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ABSTRACT

We present a new alternative for the joint inversion of well logs to predict the volumetric 

and zone parameters in hydrocarbon reservoirs. Porosity, water saturation, shale content, kerogen 

and matrix volumes are simultaneously estimated with the tool response function constants with a 

hyperparameter estimation assisted inversion of the total and spectral natural gamma-ray intensity, 

neutron porosity and resistivity logs. We treat the zone parameters, i.e., the physical properties of 

rock matrix constituents, shale, kerogen, and pore-fluids, as well as some textural parameters, as 

hyperparameters and estimate them in a meta-heuristic inversion procedure for the entire 

processing interval. The selection of inversion unknowns is based on parameter sensitivity tests, 

which show the automated estimation of several zone parameters is favorable and their possible 

range can also be specified in advance. In the outer loop of the inversion procedure, we use a real-

coded genetic algorithm for the prediction of zone parameters, while we update the volumetric 

parameters in the inner loop in addition to the fixed values of zone parameters estimated in the 

previous step. We apply a linearized inversion process in the inner loop, which allows for the quick 

prediction of volumetric parameters along with their estimation errors from point to point along a 

borehole. Derived parameters such as hydrocarbon saturation and total organic content show good 
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agreement with core laboratory data. The significance of the inversion method is in that zone 

parameters are extracted directly from wireline logs, which both improves the solution of the 

forward problem and reduces the cost of core sampling and laboratory measurements. In a field 

study, we demonstrate the feasibility of the inversion method using real well logs collected from 

a Miocene tight gas formation situated in the Derecske Trough, Pannonian Basin, East Hungary.

INTRODUCTION

Open-hole wireline logs provide high resolution quasi in-situ information about the 

lithological and petrophysical characteristics of hydrocarbon reservoirs (Serra, 1984; Asquith and 

Krygowski, 2006). For reliable formation evaluation and reserve calculation, we can estimate the 

volumetric quantities such as porosity, shale volume, water saturation, matrix volumes in a quality-

checked inversion procedure (Schlumberger, 1989). In conventional (shaly sand) reservoirs, we 

normally invert a suite of well logs sensitive to lithology, porosity, and fluid saturation jointly in 

a linearized inversion procedure (Menke, 1984; Tarantola, 1987). In this approach, the weighted 

least squares method is used to minimize the misfit between the observed data and the theoretical 
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ones calculated by the estimated petrophysical model and properly chosen tool response functions 

(Ball et al., 1987; Alberty and Hashmy, 1984). Inversion procedures used generally in industrial 

practice invert the local dataset at a given depth to estimate the petrophysical parameters at the 

same depth (Baker Atlas, 1996). By solving a set of local inverse problems along a borehole one 

receives a quick solution for the petrophysical parameters and their uncertainty. As a drawback, 

however, since this inversion method calculates the model parameters only from a dataset 

measured at a given depth, it is therefore typically marginally overdetermined (i.e., we have barely 

more data than unknowns), and quite a noise-sensitive inversion procedure (Dobróka et al., 2016). 

A consequence of this is that the number of petrophysical parameters to be determined by local 

inversion is rather limited and the inversion procedure must use arbitrarily chosen (fixed value) 

response function constants, which may cause uncontrolled modeling error in the inversion results.

Well logging inverse problems usually have two types of petrophysical unknowns, the 

volumetric and the zone parameters. The volumetric quantities change rapidly with depth, while 

the zone parameters are unvarying (or just slowly varying) in a longer processing interval (e.g., in 

the reservoir zone). Zone parameters representing the physical properties of rock constituents and 

fluids (e.g., density of hydrocarbon, neutron porosity of shale, resistivity of pore-water or Archie’s 
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exponents etc.) can be found in the tool response functions, but there are some influential quantities 

that are not included explicitly in them (e.g., temperature, pressure). If we treated all petrophysical 

variables included in the response functions as unknown, we would end up with a highly 

underdetermined inverse problem, the solution of which is not possible within the framework of 

local inversion. In this case, to avoid the problem of ambiguity, one treats the zone parameters as 

constant, the values of which are fixed using the available well site information, laboratory data or 

literature resources. In unconventional reservoirs, where the number of matrix and fluid 

components and zone parameters included in response functions is higher than in shaly sand 

formations, the application of local inversion methods apart from the determination of some basic 

parameters is not suitable for estimating additional parameters. Since the number of local volume 

characteristics and zone parameters is much larger than that of the observed data, one would have 

to solve an underdetermined inverse problem at each depth, which may lead to an unstable 

inversion procedure and ambiguous solution.

In practice, no significant progress has been made in the automated estimation of zone 

parameters. The basic reason for this is not just the marginal overdetermination of the popular local 

inversion procedure, but also the fact that the parameter sensitivity and correlation relations of the 
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zone properties and their consequences were not really investigated either. Narayan and Yadav 

(2006) apply the least squares method to give an estimate to a limited number of matrix parameters, 

where they compare only the mean values of the measured wireline logs to the theoretical logs 

calculated in a particular depth interval. In their approach, they keep the zone parameters of sand 

and pore-water fixed during the inversion process, while they update those of other minerals (if 

present) with a maximum 20% of their initial value preliminary set by cross-plot techniques. 

Petrophysical software systems used by leading oil companies normally apply local inversion 

workflows that also treat the zone parameters as constant, which must be estimated before 

inversion. Other approaches also exist to determine a limited number of zone parameters, e.g., 

Sousa et al. (2020) applied a regression technique to estimate the interval mineral and fluid 

densities using well logs.

Heidari et al. (2012) suggested a nonlinear inversion approach to invert well logging data 

collected from more depths simultaneously to improve the efficiency of well log interpretation in 

thinly bedded formations. The same inversion methodology was successfully applied to carbonate 

formations (Heidari et al., 2013). The interval inversion method suggested by Dobróka and Szabó 

(2011) allows for the automated estimation of suitably chosen zone parameters. A favorably high 
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overdetermination (data-to-unknowns) ratio can be achieved by discretizing the depth-dependent 

model parameters with a series expansion technique. We directly estimate the expansion 

coefficients as unknowns of the inverse problem, which replaces the depth variation of 

petrophysical properties. The interval inversion approach greatly improves the accuracy of 

estimation, which is directly proportional to the degree of overdetermination (Dobróka et al., 

2016). In practice, the number of series expansion coefficients can be selected significantly smaller 

than that of the well logging data measured on the processing interval, thus additional parameters 

can be involved in the inversion procedure such as the zone parameters or the layer thicknesses 

(Dobróka and Szabó, 2012). However, to achieve an appropriate vertical resolution of model 

parameters, the number of expansion coefficients must not be too small, thus the number of 

involved zone parameters cannot be increased too much. Increasing the number of series expansion 

coefficients that are estimated by inversion can quickly reduce the accuracy. When estimating the 

zone parameters together with the volume characteristic parameters, one must maintain an optimal 

rate of overdetermination. Not to mention that increasing the number of unknowns within the same 

inversion procedure increases the risk of higher intercorrelations and the problem of ambiguity as 

it was shown for constant interval parameters by Balázs (2015). Szabó and Dobróka (2020) 
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extended the application of the interval inversion method to shale gas reservoirs, where a hybrid 

application of global and linear optimization methods provided reliable estimates of porosity, 

water saturation, mineral volumes, and total organic carbon content.

Several studies show the importance of evaluating multimineral formations, e.g., shale gas 

reservoirs (Liu et al., 2022). In this study, we estimate the volumetric and zone parameters of tight 

gas formations in a joint inversion process. Instead of using interval inversion, we apply a different 

approach based on hyperparameter estimation. Analogous to their machine learning use (Feurer 

and Hutter, 2019), we define the hyperparameters unknown variables with the automated 

adjustment of which we can control the inversion process and improve its result. We define the 

zone parameters of the theoretical tool response equations as hyperparameters which are estimated 

in the outer loop of a two-step embedded inversion algorithm. In the inner loop of the inversion 

procedure the volumetric parameters are estimated by traditional linear inversion. In both steps, 

the criterion for improving the inversion parameters is the appropriate matching of the measured 

and calculated wireline logs. Hyperparameter inversion has been previously applied to estimate 

the a priori data errors in a Bayesian inversion scheme in seismic tomography (Bodin et al., 2012). 

Xiao et al. (2021) used the Markov chains to estimate the mean, variance, and scale of the data 
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covariance function treated as hyperparameters in the processing of hydraulic head data. Tilahun 

and Korus (2023) tuned the hyperparameters to better estimate hydraulic conductivity in high 

resolution 3D groundwater modeling. Zhang et al. (2022) tested how the hyperparameters of deep 

learning neural networks affect the seismic impedance results, which draws attention to the 

advantages of optimizing the hyperparameters. Kuwatani et al. (2022) estimated the smoothness 

and precision hyperparameters to improve the seismic image reconstruction and deblurring. 

Previously, we estimated the matrix and clay parameters simultaneously with the water, shale, and 

sand content of shallow unsaturated sediments by the inversion of direct push logs (Szabó, 2018). 

We investigated the subsoils by the genetic meta-algorithmic inversion (GMI) method used for 

processing data acquired from single and multiple boreholes, respectively. The inversion 

methodology allows us to reliably determine the basic soil parameters and quantify their estimation 

accuracy. During the 2D inversion of engineering geophysical sounding data, we predicted the 

volumetric parameters point-by-point along the drill-holes, while we fitted thousands of observed 

and calculated data to estimate the zone parameters assumed constant in the investigation area. 

The hyperparameter estimation based GMI procedure proved to be stable and found a reliable 

solution after some iterations. We validated the inversion results by exploratory factor analysis, 
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which provides reliable information especially for water saturation estimation (Szabó et al., 2012). 

In this study, we assume the hyperparameter inversion procedure can also be applied to evaluate 

tight gas formations and thus its application can be extended to oilfield wireline logs. The 

petrophysical model of unconventional reservoirs has a more complex structure than that of near-

surface structures, therefore, it may be a serious challenge for the inversion method to predict many 

more volume characteristics and zone parameters. Meeting this challenge, we demonstrate the 

feasibility of hyperparameter inversion using real data, which is also the first application to 

evaluate the Hungarian unconventional hydrocarbon formations by this inversion approach.

METHODS

Forward problem

For computing wireline logs in tight gas reservoirs, we establish a petrophysical model that 

can be connected to the data by proper tool response equations. We assume the unit volume of 

rock is composed of pore-space occupied by brine and gas, and solid particles forming the rock 

matrix including silica, shale, and kerogen. Accordingly, we select the porosity (Φ), shale content 

(Vsh), kerogen volume (Vk), sand volume (Vsd), water saturation defined in the invaded (Sx0) and 
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virgin zone (Sw) as volumetric parameters of the petrophysical model. The natural gamma-ray 

intensity (GR in API), potassium concentration (K in %), thorium concentration (Th in ppm), 

uranium concentration (U in ppm), neutron-porosity (ΦN in p.u.), and deep resistivity (Rd in m) 

are available for the evaluation of Hungarian tight gas formations.

We apply linear response functions to simulate the nuclear logs (Alberty and Hashmy, 

1984). The theoretical data are calculated as the weighted average of shale content, sand and 

kerogen volume, and porosity (if included in the equation)

                                                ,                                (1) GR = 𝑉shGRsh + 𝑉𝑠𝑑GR𝑠𝑑 + 𝑉𝑘GR𝑘

                                           ,        (2)𝐾 = 𝑉sh𝐾𝑠 ℎ + 𝑉𝑠𝑑𝐾𝑠𝑑 + 𝑉𝑘𝐾𝑘

       ,                  (3)𝑈 = 𝑉sh𝑈𝑠 ℎ + 𝑉𝑠𝑑𝑈𝑠𝑑 + 𝑉𝑘𝑈𝑘

              ,        (4)𝑇ℎ = 𝑉sh𝑇ℎ𝑠 ℎ + 𝑉𝑠𝑑𝑇ℎ𝑠𝑑 + 𝑉𝑘𝑇ℎ𝑘

,        (5)𝑁 = [𝑆x0N,mf + (1 ― 𝑆x0)N,h] + 𝑉shN, sh + 𝑉𝑠𝑑N, sd + 𝑉𝑘N, k

where the subindices mf, h, sh, sd, k denote the mud filtrate, hydrocarbon (gas), shale, sand, and 

kerogen, respectively. All functional constants indicated by these indices which do not represent 
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volume characteristics are considered as zone parameters. The full list of zone parameters is given 

in Table 1. Water saturation is usually calculated by non-linear tool response functions. In tight 

gas formations, Archie’s equation must be corrected by the total organic content (TOC) related 

gas saturation (Xu et al., 2017). Thus, we apply a modified Archie’s formula, which takes the 

kerogen content into account in calculating the true (or corrected deep) resistivity (RtRd)

,                    (6)𝑅𝑑 =
aR𝑤

𝛷𝑚𝑆𝑛
𝑤

― 𝑅𝑠 ℎ(𝑉𝑠 ℎ ― 𝑉𝑘)2 + 𝑉2
𝑘𝐾𝑟𝑓

where Krf is the kerogen (resistivity) factor that can be specified from knowledge of the local TOC 

vs. Rt relationship (Kadkhodaie and Rezaee, 2016), and the textural parameters a, m, n are the 

dimensionless Archie’s constants (Archie, 1942). Equation 6 is valid in the domain of 0-2000 

ohmm resistivity and the range of 0-20 wt% TOC (1999<Krf<33317). By combining equations 5 

and 6 shale-free porosity can be estimated by inversion in formations with high shale volume. We 

can gather the theoretical data into a column vector

      .                                (7)𝐝(𝑡ℎ) = [𝐺𝑅,𝐾, 𝑈, 𝑇ℎ, 𝑁,𝑅𝑑]T
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In forward modeling, we calculate the data of the above well log types at successive depth points 

using equations 1-6, where the input values of volumetric and zone parameters are estimated with 

a preliminary inversion.

Two-step inversion procedure

Genetic inversion (Phase I)

In the global optimization step of the inversion procedure, the entire well logging dataset 

is jointly inverted for the purpose of determining the zone parameters considered constant at an 

arbitrarily chosen depth interval. The zone parameters can be freely selected as inversion 

unknowns. The parameter selection process can be based on synthetic modeling tests, quality 

check of inversion tests, and parameter sensitivity calculations. In this study, we predict the 

following vector of zone parameters

  ,                    (8)𝐜 = [𝐺𝑅𝑠ℎ,𝐺𝑅𝑘,𝐾𝑠ℎ,𝑈𝑠ℎ,𝑈𝑘,𝑇ℎ𝑠ℎ,𝑁,𝑚𝑓,𝑁,𝑠ℎ,𝑅𝑤,𝑚,𝐾𝑟𝑓]T

where T is the symbol of transpose. We use the real-coded genetic algorithm for the estimation of 

zone parameters, which is a highly adaptive global optimization method giving a derivative-free 
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(Sen and Stoffa, 2013) and practically initial-model independent solution (Szabó and Dobróka, 

2019).

Genetic algorithms as an evolutionary computation method use the analogy to natural 

selection of living organisms (Holland, 1975). According to Darwin’s theory, the fittest individuals 

survive and reproduce during an evolution process, while others die off quickly in the population. 

In our genetic algorithm, we improve a set of zone parameter vectors considered as individuals of 

the artificial population by maximizing the fit between the theoretical and observed data. The 

fitness value of the p-th zone parameter vector cp (p=1,2,…,P, where P is the population size) is 

calculated as

,                    (9)𝐹(𝐜𝑝) = ― [(𝑁𝐾) ―1∑𝑁
𝑖 = 1

∑𝐾 ∗

𝑗 = 1(𝑑(𝑚)
𝑖𝑗 ― 𝑔𝑗(𝐦𝑖,𝐜𝑝)

(𝑚)
𝑖𝑗

)2]
1
2

where  is the data measured in the i-th depth with the j-th tool,  is the standard deviation 𝑑(𝑚)
𝑖𝑗 (𝑚)

𝑖𝑗

of observed data representing the accuracy of measurement, gj is the response function of the j-th 

well log, mi is the vector of volumetric parameters estimated in the i-th depth we do not let vary in 

the outer loop of the inversion algorithm (N is the number of depth points over the processing 

interval and K* is the number of applied logging tools). (In the absence of information on data 
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accuracies one can substitute the variance with the measured data itself.) The goal of the 

evolutionary search process is to increase the average fitness of the population in successive 

generations and finally to find the global maximum of the fitness function F(c). However, the 

fitness function may have many local maximum locations in the domain of the zone parameters. 

Let us generate 100 random populations of zone parameters to analyze the landscape of the fitness 

function. We change all zone parameters (23 parameters) in the range shown in the last column of 

Table 1. One can see in Figure 1, in some bivariate subdomains of the independent variables, 

numerous candidate (equivalent) solutions appear with maximum fitness that can be far from the 

absolute optimum. We evaluate the red maxima as equally good places, which include the best fit 

of the measured and calculated well logs. The areas characterized by the largest data distance 

(fitness minima) are forbidden ranges. The areas marked in dark red contain the most probable 

solutions, the global optimization must find the best solution (absolute maximum) in these ranges. 

The above shows that it is advisable to use the genetic algorithm during the hyperparameter 

inversion.

In the genetic inversion step (Phase I), we apply a differential evolution-based float-

encoded genetic algorithm (Michalewicz, 1992). We simultaneously improve a set of zone 
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parameter vectors considering all of them as chromosome made up of floating-point value genes 

to avoid the local maximum locations in the search space. In the outer loop of the inversion 

algorithm shown in Figure 2, the volume characteristics are treated as fixed constants during the 

iterative process, in which the floating-point genetic operations, i.e., selection, crossover, and 

mutation are repeatedly applied on the individuals in consecutive generations (Houck et al., 1995). 

First, we pick the fittest individuals for mating using a tournament selection operator. We 

randomly choose a number of individuals from the population (allowing re-selection) and we copy 

the fittest into a temporary population. We repeat this process till P number of individuals have 

been selected. The number of tournaments as a tunable control parameter influences the 

development of convergence of the genetic search. If we set the tournament number to be large, 

individuals with relatively small fitness have a smaller chance to be selected for the next 

generation. Next, we exchange some of the zone parameters (as genes of the chromosomes) 

between a pair of individuals ( and ) that have undergone the selection process. In this study, 𝐜1 𝐜2

we use the heuristic crossover that extrapolates two individuals as follows

,                              (10)
𝐜1 = 𝐜1 + (𝐜1 ― 𝐜2)
𝐜2 = 𝐜1                          }
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where  and  are the two offspring,  is a random number uniformly distributed in the interval 𝐜1 𝐜2

of 0 and 1. The feasibility condition for using the crossover operator is if the fitness of c1 is higher 

than that of c2. If any parameter of vector  is out of bounds, we generate a new value of   and 𝐜1

recalculate equation 10. After a certain number of retries, we let the new values of zone parameters 

equal the old ones. We use the uniform mutation as the third genetic operation, in which we 

exchange the l0-th gene with a real number () randomly generated from the possible range of the 

actual zone parameters

,                                          (11)𝐜1 = {,      if 𝑙 = 𝑙0  
𝑐1,𝑙,   if 𝑙 ≠ 𝑙0  

where  is the mutated individual (l=1,2,…,L). After applying the three genetic operators, we use 𝐜1

elitism-based reproduction, which preserves the fittest individual of the previous generation and 

replaces the weakest with it in the next generation (Bijani et al., 2012). We apply the three genetic 

operations in successive generations until a proper fit is achieved (Figure 2). We calculate the data 

distance as a measure of fit between the observed and calculated wireline logs in percent by 

Dd=100F. After reaching the maximal number of generations, we stop the inversion process and 

regard the zone parameter vector with maximum fitness as the solution of the global optimization 
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problem. We compute the estimation error of the zone parameter as the standard deviation of the 

values of relevant genes of different individuals obtained in the last generation.

Linear inversion (Phase II)

We estimate the volumetric parameters in an inner iterative loop embedded inside the 

genetic inversion procedure. In this phase, the zone parameters for which we obtain preliminary 

estimates in the outer loop of the inversion process (Phase I) are fixed as constant (Figure 2). In 

the linear optimization step of the inversion procedure (Phase II), the fractional volumes of the 

rock constituents are estimated by local inversion where the theoretical data is fitted to the 

observed data in each depth, separately. Below we specify the model parameters to be estimated

    .                               (12)𝐦 = [, 𝑆𝑥0, 𝑆𝑤,𝑉𝑠ℎ,𝑉𝑘,𝑉𝑠𝑑]T

One can calculate the well log data included in equation 7 to the given depth using d(th)=g(m,c), 

where the vector m is given in equation 12 and the vector c is constant. We write the linear 

approximation of this relation as d(th)=Gm, where G denotes the Jacobi matrix including the 

numerical derivatives of well log data with respect to the model parameters. We derive the 

deviation vector e by the difference between the observed data and the calculated ones, which is 
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normalized by the data variances that measure the instrument uncertainty. Based on this, we 

formulate the objective function to be minimized as

          ,                                           (13)𝐸 = ‖𝐞‖2
2 + 2‖𝐦‖2

2

where 2 is a positive number chosen as the ratio of data and model variances (Menke, 2022) or 

empirically set based on preliminary inversion runs. The quantity  acts a regularization parameter 

used for numerically stabilizing the inversion procedure. We estimate the model correction vector 

of the volumetric parameters using the algorithm of Marquardt (1959)

   ,                               (14)𝐦 = (𝐆T𝐆 + 2𝐈) ―1 + 𝐆T𝐝

by which we update the volumetric parameters estimated in the previous iteration (m0) using 

m=m0+δm (Figure 2). In equation 14, vector δd denotes the difference between the measured (d(m)) 

and calculated data vector  and I is the unity matrix. 𝐝(𝑡ℎ)
0 = 𝐠(𝐦0,𝐜)

Our workflow also allows us to quality check the inversion results. In the linearized 

inversion phase, we can quantify the uncertainty of the estimated volumetric parameters in each 

iteration using the Jacobi matrix. According to the inverse theory of Menke (1984), the covariance 
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matrix of the model parameters estimated by a linear inversion method can be related to the data 

covariance matrix including the data variances on its main diagonal

   ,                               (15)cov(𝐦) = 𝐆 ―𝑔cov(𝐝(𝑚))(𝐆 ―𝑔)T

where  is the generalized inverse of the damped least squares method. The variance of input 𝐆 ―𝑔

data including the instrumental error and environmental effects can be given by tool calibration 

tests and user manuals. Horváth (1973) discusses the possible sources of interpretation errors and 

gives an estimate of the accuracy of data measured by different probe types. Balázs (2021a) studies 

the effect of correlation between the corrected data on the inversion results. The estimation 

accuracy of volumetric parameters is calculated as the square root of variances obtained in the 

main diagonal of the model covariance matrix derived from equation 15. The reliability of 

inversion results can be quantified via the Pearson’s correlation matrix of estimated model 

parameters. As is well known in inversion practice, we consider the solution unique when the 

estimated model parameters correlate weakly. In case of high correlation, the model parameters 

cannot be estimated individually but just a combination of them. In these cases, we can encounter 

with the problem of ambiguity, which prevents the reliable estimation of the geophysical model. 
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At the end of the linear inversion procedure (Phase II), we fix the newly estimated volumetric 

parameters and return to the genetic inversion step (Phase I), where we recalculate the zone 

parameters. We repeat the two inversion phases until the maximum number of iterations is reached 

(Figure 2).

INVERSION RESULTS

Parameter sensitivity test

Parameter sensitivity informs about the extent of influence on data, which is exerted by a 

model parameter. Dobróka (1988) introduced parameter sensitivity functions for studying the 

absorption and dispersion characteristics of guided waves. Gyulai (1995) applied the same 

functions for geoelectric parameters of dipping bed structures in analytic forward modeling. Szalai 

et al. (2002) proved based on parameter sensitivity experiments that null array data are spatially 

more variable than traditional geoelectric arrays when investigating near-surface structures. Wang 

et al. (2022) studied the influence of neutron capture cross section of rock constituents to water 

saturation in cased hole well log analysis. In inverse modeling, we prefer to determine the 

parameters of relatively high sensitivity, which influence the objective function to a sufficient 
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extent during the search. Ingber (1989) improved the Fast Simulated Annealing method by 

modifying the cooling schedule of each model parameter according to their sensitivity values 

considering that how they affect the value of the energy function. Model parameters with low 

sensitivity can delay the development of convergence, and since they cannot be changed to an 

adequate extent, their estimation can lead to an ambiguous solution. The selection of the inversion 

unknowns based on their sensitivity is quite important, accordingly we select those with high 

sensitivity, while the rest are determined outside of the inversion procedure.

We apply the following parameter sensitivity function for measuring the variability of 

wireline logging data influenced by a zone parameter

        ,                                           (16)𝑗𝑞(𝑐𝑞) =
∂𝑑𝑗

∂𝑐𝑞

𝑐𝑞

𝑔𝑗(𝐦,𝑐𝑞)

where jq represents the parameter sensitivity of the j-th data type as a function of the q-th zone 

parameter. When the model parameters are evenly spaced, we can approximate the partial 

derivative by the quotient of the finite differences (Menke, 2022). We compute the numerical 

derivatives of the theoretical data with respect to the zone parameters using the response functions 

1-6. As a result, quantity   is dimensionless and scaled between the interval of 0 and 1. We 
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generate the parameter sensitivity functions in tight gas formations to determine the individual 

extent of influence on well logging data, which is exerted by each zone parameter. When choosing 

the range of zone parameters, we take the recommendation of Baker Atlas (1996) into account and 

choose a wide interval according to the reservoir type.

We calculate the parameter sensitivity functions for the zone parameters listed in Table 1. 

We set the reference values of zone parameters such as the Archie’s constants as default values 

(Archie 1942). All natural radioactivity levels of sand are equal to zero assuming it to be a non-

radioactive rock. We give the neutron porosity of sand as matrix corrected value of zero porosity 

quartz sandstone. One can estimate the kerogen factor using the Rt vs. TOC chart proposed by 

Kadkhodaie and Rezaee (2016). We set the rest of zone parameters close to their values used in 

the field study of Szabó et al. (2022). In equation 16, we always change only one zone parameter, 

while the others are considered constant. The basic volumetric parameters are fixed as follows 

Φ=0.08 (v/v), Vsh=0.60 (v/v), Vk=0.01 (v/v), Vsd=0.30 (v/v), Sw=0.60 (v/v), Sx0=0.88 (v/v). In 

Figures 3 and 4, semi-log plots show the sensitivity functions of the total and spectral gamma-ray 

intensity, neutron porosity and deep resistivity logs. Each plot includes four curves, which 

represent how the sensitivity changes at four different values of the relevant volumetric quantity. 
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By analyzing these plots, one can see very sensitive parameters like the shale properties (e.g., GRsh, 

Thsh), and parameters with low sensitivity, which are not favorable to estimate by an inversion 

procedure (e.g., sand and kerogen properties). Szabó and Dobróka (2020) showed the kerogen 

volume can be estimated with great accuracy by inversion, however, this is not valid for all kerogen 

related zone parameters (e.g., Thk, N,k). In water bearing formations, the sensitivity function for 

ΦN,h and n are both zero, which is the main reason for not choosing them as unknowns. The latter 

is easy to see by analyzing the modified Archie’s model (equation 6), where the sensitivity remains 

zero for any n, because Sw equals to 1. For the sake of simplicity, we illustrate the absolute value 

of the sensitivity for parameters ΦN,sd and Rsh. In this case, only the amount of change matters, 

which is not very big, the negative sign shows inverse relation between the zone parameter and 

the data. We derive the sensitivities from the curves by substituting the reference values of zone 

parameters indicated in the third column of Table 1. We select a zone parameter as unknown if its 

sensitivity reaches 20 % of the maximal sensitivity (0.2) in the near vicinity of the reference 

value of the zone parameter. The last column of Table 1 shows whether the zone parameter is 

selected or fixed during the inversion. Based on the parameter sensitivity experiments, we collect 
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the most sensitive parameters into vector c (equation 15), which represent the unknows in the 

genetic inversion phase of our workflow.

Inversion of field data

We apply the hyperparameter estimation-based inversion method to the interpretation of 

well logs observed in Berettyóújfalu-4 (Be-4) well drilled in the Derecske basin in East Hungary. 

The Neogene basin and the surrounding area is an important gas accumulation region in Hungary 

(Haás, 2013). The investigated tight formations of Mid-Miocene age settled under a thick 

sedimentary sequence at a depth greater than 3000 m in a complex geological environment 

(Holditch, 2013). The Berettyóújfalu tight gas occurrence is in the southwestern part of the NE-

SW-striking Derecske trench, the depth of which is highly variable (approx. 3800-4600 m). The 

deep basin is filled by a Miocene clastic and volcano-sediment complex, which settles directly on 

the Paleozoic bedrock, with a minimum thickness of 300–700 m. The Miocene interval includes 

the reservoir and source rock layered into each other between 3471 and 3616 m in the Be-4 well. 

The organic matter content is adequate everywhere based on the measured TOC values, in the 

lower part it is classified as good or excellent, also suitable for oil and gas generation III type 
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kerogen. Due to the rapid subsidence and thick sedimentary complex covering the hydrocarbon 

play in the basin, the young source rock is in matured position which is indicated by the values of 

vitrinite reflectance of 0.91-0.96 in the zone of interest. The tight gas reservoirs are mainly 

composed of sandstones and siltstones with low porosity and permeability. Szabó et al. (2022) 

published a detailed geological description of the hydrocarbon field, and the exploration activity 

including seismic, well logging and laboratory measurements. The same study includes the 

estimation results of interval inversion for the basic volumetric parameters, which we use for 

constructing the initial model.

We process the nuclear and resistivity logs given in equation 7. In the depth interval of 

3550 and 3617 m, we have 5292 data (N=882, K*=6). We aim to estimate the vector of the zone 

parameters (L=11) given in equation 8 in Phase I. The rest of the zone parameters, which are fixed 

as constant, are given in Table 1 (see the reference values). In Phase II, we predict the volumetric 

parameters included in equation 12. It is possible to increase the overdetermination of the local 

inverse problem using the material balance equation, since we can compute the sand volume also 

deterministically using Vsd=1VshVk. The water saturation of the flushed and virgin zone is 

generally highly correlated to each other or other volumetric and zone parameters burdening the 
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result of the inversion with a relatively large error (Balázs, 2021b; Dobróka et al., 2016). The 

estimation error of water saturation cannot be significantly reduced even by increasing the 

overdetermination of the inverse problem (Abordán and Szabó, 2020), therefore, it is reasonable 

to estimate one of the water saturations outside of inversion. We can further increase the data-to-

unknowns ratio by calculating the flushed zone saturation from the empirical relation   𝑆𝑥0 = 𝑆
𝑤

(0.2≤≤0.5) suggested by the Hungarian oil industry experience. We set the exponent  to 0.25 

based on preliminary inversion runs.

In the genetic inversion step (Phase I), we select a wide search domain of the zone 

parameters (Table 2) and we generate an initial population of 200 individuals (2200 genes). The 

fitness values of these individuals are plotted in Figure 5a, where the data distance of the 

individuals (Dd) vary between 24% and 547%. This wide search domain assures to find the global 

optimum, at the same time, is not too large to achieve fast convergence. We control the genetic 

search by setting the number of individuals participating in each tournament to 50, the number of 

crossover retries to 100 and the mutation rate to 0.05. We apply the elitism-based reproduction 

mechanism, which replaces the worst individual of the current generation with the fittest one of 

the previous generation. We refine the zone parameters over 20000 generations beside fixed values 
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of volumetric quantities to find the global optimum. In our inversion workflow, after completing 

the genetic inversion step (Phase I), the local inversion process begins (Phase II) that runs over 

100 iterations in each depth, separately, then the genetic inversion process (Phase I) follows again 

that runs over 20000 generations and so on. In Phase II, we estimate the volumetric properties 

while the zone parameters obtained as a result of Phase I are kept constant. The starting values of 

volumetric parameters are Φ0=0.08 (v/v), Vsh,0=0.60 (v/v), Vk,0=0.02 (v/v), Sw,0=0.60 (v/v). We 

set the initial value of the damping factor   to 1000, and gradually decrease it by 90% of its actual 

value in each iteration to maintain it near zero till the end of the local inversion process. We repeat 

the two inversion steps (Phases I and II) 10 times (Maximum iteration step in Figure 2). One can 

see the gradual increase of the maximal fitness of individuals in the first genetic inversion step in 

Figure 5b. Both the maximal and minimal fitness of the optimal population found in Phase I 

improve continuously over the 10 iterations of the two-step inversion procedure (Figure 5c). In the 

zeroth iteration, we see the fitness value of the initial models, which is calculated by substituting 

 and  into equation 9. We can see rapid convergence toward the optimum in Figure 5d, 𝐦(0)
𝑖 𝐜(0)

𝑝

which proves the stability of the two-step inversion procedure. One can see from the shape of the 

curve that the inversion method already gives a suitable approximation in the first iteration, after 
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that it only slightly refines the zone parameters. The GMI inversion method applied in shallow 

unconsolidated sediments is characterized by similarly fast convergence (Szabó, 2018). We show 

the change of zone parameters in the last genetic inversion phase (10th iteration of the two-step 

inversion procedure) in Figure 6a. The accepted values of the zone parameters during the inversion 

procedure are shown in Figures 6b-d. At the end of the last iteration, we accept the newly estimated 

volumetric and the zone parameters as solution of the inverse problem. The relative data distance 

is Dd=4.39 %, which indicates a proper fit between the measured and calculated data.

We show the inversion result in Figure 7, where one can find the measured (black solid 

line) and calculated (dashed line with different colors) well logs in the first six tracks. The last 

three tracks illustrate the estimated volumetric parameters. The movable gas saturation is 

calculated as the difference between the Sx0 and Sw curves, while the irreducible gas saturation is 

computed as 1Sx0 (track 7). The average porosity of the gas bearing formation is 8.2 %, while the 

mean of the shale content is 45 % (track 8). The TOC given in weight percent is derived from the 

kerogen volume using the formula TOC=(Vkk)/(Kcb), where Kc is the kerogen conversion factor 

chosen as 0.95, k is the density of kerogen selected as 1.8 gcm3, and b is the gamma-gamma log 

derived bulk density (Tissot and Welte, 1978). The TOC(inv) log estimated by inversion and 
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TOC(core) data measured in the laboratory are in good agreement (track 9). We give the estimated 

zone parameters in the fourth column of Table 2.

We check the quality of inversion results using the prior knowledge of the data 

uncertainties. We select the standard deviation of the observed wireline logging data as GR=0.12, 

K=K=Th=0.10, N=0.13, Rd=0.14 (Dobróka et al., 2016). The error range of the observed 

logs are represented with shaded area on tracks 1-6 in Figure 8. Substituting the data variances into 

equation 15, we derive the variances of volumetric parameters estimated at the end of the last linear 

inversion step. The average estimation error of volumetric quantities computed along the entire 

processing interval is:  2.9103, =5.6102, =1.6102, =3.6104. We show the 𝜎 = 𝜎𝑆𝑤 𝜎𝑉𝑠ℎ 𝜎𝑉𝑘

estimated volumetric parameters and their 95 % confidence intervals on tracks 7-10 in Figure 8. 

The highest uncertainty is marked by the estimation error of water saturation. We can estimate the 

kerogen volume with high accuracy, which has great practical importance in identifying the sweet 

spots. The average correlation between the volumetric parameters is moderate (0.47), which shows 

the reliability of the inversion result, too. We characterize the estimation accuracy of zone 

parameters with the standard deviation of their estimated values for 200 individuals. Table 2 

includes the standard deviation of zone parameters both at the beginning and at the end of the 
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inversion procedure, as well as the relative estimation error. One can conclude the most sensitive 

parameters can be estimated with the highest accuracy such as the gamma ray intensity, potassium, 

and thorium concentration of shale, while the uranium concentration of shale, neutron porosity of 

mud-filtrate and the resistivity parameters such as pore water resistivity, cementation exponent 

and kerogen factor can be predicted with the lowest accuracy. The latter three are related to the 

estimation of water saturation being the least accurately estimated volumetric quantity.

DISCUSSION

In the practice of formation evaluation, it is common experience that the inversion of 

wireline logs is highly sensitive to the initial setting of zone parameters. If we have poor 

information about the studied formations and these quantities, the incorrectly set zone parameters 

can obviously prevent the accurate estimation of the volumetric parameters and reduce the 

efficiency of reservoir modeling. The current study reveals the importance of estimating the zone 

parameters automatically. Now we examine the difference between optimizing the zone 

parameters by an inversion method and arbitrarily fixing them before the inversion procedure. We 

make a comparative study between inversion beside fixed and varying hyperparameters using three 

petrophysical models given in Table 3. Model I assumes the zone parameters as unknown that are 

estimated by hyperparameter inversion. Model II and III include fixed zone parameters of tight gas 

formations, where just the volumetric parameters are estimated by local inversion (only inversion 

phase II is performed). The initial values of volumetric parameters are the same for all three 
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inversion runs: Φ0=0.08 (v/v), Vsh,0=0.60 (v/v), Vk,0=0.02 (v/v), Sw,0=0.60 (v/v). The last column 

of Table 3 shows the relative data distance (Dd) between the observed and calculated data upon 

completion of the inversion process, which suggests that inappropriate choice (or even by slightly 

changing) of zone parameters can cause a 10- to 20-fold increase of the data misfit. One can also 

study the effect of the setting of zone parameters on the estimation of the volumetric parameters 

in Figure 9. The first six tracks show the fit between the observed and theoretical logs, which is 

the best for Model I, while for Models II and III the nuclear and resistivity logs show larger 

deviations. The volumetric parameters estimated by local inversion also appear to change 

significantly. In the case of Model II, whose zone parameters are relatively close to those of Model 

I, the inversion is unable to find the gas at some depth intervals (e.g., 3560-3565 m) and instead 

identifies a water bearing formations. The parameter setting of Model III forces the inversion 

process identify all the rocks as fully water saturated (Sw=1) ones over the entire depth interval. 

Regarding Model I and III, we obtain the following average relative change between the 

volumetric parameters: =13 %, =18 %, =27, =92 %. This shows that ∆𝛷 𝛷 ∆𝑉𝑠ℎ 𝑉𝑠ℎ ∆𝑉𝑘 𝑉𝑘 ∆𝑆𝑤 𝑆𝑤

the saturation estimation has the biggest impact on the identification of the tight gas reservoirs. 

The derived TOC data shows also a 0.51.0 wt% difference. Model II basically overestimates (e.g., 

3650 m), while Model III underestimates (3580-3590 m) the values of TOC. We conclude that 

we obtain the best inversion results when the zone parameters are estimated by hyperparameter 

inversion, which assists to identify the sweet spots and gives reliable volumetric quantities for the 

estimation of hydrocarbon reserves.

We compare the hyperparameter inversion approach with an advanced probabilistic 

inversion technique called interval inversion described in the “Introduction” section. In contrast to 
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depth-by-depth inversion, in the framework of interval inversion, we invert the dataset of a larger 

interval jointly and solve a highly overdetermined inverse problem to increase the accuracy of 

estimation and efficiency of inversion. In the interval of 3550-3617 m in Be-4 well, we invert the 

GR, K, Th, U, ΦN, Rd logs while treating the zone parameters as fixed constant (see the reference 

values in Table 1). We discretize the volumetric parameters (Φ, Vsh, Vk, Sw) using Legendre 

polynomials of 24th degree serving as basis functions of the series expansion, then after estimating 

the expansion coefficients, we derive the depth distribution of the model parameters. In contrast, 

in hyperparameter inversion we treat the zone parameters as unknown quantities as detailed in the 

“Inversion of field data” section. The results obtained by the two inversion methods show good 

agreement, primarily regarding porosity and shale content (Fig. 10). The average of the correlation 

coefficients for the linear regression results is =0.84. Larger differences are basically based on 𝑅

the estimation (adjustment) of the zone parameters. For instance, the interval inversion reveals a 

hydrocarbon zone almost across the entire interval. However, the hyperparameter inversion 

method also identifies some water bearing layers (Sw=1), also where the interval inversion method 

estimates lower water saturation (gas indication). Both inversion methods are suitable for 

determining the estimation error of the model parameters. In both cases, the accuracy of the input 

data is assumed based on the values specified in the “Inversion of field data” section. In the case 

of the interval inversion approach, we apply equation 15 to calculate the covariance matrix of the 

series expansion coefficients, and then we derive the uncertainty of the volumetric parameters 

using the law of error propagation (Dobróka et al. 2016). Both inversion methods allow the 

calculation of the model covariance as a function of depth, i.e., the estimation error of the 

volumetric parameters is available for each depth. By plotting the occurrence of the standard 

deviation of the inverted parameters, we obtain a spatial distribution of the error values that is not 

Page 33 of 69 Geophysics Manuscript, Accepted Pending: For Review Not Production



Geophysics 34

uniform (Fig. 11). Hyperparameter inversion is more accurate when estimating porosity (Fig. 11a) 

and kerogen volume (Fig. 11d), while interval inversion gives more reliable results for the water 

saturation (Fig. 11b) and shale content (Fig. 11c). We emphasize that the kerogen volume can be 

estimated most accurately with both inversion methods, for which the hyperparameter inversion 

achieves an order of magnitude smaller error, which is favorable from the point of view of the 

evaluation of unconventional reservoirs.

CONCLUSION

We extract the zone parameters appearing as delicate quantities of the tool response 

functions jointly with volumetric parameters by hyperparameter inversion of well logs. Avoiding 

the solution of the inherently underdetermined inverse problem, we divide the inversion procedure 

into two overdetermined inversion phases to get unique solutions for both type of unknowns. We 

select the unknowns by parameter sensitivity tests to improve the numerical stability of the 

inversion procedure. After this, we predict 11 zone parameters in a Hungarian tight gas reservoir. 

In other types of unconventional formations (e.g., in shale gas, volcanic reservoirs, other 

multimineral rocks), the number of estimated zone parameters is even higher, which requires a 

robust inversion strategy. The automated estimation of zone parameters not only improves the 

solution of the forward problem (i.e., reducing the modeling error) but may reduce the cost of 
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coring and laboratory measurement as one can determine the zone parameters solely (in situ and 

continuously) from the well logs. We also show a way to estimate the shale parameters and the 

kerogen volume with great accuracy as new alternative to TOC estimation based on wireline logs. 

The proposed inversion methodology not only allows the quality check of inversion results but 

also allows us to integrate new well log types into the inversion procedure. The rate of 

overdetermination can be further increased by replacing the local inversion phase with the interval 

inversion method, which adds the potential to estimate additional unknowns such as the fractional 

volumes of more matrix components. By interval inversion, the depth of zone boundaries can also 

be automatically determined, which designates the optimal interval for the estimation of the zone 

parameters. Discretizing the depth function of zone parameters by a series expansion technique, 

we can determine the slow (and faster) variation of the zone parameters along a borehole. By 

involving the interval inversion technique, the hyperparameter estimation method can be extended 

to an automated multi-well correlation of petrophysical parameters.

In the literature, the geophysical applications of hyperparameter estimation mostly include 

the determination of the not-exactly known data variances. At this point, our inversion method can 

be further developed, for example, to determine the control parameters of the genetic algorithm, 
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or to estimate the regularization parameter, the Lagrange multipliers of penalty term or other 

weighting factors included in the objective function of the Marquard algorithm. The significance 

of the proposed inversion method primarily lies in that different from the previous approaches we 

try to specify not the control parameters but certain geophysical quantities as hyperparameters and 

estimate them by inversion. In addition to the advantages presented in this study, the limitation of 

the inversion method is the increasing number of inverted zone parameters in complex formations, 

small parameter sensitivities, the strong correlation between the zone parameters and the 

volumetric properties, and CPU time requirement of genetic inversion. By carefully studying and 

improving these factors, one can apply the inversion method as innovative (gap filling) tool in 

formation evaluation.
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NOMENCLATURE

a = tortuosity factor in Archie’s equation

c = vector of zone parameters

cov = covariance operator

d(th) = column vector of calculated (theoretical) data

Dd = relative data distance (%)

E = objective function of local (linearized) inversion

e = deviation between the measured and calculated data vectors

F = fitness function to be maximized

g = function relation between the data vector and model vector

G = Jacobi matrix 

G-g = symbol of generalized inverse matrix
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GR = natural gamma-ray intensity (API)

GRk = natural gamma-ray intensity of kerogen (API)

GRsd = natural gamma-ray intensity of sand (API)

GRsh = natural gamma-ray intensity of shale (API)

I = identity matrix

K = potassium concentration (%)

K* = number of well logs simultaneously inverted in each depth

Kc = kerogen conversion factor

Kk = potassium concentration of kerogen (%)

Krf = kerogen (resistivity) factor

Ksd = potassium concentration of sand (%)

Ksh = potassium concentration of shale (%)

L = number of zone parameters in genetic search

m =  vector of model (volumetric) parameters

m = cementation exponent in Archie’s equation

n = saturation exponent in Archie’s equation
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N = number of depth points over the processing interval

P = number of individuals in the given population

R = Pearson’s correlation coefficient

Rd = deep resistivity (m)

Rsh = shale resistivity (m)

Rt = true resistivity (m)

Rw = pore-water resistivity (m)

T = symbol of matrix transpose

Th = thorium concentration (ppm)

Thk = thorium concentration of kerogen (ppm)

Thsd = thorium concentration of sand (ppm)

Thsh = thorium concentration of shale (ppm)

TOC = total organic matter content (wt%)

U = uranium concentration (ppm)

Uk = uranium concentration of kerogen (ppm)

Usd = uranium concentration of sand (ppm)
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Ush = uranium concentration of shale (ppm)

Sx0 = water saturation in invaded zone (v/v)

Sw = water saturation in uninvaded zone (v/v)

Vk = kerogen volume (v/v)

Vsh = shale volume (v/v)

Vsd = sand volume (v/v)

,  = random numbers generated in genetic search

 = regularization term used in local (linearized) inversion

 = empirical exponent used in saturation estimation

b = bulk density (gcm-3)

k = kerogen density (gcm-3)

d = accuracy (standard deviation) of observed data

m = accuracy (standard deviation) of model parameters

Φ = porosity (v/v)

ΦN = neutron porosity (p.u.)

ΦN,h = neutron porosity of hydrocarbon (p.u.)
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ΦN,k = neutron porosity of kerogen (p.u.)

ΦN,mf = neutron porosity of mud-filtrate (p.u.)

ΦN,sd = neutron porosity of sand (p.u.)

ΦN,sh = neutron porosity of shale (p.u.)

 = parameter sensitivity function
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Figure 1. Fitness function of genetic algorithm expressing the probability of the zone 

parameters being selected for reproduction and how close they are to the solution of the inverse 

problem. The pair of independent variables: (a) gamma-ray intensity of shale (GRsh) and uranium 

concentration of kerogen (Uk), (b) gamma-ray intensity of sand (GRsd) and uranium concentration 

of shale (Ush), (c) resistivity of shale (Rsh) and saturation exponent (n), (d) neutron porosity of 

kerogen (k) and neutron porosity of hydrocarbon (h).
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Figure 2. Flowchart of the two-step hyperparameter estimation-based inversion algorithm 

used for simultaneously estimate the zone and volumetric parameters.

Figure 3. Parameter sensitivity functions () measuring the extent of influence of zone 

parameters on natural gamma-ray logging data. The independent variables: the natural gamma-ray 

intensity of kerogen (GRk), shale (GRsh), sand (GRsd); the potassium concentration of kerogen (Kk), 

shale (Ksh), sand (Ksd); the uranium concentration of kerogen (Uk), shale (Ush), sand (Usd); the 

thorium concentration of kerogen (Thk), shale (Thsh), sand (Thsd).

Figure 4. Parameter sensitivity functions () measuring the extent of influence of zone 

parameters on neutron porosity and deep resistivity data. The independent variables: the neutron 

porosity of kerogen (n,k), shale (n,sh), sand (n,sd), hydrocarbon (n,h), mud-filtrate (n,sh); the 

resistivity of pore-water (Rw), shale (Rsh); tortuosity factor (a), cementation exponent (m), 

saturation exponent (n), kerogen resistivity factor (Krf). 

Figure 5. Convergence curves for the hyperparameter inversion procedure. Phase I 

represents the genetic inversion part of the two-step inversion procedure, Phase II is the linear 

optimization step. (a) Initial population of 200 individuals randomly generated at the beginning of 

the inversion procedure, (b) maximal fitness of individuals during the genetic search performed in 

the first loop of the inversion procedure, (c) fitness of the best zone parameter vector at each 

iteration when completing the two inversion phases, (d) relative data distance between the 

measured and calculated logs at each iteration when completing the two inversion phases.

Figure 6. Change of zone parameters during the hyperparameter inversion procedure. (a) 

The values of zone parameters during the genetic search (phase I) in the last loop (10th iteration) 
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of the inversion procedure. (b)-(d) The values of zone parameters estimated at each iteration when 

completing the two inversion phases (phase I+II).

Figure 7. Hyperparameter inversion results obtained in Be-4 well, Derecske Trough, East 

Hungary. Measured (solid line) and calculated (dashed line) well logs: GR is natural gamma-ray 

intensity, K, U, Th are potassium, uranium, thorium concentration, respectively, ΦN is neutron 

porosity, Rd is deep resistivity. Volumetric parameters estimated (or derived) by inversion are: Φ 

is porosity, Sx0 is water saturation (invaded zone), Sw is water saturation (uninvaded zone), Vsh is 

shale volume, Vk is kerogen volume, Vsd is sand volume, TOC is total organic carbon content.

Figure 8. Uncertainty analysis of hyperparameter inversion results. Confidence intervals of 

measured data (data accuracy) and petrophysical properties (estimation error) are indicated with 

shaded regions around the well logs, σ is the standard deviation. The observed logs: GR is natural 

gamma-ray intensity, K, U, Th are potassium, uranium, thorium concentration, respectively, ΦN is 

neutron porosity, Rd is deep resistivity. Volumetric parameters estimated by inversion: Φ is 

porosity, Sw is water saturation in the uninvaded zone, Vsh is shale volume, Vk is kerogen volume.

Figure 9. Hyperparameter inversion results obtained for three different petrophysical 

models. Zone parameters of Model I-III are given in Table 3. In tracks 1-6, measured logs are 

denoted by upper index (m), calculated logs are indicated by upper index (c). The input logs: GR 

is natural gamma-ray intensity, K, U, Th are potassium, uranium, thorium concentration, 

respectively, ΦN is neutron porosity, Rd is deep resistivity. Volumetric parameters estimated (or 

derived) by inversion: Φ is porosity, Sw is water saturation in the uninvaded zone, Vsh is shale 

volume, Vk is kerogen volume, TOC is total organic content.
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Figure 10. Linear regression relations between the same volumetric parameters estimated 

by hyperparameter inversion and interval inversion, respectively. The studied parameters are (a) 

porosity (Φ), (b) water saturation in the uninvaded zone (Sw), (c) shale volume (Vsh), (d) kerogen 

volume (Vk). Quantity R is the Pearson’s correlation coefficient.

Figure 11. Histograms of the estimation error of volumetric parameters extracted by 

hyperparameter inversion and interval inversion, respectively. From the model covariance matrix, 

we derive (a) the standard deviation of porosity (σΦ), (b) the standard deviation of water saturation 

in the uninvaded zone (σSw), (c) the standard deviation of shale volume (σVsh), (d) the standard 

deviation of kerogen volume (σVk).
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Table 1. Zone parameters of tool response functions used for the evaluation of tight gas 

formations and the parameter selection results based on sensitivity analysis (the threshold value 

of sensitivity is chosen as 0.2).

Zone 

parameter

Symbol 

(unit)

Reference 

value

Sensitivity 

value

Inversion 

parameter

Gamma ray 

intensity of 

shale

GRsh (API) 140 0.60 unknown

Gamma ray 

intensity of 

kerogen

GRk (API) 3000 0.40 unknown

Gamma ray 

intensity of sand
GRsd (API) 0 <10-3 fixed

Potassium 

concentration of 

shale

Ksh (%) 5 0.78 unknown

Potassium 

concentration of 

kerogen

Kk (%) 12 0.07 fixed

Potassium 

concentration of 

sand

Ksd (%) 0 4·10-3 fixed

Uranium 

concentration of 

shale

Ush (ppm) 3.5 0.34 unknown

Uranium 

concentration of 

kerogen

Uk (ppm) 160 0.64 unknown

Uranium 

concentration of 

sand

Usd (ppm) 0 5·10-3 fixed
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Thorium 

concentration of 

shale

THsh (ppm) 30 1.0 unknown

Thorium 

concentration of 

kerogen

THk (ppm) 15 0.02 fixed

Thorium 

concentration of 

sand

THsd (ppm) 0 0.002 fixed

Neutron 

porosity of 

mud-filtrate

ΦN,mf (p.u.) 98 0.32 unknown

Neutron 

porosity of 

shale

ΦN,sh (p.u.) 23 0.72 unknown

Neutron 

porosity of 

kerogen

ΦN,k (p.u.) 64 0.06 fixed

Neutron 

porosity of sand
ΦN,sd (p.u.) -4 0.06 fixed

Neutron 

porosity of 

hydrocarbon 

(gas)

ΦN,h (p.u.) 10 7·10-3 fixed

Pore-water 

resistivity
Rw (Ωm) 0.01 0.66 unknown

Shale 

resistivity
Rsh (Ωm) 2 0.08 fixed

Saturation 

exponent
n 2 0.19 fixed

Cementation 

exponent
m 2 0.95 unknown

Tortuosity 

factor
a 1 0.19 fixed
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Kerogen 

resistivity factor
Krf 6800 0.32 unknown
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Table 2. Zone parameter estimation results given by hyperparameter inversion of well logs in 

Be-4 well, Derecske Trough, East Hungary. 

Zone 

parameter

Symbol 

(unit)

Search 

domain

Estimated 

value

Standard 

deviation

(initial 

population)

Standard 

deviation

(last 

generation)

Relative 

error

(%)

Gamma ray 

intensity of 

shale

GRsh 

(API)
100-200 187 29.4 3.4 12

Gamma ray 

intensity of 

kerogen

GRk (API) 0-4000 1645 1130 247 22

Potassium 

concentration 

of shale

Ksh (%) 0-10 4.65 2.6 0.18 7

Uranium 

concentration 

of shale

Ush (ppm) 0-10 2.28 3.0 1.85 62

Uranium 

concentration 

of kerogen

Uk (ppm) 100-300 198 55.1 13.9 25

Thorium 

concentration 

of shale

THsh 

(ppm)
0-50 28.7 14.4 0.78 5

Neutron 

porosity of 

mud-filtrate

ΦN,mf 

(p.u.)
90-100 99.8 2.8 1.49 53

Neutron 

porosity of 

shale

ΦN,sh 

(p.u.)
0-40 22.43 11.0 0.73 7

Pore-water 

resistivity
Rw (Ωm) 0.001-0.1 0.023 0.029 0.012 41
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Cementation 

exponent
m 1.0-2.2 1.51 0.20 0.06 30

Kerogen 

resistivity 

factor

Krf
4000-

10000
6162 1729 796 46
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Table 3. Well logging inversion results obtained by different settings of zone parameters. 

Zone 

parameters

GRsh

(API)

GRk

(API)

Ksh

(%)

Ush

(ppm)

Uk

(ppm)

THsh

(ppm)

ΦN,mf 

(p.u.)

ΦN,sh 

(p.u.)

Rw

(Ωm)
m Krf

Dd,0

(%)

Dd 

(%)

Model 

I
unknown 187 1645 4.6 2.3 198 28.7 99.9 22.4 0.02 1.51 6162 47.5 4.4

Model 

II
fixed 120 500 15 2 200 25 95 28 0.01 2 7000 137 49

Model 

III
fixed 110 1000 10 5 250 22 97 28 0.08 2 9000 253 107

Page 58 of 69Geophysics Manuscript, Accepted Pending: For Review Not Production



 

Figure 1. Fitness function of genetic algorithm expressing the probability of the zone parameters being 
selected for reproduction and how close they are to the solution of the inverse problem. The pair of 

independent variables: (a) gamma-ray intensity of shale (GRsh) and uranium concentration of kerogen (Uk), 
(b) gamma-ray intensity of sand (GRsd) and uranium concentration of shale (Ush), (c) resistivity of shale 

(Rsh) and saturation exponent (n), (d) neutron porosity of kerogen (Φk) and neutron porosity of 
hydrocarbon (Φh). 

1263x890mm (120 x 120 DPI) 

Page 59 of 69 Geophysics Manuscript, Accepted Pending: For Review Not Production



 

Figure 2. Flowchart of the two-step hyperparameter estimation-based inversion algorithm used for 
simultaneously estimate the zone and volumetric parameters. 
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Figure 3. Parameter sensitivity functions (Ψ) measuring the extent of influence of zone parameters on 
natural gamma-ray logging data. The independent variables: the natural gamma-ray intensity of kerogen 
(GRk), shale (GRsh), sand (GRsd); the potassium concentration of kerogen (Kk), shale (Ksh), sand (Ksd); 
the uranium concentration of kerogen (Uk), shale (Ush), sand (Usd); the thorium concentration of kerogen 

(Thk), shale (Thsh), sand (Thsd). 
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Figure 4. Parameter sensitivity functions (Ψ) measuring the extent of influence of zone parameters on 
neutron porosity and deep resistivity data. The independent variables: the neutron porosity of kerogen 

(Φn,k), shale (Φn,sh), sand (Φn,sd), hydrocarbon (Φn,h), mud-filtrate (Φn,sh); the resistivity of pore-water 
(Rw), shale (Rsh); tortuosity factor (a), cementation exponent (m), saturation exponent (n), kerogen 

resistivity factor (Krf). 
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Figure 5. Convergence curves for the hyperparameter inversion procedure. Phase I represents the genetic 
inversion part of the two-step inversion procedure, Phase II is the linear optimization step. (a) Initial 

population of 200 individuals randomly generated at the beginning of the inversion procedure, (b) maximal 
fitness of individuals during the genetic search performed in the first loop of the inversion procedure, (c) 

fitness of the best zone parameter vector at each iteration when completing the two inversion phases, (d) 
relative data distance between the measured and calculated logs at each iteration when completing the two 

inversion phases. 
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Figure 6. Change of zone parameters during the hyperparameter inversion procedure. (a) The values of 
zone parameters during the genetic search (phase I) in the last loop (10th iteration) of the inversion 

procedure. (b)-(d) The values of zone parameters estimated at each iteration when completing the two 
inversion phases (phase I+II). 
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Figure 7. Hyperparameter inversion results obtained in Be-4 well, Derecske Trough, East Hungary. Measured 
(solid line) and calculated (dashed line) well logs: GR is natural gamma-ray intensity, K, U, Th are 

potassium, uranium, thorium concentration, respectively, ΦN is neutron porosity, Rd is deep resistivity. 
Volumetric parameters estimated (or derived) by inversion are: Φ is porosity, Sx0 is water saturation 

(invaded zone), Sw is water saturation (uninvaded zone), Vsh is shale volume, Vk is kerogen volume, Vsd is 
sand volume, TOC is total organic carbon content. 
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Figure 8. Uncertainty analysis of hyperparameter inversion results. Confidence intervals of measured data 
(data accuracy) and petrophysical properties (estimation error) are indicated with shaded regions around 
the well logs, σ is the standard deviation. The observed logs: GR is natural gamma-ray intensity, K, U, Th 

are potassium, uranium, thorium concentration, respectively, ΦN is neutron porosity, Rd is deep resistivity. 
Volumetric parameters estimated by inversion: Φ is porosity, Sw is water saturation in the uninvaded zone, 

Vsh is shale volume, Vk is kerogen volume. 
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Figure 9. Hyperparameter inversion results obtained for three different petrophysical models. Zone 
parameters of Model I-III are given in Table 3. In tracks 1-6, measured logs are denoted by upper index 

(m), calculated logs are indicated by upper index (c). The input logs: GR is natural gamma-ray intensity, K, 
U, Th are potassium, uranium, thorium concentration, respectively, ΦN is neutron porosity, Rd is deep 

resistivity. Volumetric parameters estimated (or derived) by inversion: Φ is porosity, Sw is water saturation 
in the uninvaded zone, Vsh is shale volume, Vk is kerogen volume, TOC is total organic content. 
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Fig. 10. Linear regression relations between the same volumetric parameters estimated by hyperparameter 
inversion and interval inversion, respectively. The studied parameters are (a) porosity (Φ), (b) water 

saturation in the uninvaded zone (Sw), (c) shale volume (Vsh), (d) kerogen volume (Vk). Quantity R is the 
Pearson’s correlation coefficient. 
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Fig. 11. Histograms of the estimation error of volumetric parameters extracted by hyperparameter inversion 
and interval inversion, respectively. From the model covariance matrix, we derive (a) the standard deviation 

of porosity (σΦ), (b) the standard deviation of water saturation in the uninvaded zone (σSw), (c) the 
standard deviation of shale volume (σVsh), (d) the standard deviation of kerogen volume (σVk). 
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