3. Stable Baselines3

Stable Baselines3 (SB3) is a PyTorch-based library designed to help research in re-
inforcement learning. It offers a collection of well-validated algorithms implemented as
pre-built components. This focus on pre-built functionality minimizes development time
and guarantees the reliability of the included algorithms, such as Deep Deterministic Policy
Gradient (DDPG) and Proximal Policy Optimization (PPO). While DDPG is suitable for
problems with continuous action spaces, PPO offers greater flexibility by handling both
continuous and discrete action domains [39], which is essential for this paper’s method, as
it contains both types of actions. Furthermore, SB3 offers a comprehensive suite of tools
for researchers. These tools encompass functionalities for training new agents, both with
DDPG and PPO, as well as performance evaluation and hyperparameter optimization.
Consequently, Stable Baselines3 is a powerful and versatile toolkit that streamlines the
entire reinforcement learning research workflow, particularly for those working within the
PyTorch framework. By providing pre-built, well-validated algorithms, comprehensive
training and evaluation tools, and functionalities for hyperparameter optimization, SB3
significantly reduces development time, promotes research reproducibility, and fosters a
deeper understanding of the learning process within RL agents.
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2.4. PPO

In the past few years, significant advancement has been achieved in the field of rein-
forcement learning, notably driven by the Proximal Policy Optimization (PPO) algorithm.
PPO has earned widespread credit for its robust empirical performance and simple im-
plementation. Operating in the domain of model-free RL, PPO primarily targets policy
gradient methods. These algorithms rely on an approximation of the policy gradient
for policy updates within a stochastic gradient ascent framework. The commonly used
gradient estimator can be formulated as:

ĝ = Êt

[
∇θ log πθ(at|st)Âi

t

]
(1)

where πθ illustrates a stochastic policy, while Ât and Êt indicate the estimator for the
advantage function at time step t and the expectation. The second part involves calculating
the average outcome from a limited set of samples in an algorithm that changes between
data collection and development. Using automatic differentiation tools creates a function
to optimize, and its gradient represents the policy gradient estimator. The estimator ĝ is
calculated as follows:

LPG(θ) = Êt

[
θ log πθ(at|st)Âi

t

]
(2)

Even though the idea of improving the loss LPG multiple times using the trajectory sounds
good, it does not have solid reasoning behind it. In real-world tests, doing this often leads
to making policy changes that are too big. PPO stands out because it focuses on improving
policies while ensuring learning stays stable and efficient. It does this by putting “proximal”
limits on how much policies can change so learning does not get thrown off course. The
main idea of PPO is to keep refining the policy over and over by fine-tuning a substitute
objective function that has a built-in limit on changes:

LCLIP
PPO (θ) = Êt

[
min

(
πθ(at|st)

πθold
(at|st)

Ât, clip
(

1 − ϵ, 1 + ϵ,
πθ(at|st)

πθold
(at|st)

)
Ât

)]
(3)

where:

• πθ(at|st) is the probability of taking action at given state st under policy πθ ,
• πθold

(at|st) is the old policy’s probability,
• Ât is the advantage function’s estimator at t,
• clip(a, b, x) clips x to the interval [a, b],
• ϵ is a hyperparameter, the magnitude of the policy updates.

This method limits how much policies can change, ensuring they stay close to the
previous policy. This stops significant changes that might worsen performance and helps
smoother convergence. PPO has many good points and is a good choice for different RL
tasks. It is good at using samples efficiently and learning the right policies utilizing a
few environmental interactions. Also, PPO works with both kinds of actions—discrete
and continuous—so it is helpful for many different problems. PPO includes entropy
regularization, which encourages exploration, preventing early convergence for suboptimal
policies. Recently, PPO has been utilized in a variety of real-world scenarios, such as
robotics, autonomous agents, and gaming agents, demonstrating its adaptability and
strength across diverse fields.

3. Environment

Reinforcement Learning (RL) has gained significant attention in recent years as a
promising technique for training agents to make decisions in complex environments. The
effectiveness of RL heavily relies on the environment in which it is trained, as it impacts
the quality and diversity of the training data. This paper presents a custom environment
for RL training, where ten vehicles travel in two neighboring highway lanes. The goal
for the vehicles in the inner lane is to merge into the outer lane, creating a platooning of
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10 vehicles. The proposed method leverages PettingZoo, a multi-agent framework based
on the Gymnasium library. The positions of the vehicles are randomized at the beginning
of each training episode, which helps create a diverse training process. This approach
introduces a range of traffic scenarios throughout the training process, leading to a resilient
and adaptable outcome.

3.1. State Representation

State representation is one of the vital parts of Reinforcement Learning for agents
to understand their environment better, which has an enormous impact on the decision-
making process. This choice becomes particularly critical, especially within the scope
of platooning.

The research presents a state space representation defined by the movements and
positions of the surrounding vehicles of the ego, including information about the vehicles’
relative distances, lane occupancy, velocities, and accelerations, which are close to the
ego vehicles. More precisely, the two closest vehicles in front and behind per each lane.
Figure 2 shows state space representations from the ego point of view, which is indicated
by a blue dot.

Figure 2. State space representation from the ego (blue dot) point of view.

In scenarios where the ego vehicle lacks companions (front or back) in any lane, the
state information is initialized by setting all values to zero in the place of the absent vehicle.
This comprehensive state representation provides the RL agent with a detailed understand-
ing of the dynamics within the platoon and its surrounding environment. Considering
the movements and positions of nearby vehicles in both lanes, it enables agents—inside or
outside the platoon based on their actual positions—to cooperate effectively. This repre-
sentation allows vehicles outside the platoon to predict the optimal moment for merging,
assists vehicles within the platoon in facilitating the entry of new vehicles, or helps maintain
the stability of the platoon. Additionally, the state representation includes the ego vehicle’s
data, which strengthens the platoon’s cohesion through self-awareness. This allows the
agent to consider its own actions during the decision-making process, whether moving
within the platoon or attempting to merge. The features mentioned above meet with the
fundamentals of Cooperative Multi-Agent Reinforcement Learning. To achieve safe and
efficient driving with optimal platoon stability, vehicles share information through the
state representation. This approach aligns perfectly with Cooperative MARL, where agents
collaborate towards a common objective. Since each vehicle’s actions affect others, this
information sharing is crucial for cooperation within the platoon. Utilizing ego data in state
representation supports self-awareness, which can significantly contribute to collective
decision-making processes in Cooperative MARL.

3.2. Action Space

In this dynamic setting, every vehicle, except the leader, is endowed with two distinct
actions. The first action operates inside a continuous action space from −1 to 1, signifying
acceleration and deceleration. Notably, the value of acceleration or deceleration correlates
with the selected action value. The second action pertains to lane change, indicated by a
boolean value: 0 signifies remaining in the current lane, while 1 denotes that the conditions
are met for initiating a lane change maneuver. It is important to emphasize that the lane
change has been simplified, resulting in the absence of a lane-changing trajectory. This
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implies that when a lane change action is initiated, the vehicle undergoes lateral movement
without following a specific trajectory, as shown in Figure 3. To ensure smooth operation,
vehicles are prevented from coming to a complete stop with a minimum speed limit of
10 m/s. They also have a ceiling on their speed, capped at 36.1 m/s. These actions are
updated every 0.1 s, allowing for precise and coordinated movement among multiple cars
within the system.

Figure 3. Changing lane.

3.3. Reward

An adequately chosen reward has a vital role in Reinforcement Learning, which
measures and evaluates the agent’s actions, acting as feedback. The value of the reward
represents the quality of the actions taken within the environment, encouraging the opti-
mization of the decision-making process by punishing the undesired actions and rewarding
the desired ones. Earning rewards helps agents learn and adapt, aiming to maximize cu-
mulative rewards, representing the elemental goal of RL. The rewarding strategy presented
in this paper focuses on optimizing the following time among vehicles. Additionally, it
encourages agents to either join the platoon or, if they are already part of it, assist other vehi-
cles in joining the platoon in the correct lane if they have not done so yet. The primary goal
is to maintain a target following time among the vehicles. A 0.5-s threshold is introduced
in the rewarding strategy, meaning that any positive or negative deviation with this value
from the target following time would penalized. If the actual following time of the agent(s)
falls within the threshold, which assumes that the vehicles maintain a desired following
time, a reward with a value of 1 is awarded. This positive value motivates the participants
of the platoon to maintain the optimal following distance, which keeps collision risk low
and promotes traffic efficiency. Nonetheless, if the following time differs from the target
following time, exceeding the threshold, a penalty is given in the reward. The penalty
equation for the following time is described as:

penalty = max_penalty(−1) x min(0.7, deviation/target_time) (4)

We define a maximum penalty value, max_penalty , set to −0.7. This represents the
largest penalty an agent can receive. The penalty itself is calculated using the min function
and is directly related to how much the agent deviates from the target time. If the difference
equals or goes beyond the target time, the penalty reaches its highest value of −0.7, which
strongly discourages that behavior. Including the actual lane in the reward system helps
encourage the agents to merge into the proper lane when possible. A −0.3 penalty is
introduced in the case when a vehicle is not in the desired lane yet. It encourages the
participants to merge as soon as possible to the target lane, designing a rewarded strategy
within the limit of −1 and 1.
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3.4. Training

A diverse dataset, as previously mentioned, is crucial for ensuring the network’s
stable performance and generalization. This study achieves this by utilizing randomly
generated traffic scenarios within each training episode. The traffic generation process
involved varying initial traffic situations, such as density, speed variability, or the initial
number of platoon vehicles. Although the total number of vehicles was fixed, traffic density
was varied by adjusting the spatial distribution of these vehicles. This variation in vehicle
spacing created different traffic flow dynamics within the fixed number of cars. Moreover,
each vehicle was assigned a random speed within a specified range to introduce speed
variability. Last but not least, the number of vehicles in the platoon was randomized at
the start of each training episode, with a minimum value of 3. Combining these variations
creates diverse traffic scenarios that help the RL model during training. A competitive
Multi-Agent Reinforcement Learning (MARL) technique is explored in this paper, with
a reliance on immediate rewards. Each agent independently seeks to maximize its own
reward at each timestep. Episodes are terminated upon reaching a predefined time limit or
when a collision is detected. The core of the system is a neural network that receives each
agent’s state representation and is tasked with suggesting an action in response.

4. Results

Safety is the major goal of road transportation, especially in high-speed highway
situations. This paper presents a highway merging and platooning method. The vehicles
travel at the maximum speed of 36.1 m/s, emphasizing the importance of the chosen
actions and their position in the platoon. The evaluation of the platoon control strategy’s
performance involved measuring the deviation between the target following time and
the actual following time experienced by the vehicle platoon. Hence, the target following
distance could vary depending on the actual velocities of the vehicles. Following this
evaluation, the proposed approach was subjected to 1000 unique testing episodes. Each
episode featured randomly generated traffic patterns, facilitating an analysis of the control
strategy’s effectiveness and generalizability established during the training phase. Besides,
the longitudinal performance of a selected merging vehicle and its surroundings is also
presented. The optimal hyperparameters were chosen by grid search and introduced in
Table 2.

Table 2. The training parameters.

Parameter Value

Learning rate (α) 0.00005
Discount factor (γ) 0.95

Num. of ep. after params are upd. (ξ) 20
Num. of hidden layers 4

Num. of neurons for each layer 128, 256, 256, 128
Hidden layers activation function RELU

Layers Dense
Optimizer Adam

kernel initializer Xavier normal

Performance Evaluation

Figure 4 presents how the average rewards per episode improve during training
as time passes. The tendency suggests the training convergence towards the targeted
reward level, indicating that the learning algorithm efficiently tunes the policy, ensuring
decisions leading to positive rewards on average. Achieving a value above 0.9 in this
context indicates that the participants are well maneuvering through the environment and
taking appropriate actions.
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Figure 4. The average reward during training.

As it was mentioned before, the deviation from the target following time is used as an
evaluation. Figure 5 presents these values in seconds (s) through the 1000 test episodes.

Figure 5. The difference between the vehicle’s average and the target following time.

The figure shows that the deviation of the agents from the target following time stays
below the predefined threshold, defined in 0.5 s. It can be seen that these values change
between 0.28–0.42. These values confirm that the agents are able to stick to the following
time averagely, maintaining a solid platoon structure, given the relatively small deviations
from the recommended 3 s following time.

Figure 6 presents the velocity profile of the two vehicles in the recipient lane and the
merging vehicle. The maneuver starts at the beginning of the plot when the vehicles in the
platoon start to open a gap for the incoming merging vehicle when it arrives next to them,
which can be seen as a deceleration maneuver in Figure 6. Upon detecting this maneuver,
the merging vehicle also begins to reduce its velocity and smoothly integrates into the gap,
gradually accelerating to match the speed of the other two vehicles.
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Figure 6. Vehicles’ speed profile during merging.

Figure 7 shows the distance profiles of the three aforementioned vehicles. As illus-
trated, in conjunction with the speed profile figure, the two vehicles in the platoon cover the
same distance within the first three seconds. The merging vehicle, moving at a higher speed,
travels a greater distance at the same time to achieve proper positioning. Subsequently, the
two platoon vehicles create a gap for the merging vehicle, with the merge occurring around
the 15th second. After merging, the new vehicle slowly matches the speed of the other two.

Figure 7. Distance profile during merging.

5. Conclusions

The rise of self-driving cars offers a big chance to make transportation more efficient
and safer. Platooning, where vehicles move together in sync over short distances, could
help reduce traffic jams, save fuel, and make roads safer overall. The paper introduces a
promising idea: using Multi-Agent Reinforcement Learning with Proximal Policy Opti-
mization for platooning, showing its potential benefits. The study findings reveal that the
proposed method effectively maintains strong stability within the platooning system. This
study presents a reward strategy utilizing the following time, where the following distance
changes based on the speed rather than sticking to a fixed distance. Moreover, the strategy
introduces a penalty value until the vehicle does not travel in the desired lane in the sug-
gested platoon. As mentioned before, lane change has been simplified, meaning that when
a lane change action is initiated, the vehicles operate a lateral movement without following
a specific trajectory during lane change. For future endeavors, it is important to improve
the dynamic of the lane change, implementing a valid and safe trajectory. The evaluation of
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the algorithm presented in this paper is limited to platoon formation, as this article aimed
to provide the feasibility of cooperating agents based on the independent learner paradigm.
The results show that the approach is viable, though it naturally needs further investigation.
For future work, it is recommended to integrate different sustainability metrics into the
algorithm’s implementation process. This would enhance the comprehensiveness and
applicability of the evaluation, making it a crucial area for future development.
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Abbreviations
The following abbreviations are used in this manuscript:

V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure
V2X Vehicle-to-Everything
GPS Global Positioning System
ITS Intelligent Transportation Systems
LIDAR Light Detection and Ranging

COMPANION
Cooperative Dynamic Formation of Platoons for Safe and Energy-Optimized
Goods Transportation

SARTRE Safe Road Trains for the Environment
GCDC Grand Cooperative Driving Challenge
MARL Multi-Agent Reinforcement Learning
RL Reinforcement Learning
MDP Markov Decision Process
SB3 Stable Baselines3
PPO Proximal Policy Optimization
DDPG Deep Deterministic Policy Gradient
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