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Abstract—The paper presents a novel observer design
method for estimating the front and rear wheel slips of the
vehicle. The proposed observer design technique consists of
two parts: A simple linear observer algorithm, which uses a
reformulated lateral vehicle model to estimate the tire slips.
The second part is based on an ultra-local model. The main
goal of the ultra-local model is to eliminate the nonlinear,
unmodeled, uncertain dynamics of the lateral vehicle model.
In this way, the performance level of the linear observer can
be significantly increased especially under critical circumstances
such as high lateral acceleration maneuvers or driving on a low
o surface. The proposed observer algorithm is implemented
in MATLAB/Simulink environment connected to the high-
fidelity simulation software, CarMaker. The operation and
the effectiveness of the proposed observer are demonstrated
through several simulation examples.

I. INTRODUCTION AND MOTIVATION

The crucial prerequisite for the widespread of autonomous
vehicles is the ability to operate in all possible traffic
situations safely. Researchers and engineers often encounter
roadblocks during their development of various functions.
The algorithm, which is responsible for vehicle control,
can be divided into layers such as sensing and observation,
decision-making, and control layer. The accuracy of the
states of the vehicles highly influences the performance level.
Moreover, the stability requirements can also be insured
through specific vehicle states, which are generally hardly
measurable. This problem directs the attention of the devel-
opers towards solutions that can be used to estimate signals
that are difficult or impossible to measure. Although, in the
literature, several methods exist for the estimation problem,
these approaches have their advantages and disadvantages.

In recent years, the attention from the classical, only
model-based approaches started to shift towards data-driven
methods. These solutions have drawbacks compared to the
classical approaches: theoretical guarantee of stability, the
quality and quantity of the dataset have a high influence on
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the performance level, and the accuracy in the unobserved
operational range is low. Therefore, a new direction began
to emerge, which tried to overcome the limitations of the
methods by the combination of them.

Among the data-aided methods, a relatively new solu-
tion called the ultra-local model-based approach [1], can
be mentioned. The main idea behind this approach is to
approximate the nonlinearities and neglected dynamics of
the system creating an ultra-local model, which is valid for
a short time interval. This means, that the ultra-local model is
recomputed at every sample time and, in the original concept,
it is added to the control input. The advantage of this method
is that no previously saved dataset is needed, and only
uses measured and computed signals in online operation.
Although the original method was created for control design,
it has the potential to be used in estimation methods.

From the viewpoint of vehicle stability and control the
accurate estimation of the lateral velocity, or the side slip
angle is crucial. However, the main difficulty of the task
comes from the fact, that the parameters of the vehicle
change during its lifespan. Additionally, several external
effects can influence the state of the vehicle, which leads to
modeling difficulties. Since most of the classical estimation
approaches mainly rely on an accurate model of the vehicle,
the external effects and the unmodeled or neglected dynamics
can significantly decrease the accuracy of the estimation
process. On the other hand, efforts aimed at achieving a
precise model of the vehicle result in a complex model,
which leads to a challenging estimator design. This motivates
the development of alternative solutions, in which methods
with different operating principles are used parallelly.

Despite the classical approaches, such as the polytopic
system-based approaches [2], Kalman filter-based [3], or the
robust H..-based solutions [4], the data-aided approaches
are also successfully applied for the lateral vehicle state
estimation [5]. In paper, [6], a precise estimation approach
is introduced for tire slip estimations using intelligent tire
technology and machine-learning methodologies. During the
measurements, additional sensors are deployed inside the
tires, which measure the accelerations. The training process
is achieved through frequency-domain features of accel-
erations which results in accurate estimation of the slip
angles. Moreover, the driving force control can be enhanced
through the estimation of the tire slip angle [7]. Paper [8]
presents a tire slip angle estimation method, using piezoelec-
tric film sensors (PVDF sensor), with which measurements
can be performed. Then, three different machine learning
approaches were trained for estimation purposes, and the



results showed that Gaussian process regression provided
the most accurate results. Moreover, machine learning-based
solutions are also suitable for tire slip estimation in off-road
and unpaved surfaces [9].

In this paper, a combination of the ultra-local model-based
and a classical approach can be found for tire side slip
estimation. The classical approach is commonly used linear
observer. The main advantage of the proposed method is
that no previously saved, high amount of dataset is needed.
Moreover, using the ultra-local model, the adaption of the
varying parameters is also carried out. On the other hand,
the simple design process of the estimation algorithm is also
in the main focus. The presented solution does not require
an accurate model of the vehicle. During the design of the
linear observer, only the widely used two-wheeled bicycle
model is used. Since the states of the bicycle model do not
involve the tire slips, in the first step, it is modified to achieve
the estimation process of these signals.

The rest of the paper consists of the following section.
Firstly, the lateral model is presented, which is a reformulated
version of the classical two-wheeled bicycle model, see
Section II. In Section III, a brief introduction can be found to
the applied methods namely: linear observer design and the
ultra-local model. The design steps of the vehicle-oriented
observer are also detailed in this section. The operation and
the effectiveness of the proposed observer are demonstrated
in Section IV. Finally, the contribution of the paper is
summarized in Section V.

II. MODELING OF LATERAL DYNAMICS

The lateral dynamics of the vehicle is modeled by the
modified version of the single-track bicycle model. The
original bicycle model consists of the main equations: lateral,
and the yaw-motion, see [10]:

L = Frlaply — Frla)l,
mvx(w + 5) = ]:f(af) + Fr(awr),

where the parameters are: [f,[, are the distances of the
rear/front axles from the center of gravity (CoG), Fy,F,
are the lateral forces, oy, o, are the tire slips, I, represents
the yaw inertia, m is the mass of the vehicle, v, is the
longitudinal velocity, ¥ is the yaw-rate and [ = atcmZ—Z
is the side-slip of the vehicle. Slips can be expressed in a
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linear form as: ay = 3§ — 5 — o G = —B+ %” functions

of the steering angle (4), 5, 1/) and v,.
A. Model with slips as states

The states of the original bicycle model can be changed
to the slips by reordering the equations (1), see [11]:
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In the next step, the derivatives of yaw-rate and side-slip are
derived as:
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The derivative of the longitudinal velocity is not computed
since it is assumed to be constant for the given time interval.
Subtracting (1) from (3), the derivative of the tire slips can
be computed:
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Note that the derivative of the steering angle 6) appears in
the equations above. It is approximated with an upper bound

as 0 & mam(%)é = 0.

B. State-space representation of the modified model

The reformulated model can be transformed into a state-
space representation using the cornering stiffness (C;) instead
of the lateral force: F; = C;«;, i = {f,r}, where f indicates
the front, while 7 is the the rear axle. Furthermore, the state-
space is extended with an additional state, the yaw-rate using
(1)(a) to improve the performance of the observer, which will
be detailed in Subsection III-C.
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III. APPLIED METHODS FOR OBSERVER DESIGN

In this section, the applied methods for the observer design
are presented. Firstly, the main concepts of the Model-Free
Control and the ultra-local model are detailed. Then, the
linear observer design process is briefly described.

A. Ultra-Local Model and Model-Free Control

The Model-Free Control and the ultra-local model-based
control technique was presented by M. Fliess at al in [12].
This method can cope with the uncertain, nonlinear dynamics
of the considered system by applying a so-called ultra-local
model:

y) — F + ou, )

where F'is the ultra-local model, v derivative order, ¥, iS
the measured output, « is a tuning parameter of this model
and the control input is denoted by wu.
Using the previous equation, the ultra-local model is com-
puted as:

F= y(y) —au ®)

ulm

The main goal of the ultra-local model is to eliminate the
derivative of the error signal:

e =yl —y = Ftau—yl) ©)

where y,..r is the reference signal. This can be achieved by
using u as the control signal:
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In a control-oriented application, the tracking performance
is also a crucial factor, therefore an additional controller is
applied denoted by K (s) However, it cannot guarantee the
zero steady-state error in terms of the error signal (¢ = Y,y —
y) thus an additional controller (K (s)) is applied:

—F +ypep + K(s)e

«
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the technique behind K (s) can be freely chosen, see [12],
[13]. So, in the general case, the MFC strategy has two
controller signals: one from the ultra-local model, which
aims to eliminate the unknown dynamics of the system,
and the additional controller, whose role is to guarantee the
tracking performance.

In the case of observer design, only the ultra-local model is
used since there is no need for tracking performance.

B. Linear Observer

Linear observer design is based on the state-space rep-
resentation of the considered system. A general state-space

representation is given in discrete form as:

x(t+1) = ¢z(t) + Tu(t),
y(t) = CTa(t),

where ¢, I', C' are matrices, x(t) consists of the states of the
system, u(t) denotes the control input whilst y(¢) is output
vector The main goal is to eliminate the error between the
measured states (x(t)) and the estimated ones (&(¢))

(12a)
(12b)

e(t) = x(t) — &(t), |e] = min! (13)
The state equation of the observer, see [14]:
Z(t+1) = ¢da(t) + Tu(t) + La(CZ(t) — y(t)). (14)

Ly is the observer gain vector. The gains can be computed
by minimizing the following cost function:
1 o0
J=3 > @ ()Qu(t) + u () Ru(t))

i=1

15)

where () and R are weighting matrices. The optimal gain
vector can be obtained by solving the Ricatti equation for
P:

¢TPp—P+Q—¢"PT(R+TTPD)"'TTPyp =0 (16)
Using P the optimal gain vector can be determined as:

Li=—(R+TTPD)" 1T Py (17)

C. Observer design

In this section, the combined observer design is presented
using detailed methods, namely the ultra-local model and the
linear observer. The main steps of the design process are the
following:

1) As afirst step, a nominal model is needed. In this case,

the modified bicycle model is used presented in Section
II. The continuous model must be discretized for the
implementation, see [15]. In this case, the model is
discretized with T = 0.01s and using ZOH technique.
The computed discrete model is denoted by x,(t) =
G (t) + Toult), yo(t) = CTa(t)

The measured outputs (y,) are the lateral acceleration
(ay) and the yaw-rate (1/}), see (5¢).

2) Design of the linear observer as detailed in Section III.

3) The ultra-local model needs an output (y) and the order
of derivative (v). The selected output iS Yy, = ay
and derivative order is selected to v = 1, which means
yulm = ay

4) Selection of derivative algorithm, ALIEN filter is a
frequently used technique for computing a derivative
of a noisy, measured signal, therefore it is suitable for
this application. ALIEN filter algorithm is detailed in
[16].

5) Next step is the tuning of the free parameter a.. There
are several iterative algorithms to get the optimal value
for . In this study, the authors’ previous method is
used, which is detailed in [17].
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6) Interconnection of the whole algorithm. The state equa-
tion of the interconnected observer is in the discrete
form: Z(t + 1) = @u@(t) + Typu(t) + wum(t)] +
La(g(t) —y(t))
where ¢, and I',, are the discrete state matrices, while
Lg is the discrete observer gain vector.

The structure of the whole algorithm is illustrated in Fig-
ure 1. During the estimation of the tire slips only cost-
efficiently and accurately measurable signals are used: the
lateral acceleration and the yaw-rate. Based on these signals,
the unmodeled dynamics, which are neglected during the
linear observer design are considered. Moreover, the external
influences can be handled by the ultra-local model-based
part. Since the ultra-local model is capable of handling the
parameter uncertainty of the system, the complexity of the
classical observer design is significantly decreased.

IV. SIMULATION

In this section, simulation examples are presented to
show the operation and the effectiveness of the proposed
observer algorithm. The whole algorithm is implemented in
MATLAB/Simulink environment, which is connected to the
high-fidelity simulation software, CarMaker. The selected
vehicle is an electric car, namely the Tesla Model S. The
main parameters of the vehicle can be found in Table IV.
During the tests, the vehicle is driven by the CarMaker
inbuilt driver on a track shown in Figure 2. The simulation
examples include three different test scenarios: a test with
high longitudinal velocity, a test with varying longitudinal
velocity, and a test with low adhesion coefficient. The results
of the combined method are also compared to a standard
linear observer.

A. High lateral acceleration

In the first scenario, the vehicle is driven along the test
track at a high longitudinal velocity as shown in Figure 3.
The parameters of the linear observer are the same as in

Schematic structure of the observer

m 2100 (kg)
lg,lr | 1.5, 1.5 (m)
I, 3900 (kgm?)
10} 0.4 %
TABLE 1

PARAMETERS OF THE TEST VEHICLE
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Fig. 2. Track

Table IV and the longitudinal velocity is set to v, = 22m/s.
The estimated and the real slips are shown in Figure 5.
As it can be seen, both observers can estimate the front
slip with a high accuracy except for some peaks where the
linear observer has a significant error around =~ 25%. At
that peak, the vehicle dynamics are in the nonlinear region,
which cannot be handled by a linear observer. However,
the combined algorithm can deal with these unmodeled
dynamics by providing an additional control signal as shown
in Figure 4. Finally, the yaw-rate is illustrated in Figure 6.
The maximal value of the yaw-rate is around w = 0.55rad/s,
which is close to the physical limits of a standard passenger
vehicle.
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B. Test with varying longitudinal velocity

In the next test scenario, both observers are tested on
the same track with varying longitudinal velocities. The
longitudinal velocity profile is illustrated in Figure 9. The
speed varies between 10m/s and 20m/s. Since the nominal
vehicle model highly relies on the longitudinal velocity, using
the linear observer, this radical change cannot be handled
properly. Therefore, only the results of the combined solution
is presented. The real and the estimated slips are depicted in
Figure 8. The proposed combined observer is able to estimate
the slip in the whole range of the longitudinal velocity.
The control inputs are in Figure 7. The maximal value of
the output of the ultra-local model is around ¢ = 55s and
t = 90s, where the slip reaches its peak values and the
nonlinearities of the vehicle are the most significant. Finally,
the yaw-rate of this case is illustrated in Figure 10.

C. Test on low 1 surface

In the last case, the vehicle is driven on a surface with a
low adhesion coefficient ;1 = 0.5 to show that the proposed
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observer can deal with this drastic change. The velocity
profile is similar to the first case, set to v, = 22m/s and it
is reduced at sharp bends to avoid the unstable motion of the
vehicle. The measured and the estimated slips are depicted
in Figure 12. The estimation has a lower accuracy compared
to the previous cases but the average error remains under
< 3%, which is still an acceptable value. Finally, the yaw-
rate is shown in Figure 13. The maximal value is declined
to ) = 0.4rad/s, which is caused by the low adhesion
coefficient.  os
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V. CONCLUSION AND FUTURE WORK

The paper proposed a novel observer design method to
estimate the side slips of the vehicle. The presented strategy
had two main parts: a classical linear observer and an ultra-
local model. The combined observer could deal with the
unmodeled, nonlinear, uncertain dynamics of the vehicle,
thus providing a high-performance level even under extreme
circumstances. The proposed observer has been implemented
and tested in MATLAB/Simulink environment with connec-
tion to the high-fidelity simulation software, CarMaker. The
detailed simulation has shown the algorithm could estimate
the slips with a high accuracy.
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