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Abstract: The advent of autonomous vehicles has opened new horizons for transportation efficiency
and safety. Platooning, a strategy where vehicles travel closely together in a synchronized manner,
holds promise for reducing traffic congestion, lowering fuel consumption, and enhancing overall
road safety. This article explores the application of Multi-Agent Reinforcement Learning (MARL)
combined with Proximal Policy Optimization (PPO) to optimize autonomous vehicle platooning. We
delve into the world of MARL, which empowers vehicles to communicate and collaborate, enabling
real-time decision making in complex traffic scenarios. PPO, a cutting-edge reinforcement learning
algorithm, ensures stable and efficient training for platooning agents. The synergy between MARL
and PPO enables the development of intelligent platooning strategies that adapt dynamically to
changing traffic conditions, minimize inter-vehicle gaps, and maximize road capacity. In addition to
these insights, this article introduces a cooperative approach to Multi-Agent Reinforcement Learning
(MARL), leveraging Proximal Policy Optimization (PPO) to further optimize autonomous vehicle
platooning. This cooperative framework enhances the adaptability and efficiency of platooning
strategies, marking a significant advancement in the pursuit of intelligent and responsive autonomous
vehicle systems.
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1. Introduction

The platooning of vehicles represents a significant advancement within the automo-
tive sector, with the primary objective of enhancing safety, fuel efficiency, travel time,
and overall performance. The utilization of autonomous vehicles operating closely in
computer-guided platoons promises advantages such as fuel savings, expanded highway
capacity, and enhanced passenger comfort. The integration of automation into road traffic
holds the potential to address crucial challenges, including accidents, traffic congestion,
environmental pollution, and energy consumption, offering valuable solutions to these
pressing issues [1]. The concept of automated highways has a longstanding history, dating
back to the 1939 World’s Fair when General Motors showcased a functional model. Sig-
nificant research efforts have been dedicated to the development of automated highway
systems (AHS), culminating in the National Automated Highway System Consortium
(NAHSC) successfully demonstrating the technical feasibility of AHS in San Diego in
August 1997. Early steps in AHS research date back to the 1960s [2], with operational
testing of prototype equipment as early as 1970. Dr. Shladover has extensively reviewed
the progress made in AHS research [3]. Since those initial efforts, the field has witnessed
considerable advancement. In 1995, a research report provided a comprehensive account
of the aerodynamic performance of platoons, highlighting a notable reduction of approxi-
mately 55% in the drag coefficient, which accounts for both vehicle size and velocity, in
two-, three-, and four-vehicle platoons. This reduction in drag coefficient translates to
lower fuel consumption, as reported to the California Partners for Advanced Transit and
Highways (PATH) [4]. Platooning involves the creation of groups or “linked” vehicles
that operate collectively on the Automated Highway System, effectively acting as a single
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unit [5–8]. These vehicles maintain an extremely close headway or spacing between them,
often just a few meters. They are interconnected through headway control mechanisms
like radar-based systems. Within the platoon, the lead vehicle, also known as the leader,
continually shares information about the AHS conditions and any planned maneuvers
with the other vehicles, referred to as followers. In vehicle platooning, a group or platoon
of vehicles operates with precise automated control over both longitudinal and lateral
movement. These vehicles maintain a consistent and fixed gap between them, even at
high highway speeds. This reduced spacing contributes to an increased capacity on the
highway. Safety is substantially improved through automation and the coordinated actions
of the vehicles. The close proximity of vehicles within the platoon ensures that even rapid
accelerations and decelerations have minimal impact on passenger comfort [4], which
was conclusively demonstrated during the platooning scenario presented by the PATH
program [9].

In summary, one of the primary advantages of platooning is improved fuel efficiency.
Vehicles in a platoon experience reduced air resistance, resulting in fuel savings for each
vehicle, particularly in long-haul transportation, where fuel costs constitute a substantial
portion of operational expenses. This helps optimize traffic flow by reducing the space
between vehicles, leading to smoother traffic patterns, less congestion, and improved
overall traffic management, particularly on highways and major roadways. Platooning can
increase the capacity of highways by allowing vehicles to travel more closely together. This
space optimization can lead to better infrastructure utilization, potentially reducing the
need for costly expansions. Lastly, platooning’s automated systems and communication
technologies contribute to increased road safety. Vehicles within a platoon can respond
quickly to the lead vehicle’s speed or direction changes, reducing the likelihood of accidents.

1.1. Related Work

Extensive literature is available covering various aspects of traffic optimization. In [10],
the authors significantly reduce vehicle congestion and pedestrian congestion utilizing
multi-agent traffic light control, while an energy management strategy for HEVs is intro-
duced in [11]. In [12], the paper introduces a deep reinforcement learning-based medium
access control (MAC) protocol, MCT-DLMA, for optimizing multi-channel transmission
in heterogeneous wireless networks, demonstrating superior throughput compared to
conventional schemes and enhanced robustness in dynamic environments. In [13], the
author presents a novel rate-diverse encoder and decoder for a two-user Gaussian multiple
access channel (GMAC); the encoder and decoder are beneficial for traffic optimization
as they enable users to transmit with the same codeword length but different coding
rates, accommodating diverse user channel conditions. Moreover, there is numerous lit-
erature considering using adaptive Traffic Signal Control (TSC) for traffic optimization,
such as [14–17]. In [18], the authors propose a method to optimize trajectory and traf-
fic lights to achieve significant reductions in CO2 emissions and delays. There is also a
substantial body of literature in the realm of platooning. In [19], the author explores the
effect of the coordinated formation of vehicle platooning, assesses the effectiveness of an
autonomous mobility-on-demand system (AMoD), and employs an agent-based model
(ABM) for analysis. In [20], the authors investigate the possibility of flexible platooning,
utilizing different merging methods. The research of [21] presents an economic model
predictive control (EMPC) approach to solve the problem of the vehicle platoon subject to
nonlinear dynamics and safety constraints with a focus on fuel efficiency. In [22], ecological
cooperative adaptive cruise control (Eco-CACC) is implemented on the ego battery electric
vehicle (BEV) of a two-vehicle platoon by using a Nonlinear Model Predictive Control
(NMPC) framework concentrating on CO2 emission reduction. Moreover, there is literature
regarding the investigation of vehicle safety under unreliable vehicle communication [23].
The article [24] investigates the advantage of sliding-mode control theory in forming and
maintaining stable platooning, while [25] investigates the protection of platooning from
possible cyber attacks. Furthermore, reinforcement learning is also used as a preference
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in the case of research on platooning. In [26], the authors utilize a particular version of
DDPG called the platoon-sharing deep deterministic policy gradient algorithm (PSDDPG),
while [27] uses DDPG for mixed mixed-autonomy vehicle platoons. Furthermore, from
the examined topic’s perspective, many studies in the field of platooning can be distin-
guished. Aki et al. discuss the need for improved braking systems in platooning based
on the results of a driving simulator study [28]; Jones et al. analyze the human factor
challenges associated with CACC and suggest research questions that need to be further
investigated [29]; Ogitsu et al. analyze equipment failures during platooning and describe
strategies to deal with failures based on their severity [30]; and in [31], the authors discuss
the value of various information for safely controlling platooning.

1.2. Contribution

Few research papers address the platooning problem within the reinforcement learn-
ing (RL) framework using Multi-Agent Reinforcement Learning, and most existing studies
involve only a limited number of participants. This paper presents an innovative approach
to highway platooning, focusing on enabling adaptive responses to varying velocity condi-
tions and encompassing different platooning speeds. This adaptation is achieved through
the introduction of a novel reward mechanism. The research employs a reward strategy
in which the following distance is dynamically adjusted according to the platooning’s
velocity. This adjustment is determined by using the following time as a metric rather than
relying solely on a fixed distance. The research paper demonstrates the suitability of this
innovative reward method within a multi-agent environment through the utilization of
Proximal Policy Optimization. It effectively organizes a platooning scenario characterized
by minimal velocity variance among participating vehicles, showcasing its ability to man-
age fluctuations in velocity conditions adequately. It is important to highlight that we have
focused on building a strong foundation rather than directly comparing our method with
other solutions. The goal has been to set the stage for future work, providing a starting
point that others can use as a reference for more detailed studies. The paper is structured
as follows: Section 2 presents the literature background of the utilized methods. Section 3
introduces the implemented traffic environment and the used RL properties. In Section 4,
the results are shown and compared to other methods. Ultimately, Section 5 summarizes
the research and makes further development suggestions.

2. Methodology

This study presents a highway platooning method, applying Multi-Agent Reinforce-
ment Learning with Proximal Policy Optimization algorithm. Section 2.1 introduces the
literature background of reinforcement learning. Section 2.2 presents the basis of MARL,
while Section 2.4 shows the motivation of PPO.

2.1. Reinforcement Learning

While reinforcement learning has seen notable successes in the past, as evidenced
by the works of [32–35], these earlier approaches encountered various limitations. These
limitations encompassed issues related to dimensions, memory, computational demands,
and sample complexity, as highlighted by [36]. The emergence of deep neural networks
introduced innovative solutions to tackle these challenges.

Deep learning, a groundbreaking advancement in machine learning, has significantly
enhanced multiple domains, including object detection, language translation, and speech
recognition. Its application in reinforcement learning gave birth to a novel field known
as deep reinforcement learning (DRL). In a landmark development in 2015, a DRL algo-
rithm was devised to achieve superhuman-level performance in playing Atari 2600 games
solely based on gameplay images, as demonstrated by Mnih et al. (2015). This marked
the first instance of a neural network being trained on raw, high-dimensional observa-
tions—unstructured data—solely guided by a reward signal. Subsequently, there were
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notable achievements, including an RL algorithm defeating the human world champion in
AlphaGo, as reported by [37].

Since these breakthroughs, RL has found applications in various domains, spanning
from robotics [38] to video games [39] and navigation systems [40]. A fundamental focus
within machine learning (ML) involves sequential decision making. This area revolves
around determining, through experiential learning, the sequence of actions necessary to
navigate an uncertain environment and achieve predefined objectives. The central principle
of RL is depicted in Figure 1.

Figure 1. The reinforcement learning basics.

Figure 1 illustrates the core concept of RL, where an agent, acting as a decision-maker,
observes its environment and takes actions based on the current state. Each action is
assessed for its quality, and the agent is subject to penalties or rewards based on the
desirability of its actions. RL is formally modeled as a Markov decision process (MDP),
which can be defined in terms of the tuple <S, A, R, P>:

- S represents the set of observable states.
- A corresponds to the set of possible actions available to the agent.
- R signifies the set of rewards obtained based on the quality of the chosen actions.
- P denotes the policy responsible for determining which action to take in a given state.

An effectively designed reward strategy in RL plays a pivotal role in influencing the
agent’s neural network (NN) performance as it strives to achieve the desired behavior.
This form of learning aims to fine-tune a network’s responses, enabling it to generalize its
actions effectively in unfamiliar environments that were not part of its training dataset.

2.2. Multi-Agent Reinforcement Learning

Multi-Agent Reinforcement Learning is a subfield of reinforcement learning in arti-
ficial intelligence that focuses on training multiple agents to make decisions within an
environment. Traditional reinforcement learning typically involves a single agent learning
to interact with its environment to maximize its reward signal. MARL has multiple agents,
each making decisions in the same environment and often taking actions with unique
goals. In certain intricate scenarios, an individual agent alone may not suffice to address
a specific problem. In such instances, a Multi-Agent Reinforcement Learning system can
be employed, wherein multiple interacting agents operate within a shared environment.
Nonetheless, the effectiveness of MARL systems hinges greatly upon the coordination
among these agents. The MARL technique can be categorized in various ways based on
its coordination strategy. In the work by Claus and Boutilier [41], the authors differentiate
between two primary classes: independent learners (ILs) and joint action learners (JALs).
For ILs, each agent treats the environment as stationary and learns its policy independently
without considering the actions of other agents. In contrast, JALs consider the actions of
other agents by integrating reinforcement learning with equilibrium learning methods. ILs
are straightforward but may not perform well in scenarios requiring coordination. At the
same time, JALs aim to improve the overall performance of a team of agents by considering
the impact of their actions on the collective outcome.
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2.3. Stable Baseline3

Reinforcement learning (RL) has received considerable attention in recent years be-
cause it enables machines to learn and make decisions through interaction with their
environment. Among the various tools and libraries available for implementing RL algo-
rithms, Stable Baselines3 (SB3) stands out as a robust and easy-to-use library developed
by OpenAI. Stable Baselines3 is an evolution of the previous Stable Baselines and aims
to provide a stable and reliable set of implementations for various RL algorithms. The
library is based on OpenAI Gym, a toolkit for developing and comparing RL algorithms,
allowing one to experiment with different environments and tasks easily. SB3 includes
implementations of several state-of-the-art RL algorithms, making it a versatile choice for
researchers and practitioners. Supported algorithms include Proximal Policy Optimization
(PPO), Deep Deterministic Policy Gradients (DDPG), and more. As the successor to Stable
Baselines, SB3 maintains compatibility with OpenAI Gym environments. This means that
users can seamlessly integrate SB3 into a variety of existing environments, making it easy
to experiment with different tasks. SB3 is designed with a modular architecture that allows
users to easily modify and experiment with different components of the algorithm. This
flexibility is particularly beneficial for researchers who want to customize their algorithms
for specific use cases.

2.4. PPO

Reinforcement learning has made significant progress in recent years, and one notable
contribution to this progress is the Proximal Policy Optimization algorithm. PPO is widely
popular due to its good empirical performance and ease of implementation. PPO is in the
field of model-free RL, particularly in the field of policy gradient methods. Policy gradient
methods operate by calculating an estimate of the policy gradient and incorporating it into
a stochastic gradient ascent algorithm. The commonly employed gradient estimator takes
the following form:

ĝ = Êt

[
∇θ log πθ(at|st)Âi

t

]
(1)

where πθ represents a stochastic policy and Ât is an estimator for the advantage function at
timestep t. The expectation Êt denotes the empirical average over a finite batch of samples
in an algorithm that alternates between sampling and optimization. Implementations
utilizing automatic differentiation software construct an objective function whose gradient
corresponds to the policy gradient estimator. The estimator ĝ is derived by differentiating
the objective:

LPG(θ) = Êt

[
θ log πθ(at|st)Âi

t

]
(2)

While the idea of performing multiple optimization steps on this loss LPG using the same
trajectory is appealing, it lacks a solid justification. Empirically, such an approach often
results in excessively large policy updates. PPO is characterized by its focus on optimizing
policies while ensuring stability and efficient learning. This is achieved by enforcing “prox-
imal” constraints on policy updates and preventing drastic changes that might destabilize
learning. The core idea of PPO is to iteratively update the policy by optimizing a surrogate
objective function that includes a clipping mechanism.

LCLIP
PPO (θ) = Êt

[
min

(
πθ(at|st)

πθold
(at|st)

Ât, clip
(

1− ε, 1 + ε,
πθ(at|st)

πθold
(at|st)

)
Ât

)]
(3)

where:

• πθ(at|st) is the probability of taking action at given state st under policy πθ ;
• πθold

(at|st) is the probability under the old policy;
• Ât is an estimator of the advantage function at timestep t;
• clip(a, b, x) clips x to the interval [a, b];
• ε is a hyperparameter controlling the size of policy updates.
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This mechanism constrains policy updates to a range that does not differ significantly
from the previous policy. This way, PPO prevents policy updates that could lead to catas-
trophic performance drops and ensures smoother convergence. PPO has several advantages
and is recommended for various RL applications. It has impressive sampling efficiency
and can learn proficient policies with fewer interactions with the environment. Addition-
ally, PPO provides discrete and continuous action spaces, making it versatile for various
problems. Furthermore, PPO includes regularizing entropy, encouraging exploration, and
preventing premature convergence to suboptimal policies. This feature is especially use-
ful in scenarios where exploration is essential to discover optimal strategies. In recent
years, PPO has been applied to many real-world problems, including robotics, autonomous
agents, and gaming agents, proving its adaptability and robustness in various fields.

3. Environment

Creating the right setting is crucial in reinforcement learning because it shapes the
training data based on the agent’s choices. In this study, we have set up a customized
environment. Nine vehicles are driving one after the other on a highway lane. The first
vehicle periodically changes its speed randomly or maintains its current speed every 5 s.
In response to these speed changes, the other vehicles adjust their acceleration. This
adjustment, determined by the training agent, is carefully tuned to maintain a safe and
steady following distance. The custom environment is managed through PettingZoo, an
extension of Gymnasium specifically designed for multi-agent scenarios.

To make the training process more varied and help the model adapt effectively, we
begin each training episode with the vehicles randomly positioned. This randomness intro-
duces a range of traffic situations during training, leading to a robust and flexible outcome.

3.1. State Representation

State representation in reinforcement learning is pivotal in shaping an agent’s under-
standing of its environment. The choice of state representation profoundly impacts an
agent’s decision-making process, and in the context of platooning, this choice becomes
particularly critical.

In this study, the state space corresponds to the dynamics and positions of the vehicles
within the platoon. Specifically, the state representation encompasses data regarding the
relative distance, global velocity, and global acceleration of the ego vehicle—the vehicle
under the agent’s control—and the two vehicles behind and the two vehicles in front of it
within the platoon. Additionally, the state space includes each vehicle’s inLane position
as a Boolean value. Figures 2 and 3 depict the state space representations under different
ego vehicle configurations. Specifically, Figure 2 illustrates the composition of the state
space when the third vehicle is the ego. In contrast, Figure 3 showcases the state space
when the fourth vehicle assumes the ego role. The ego vehicle is consistently positioned
as the third vehicle within the state space representation to maintain consistency across
decision-making processes. In cases where there is a deficiency of two vehicles either
behind or in front of the ego vehicle, such as in the scenario of the last vehicle, the inLane
attribute is assigned a value of 0, and the state values are uniformly set to 0.

Figure 2. State space representation corresponding to the third vehicle.

This comprehensive state representation grants the RL agent a holistic view of the
platooning environment, allowing it to discern not only the behavior of its immediate
followers but also anticipate the actions of the vehicles ahead. Considering these neighbor-
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ing vehicles’ relative dynamics and positions, the agent can make informed decisions to
optimize platoon stability and ensure safe and efficient driving.

Figure 3. State space representation corresponding to the fourth vehicle.

Furthermore, within this state representation framework, including ego data, which
comprises the ego vehicle’s velocity and acceleration, provides the agent with a self-
awareness crucial for cooperative platooning. This self-awareness enables the agent to
factor its actions into the decision-making process, ensuring that it harmoniously integrates
with the platoon while adhering to its operational constraints. The above-mentioned char-
acteristics align with the principles of Cooperative Multi-Agent Reinforcement Learning
(Cooperative MARL). In Cooperative MARL, agents collaborate to achieve shared objec-
tives, and state representation plays a central role in facilitating effective cooperation. The
state representation supports a shared goal of optimizing platoon stability and ensuring
safe and efficient driving. Cooperative MARL is designed for scenarios where agents work
collectively towards a common objective. The state representation captures the interdepen-
dence among vehicles within the platoon. Actions of one vehicle impact others, reinforcing
the need for cooperation—a core principle of Cooperative MARL. The inclusion of ego
data, representing velocity and acceleration, fosters self-awareness. In Cooperative MARL,
self-aware agents contribute meaningfully to the collective decision-making process.

3.2. Action Space

In this dynamic environment, the action space for each vehicle, except the leader, is
defined as a continuous range between−1 and 1, representing acceleration and deceleration.
Notably, the rate of acceleration or deceleration is directly proportional to the chosen action
value. Furthermore, vehicles are constrained by a minimum speed of 10 m/s, ensuring
they cannot come to a complete stop, while their maximum speed is capped at 36.1 m/s.
These actions are executed at intervals of 0.1 s, contributing to the precise and coordinated
movement of the vehicles within the system.

3.3. Reward

Rewards in reinforcement learning constitute pivotal feedback signals, serving as
evaluative metrics for agent performance. These numerical indicators encapsulate the
desirability of actions taken within an environment, thereby facilitating the optimization of
decision-making processes. The acquisition of rewards engenders adaptive learning, where
agents strive to obtain maximize cumulative rewards, emblematic of the quintessential RL
paradigm. The rewarding strategy takes center stage in our specific context of optimizing
the following time within a dynamic highway platooning system. Our primary objective is
to maintain a target following time of 3 s between vehicles. The essence of our rewarding
strategy lies in a well-defined threshold of 0.5 s. This threshold serves as a critical boundary,
indicating the permissible deviation from the target following time of 3 s. When the actual
following time falls within this 0.5 s threshold, signifying that the vehicles are maintaining
close proximity to the desired 3 s gap, a maximum reward of 1 is granted. This reward
serves as positive reinforcement, encouraging the platoon to maintain an optimal following
distance, which is vital for minimizing collision risks and promoting efficient traffic flow.
However, if the deviation from the target following time exceeds the 0.5 s threshold,
indicating a substantial departure from the desired spacing, a penalty is applied to the
reward. The following equation determines the penalty:
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penalty = max_penalty(−1)×min(1.0, deviation/target_time) (4)

Here, max_penalty represents the maximum penalty value set to −1, signifying the
most severe penalty possible. The min function ensures the penalty is scaled proportionally
to the deviation from the target time. If the deviation equals or surpasses the target
time, the penalty reaches its maximum value of −1, acting as a strong deterrent against
such behavior.

Conversely, if the deviation exceeds the target time, the penalty decreases linearly,
encouraging vehicles to return to the desired 3 s following time. We have established
a bounded reward space, with a minimum reward of −1 and a maximum reward of 1,
ensuring that the rewarding strategy remains within defined limits.

3.4. Training

As previously discussed, the carefully selected diverse dataset is crucial for enhancing
the network’s ability to generalize and yield superior performance. In this study, we ensure
the diversity of our training data through the random generation of traffic in each episode.
We employ a competitive Multi-Agent Reinforcement Learning technique characterized
by immediate rewards. Under this approach, each agent prioritizes its own acceleration
decisions and receives rewards based solely on its actions following each step. A training
episode concludes either when it reaches the predefined time step limit or when collisions
occur. During the training process, the neural network receives the state representation of
each vehicle and, in response, provides action recommendations for every agent.

4. Results

Considering road transportation, safety cannot be emphasized enough. This study
introduced a highway-based platooning method, where vehicles travel at high speed, high-
lighting the importance of the adequately selected following distance and time. However,
the following distance highly depends on the speed chosen by vehicles participating in
road traffic. Evaluating the results with the utilization of the following time metric is
necessary. Therefore, the results are evaluated based on the deviation of the vehicle’s
velocity from the target following time. The proposed approach underwent testing through
1000 individual testing episodes, each featuring unique randomly generated traffic flows
to simulate real-world traffic scenarios. This testing protocol was specifically designed
to assess the performance and effectiveness of the control strategy developed during the
training phase.

4.1. Training Process

Because hyperparameters are the primary limiting factors in all training processes,
a random grid search was carried out to identify the optimal hyperparameters of the
algorithm. The key parameters can be found in Table 1.

Table 1. The training parameters.

Parameter Value

Learning rate (α) 0.00005
Discount factor (γ) 0.97

Num. of ep. after params. are upd. (ξ) 20
Num. of hidden layers 4

Num. of neurons 128,256,256,128
Hidden layer activation function RELU

Layers Dense
Optimizer Adam

Kernel initializer Xavier normal
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4.2. Performance Evaluation

As mentioned before, the evaluation measure is the deviation from the target following
time of the participants. Figure 4. presents the agents’ performance considering the above-
mentioned deviation during the 1000 evaluation episodes.

Figure 4. The average deviation from the target following time of the participants

In Figure 4, the absolute deviation of the following distance is depicted in seconds (s)
for each episode. The figure illustrates that the participants’ average absolute deviation
from the target following time per episode consistently falls well below the specified
threshold of 0.5 s and ranges between 0.15 and 0.26. Therefore, the figure validates the
performance of the agents of the utilized system since the deviation from the standard and
suggested 3 s following distance is relatively small. As the leading vehicle executes various
dynamic maneuvers, such as acceleration, speed maintenance, and deceleration, there will
always be some inherent reaction time, as the state space does not include the leading
vehicle’s exact next-time step maneuver. Consequently, in this scenario, the objective was
not to reach a deviation time of zero but rather to minimize it.

Figure 5 shows the the test result for one specific episode.
Here, the focus is on a specific test episode having 1600 time steps and plotting the

velocity of the leading vehicle and the average velocity of the following vehicles during
the whole episode. It can be observed that the leading vehicle (yellow line) performs
various acceleration and deceleration maneuvers during the episode. The green dotted line
denotes the average velocity of the following vehicles. The data show that the following
vehicle responds effectively to the acceleration and deceleration actions of the vehicle in
front, as shown in the figure, maintaining an appropriate speed range for the lead vehicle
throughout the episode. These variations in speed reflect the dynamics of real-world traffic
situations, where the lead vehicle often responds to external factors such as road conditions
or the actions of other vehicles. Finally, once the speed of the vehicle in front stabilizes after
some fluctuations, the vehicle behind will follow suit.

The trend in Figure 6 indicates that the learning algorithm effectively optimizes the
policy to make decisions that, on average, result in positive rewards. In RL, achieving
convergence to a desired reward level is a key objective, and in this case, a reward above
0.9 suggests that the agent is successfully navigating its environment and making advanta-
geous decisions.
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Figure 5. The average velocity of the participants during an episode.

Figure 6. The average reward per episode during training.

5. Conclusions

The advent of self-driving cars offers an opportunity to improve the efficiency and
safety of transportation significantly. Platooning, characterized by the synchronized move-
ment of vehicles over short distances, offers an opportunity to alleviate traffic congestion,
reduce fuel consumption, and improve overall road safety. The paper presents a promising
potential Multi-Agent Reinforcement Learning-based platooning solution utilizing Proxi-
mal Policy Optimization. The research results show that the proposed method can establish
strong stability within the platooning system. Furthermore, using the introduced reward
mechanism, this approach can be effectively adapted to different speed conditions in the
system. This study uses a reward strategy in which the following distance is dynamically
adjusted based on speed, as the distance is flexibly determined based on following time
metrics rather than relying on a fixed distance. This approach results in slight variations in
follow-up time within a platoon. However, it is essential to note that various events can
occur in road traffic, such as merging into a platoon, which were not investigated in this
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study. Therefore, the future focus of this research will be on addressing merging scenarios.
Additionally, improved system performance can be achieved by including the leading
vehicle decision in the state space. In presenting the outcomes of the study, it is essential to
highlight that we have focused on building a solid foundation rather than directly compar-
ing it with other solutions. The goal has been to set the stage for future work. In our next
project, we aim to tackle the complexities of merging dynamics in the context of platooning.
While our current paper keeps things simple and focuses on the basics of platooning, our
upcoming work will dive into the more complex challenges of merging.

Author Contributions: Conceptualization, T.B.; Methodology, M.K. and T.B.; Software, M.K.;
Writing—original draft, M.K.; Writing—review & editing, T.B.; Visualization, M.K.; Supervision, T.B.;
Funding acquisition, T.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the European Union within the framework of the National
Laboratory for Autonomous Systems (RRF-2.3.1-21-2022-00002). Project no. TKP2021-NVA-02 has
been implemented with the support provided by the Ministry of Culture and Innovation of Hungary
from the National Research, Development and Innovation Fund, financed under the TKP2021-NVA
funding scheme. T.B. was supported by BO/00233/21/6, János Bolyai Research Scholarship of the
Hungarian Academy of Sciences.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MARL Multi-Agent Reinforcement Learning
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TSC Traffic Signal Control
Eco-CACC Ecological Cooperative Adaptive Cruise Control
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