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Abstract— The paper presents a combined observer and
lateral control design approach for autonomous vehicles. The
goal of the observer design is to estimate the front and rear
slip angles of the vehicle together with the cornering stiffness.
The observer is based on the combination of the polytopic LPV
approach and the ultra-local model. The ultra-local model is
used to update the cornering stiffness and, in this way, improve
the performance level of the LPV observer. Then, the resulted
observer is exploited during the LPV-based lateral control
design. The improved lateral control can adapt to different
circumstances such as low adhesion coefficient. The proposed
observer and LPV controller is implemented and tested in
MATLAB/Simulink environment and using the high-fidelity
simulation software, CarMaker.

I. INTRODUCTION AND MOTIVATION

The emergence of highly automated vehicles has many
positive effects on society. However, the control design
process for highly automated vehicles is challenging due to
the nonlinearities, uncertainties, and disturbances present in
vehicle dynamics. Therefore, guaranteeing the safe and stable
operation of these systems is in the focus of many researchers
and companies. Beyond the internal effects, the operation of
this system is also influenced by external effects such as
the friction coefficient of the given road segment. Therefore
guaranteeing the stable motion of vehicles under different
road conditions and in various traffic scenarios is a crucial
task.

During everyday traffic, the vehicle can encounter an
emergency situation, which can only be solved by a trajectory
with high lateral acceleration. This implies that the maximum
lateral forces, which can be generated by the tires, must
be estimated accurately to compute a modified trajectory
with which the material damage and injury to people can
be avoided. However, in these circumstances, maintaining
stable motion is critically important due to the dangerous
environment.

D. Fényes, T Hegedűs and P. Gáspár are with Institute for Com-
puter Science and Control (SZTAKI), Hungarian Research Network
(HUN-REN), Kende u. 13-17, H-1111 Budapest, Hungary. E-mail:
[daniel.fenyes;peter.gaspar]@sztaki.hun-ren.hu
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The determination of tire characteristics can be achieved
using force and lateral velocity sensors. However, the cost of
these sensors is so high that their use in commercial vehicles
is not feasible. Moreover, determining tire characteristics
after production is also not practical, as these characteristics
can change over time. On the other hand, several external
effects also influence the characteristics such as the surface
of the road or the temperature. This makes it difficult to
estimate the tire characteristics in real-time using the onboard
sensors of the vehicle.

The estimation process of the tire characteristics can be
solved using machine learning-based solutions since these
methods can effectively capture the nonlinearities [1]. Al-
though these methods have a high-performance level for the
estimation, the degradation and external effects can hardly be
involved in the training process. The training performances
can be increased by involving the physical information of
the vehicle [2]. This method aims to build up a twin model
of the car and is suitable mainly for offline tests. The
physics-informed neural networks can be used in a control
framework such as Model Predictive Control [3], with which
motion prediction accuracy can be significantly increased.
The results show that the algorithm is capable to control
the vehicle accurately, however, the training process of the
network still requires a high amount of data. Furthermore,
the characteristics can be estimated using the Approximate
Bayesian Computation (ABC) method [4], which is also
highly depend on the quality and quantity of the data.

On the other hand, classical approaches are also used
for the estimation of the tire characteristics. In [5] Particle
Swarm Optimization (PSO) and the Unscented Kalman Filter
(UKF) methods are used for estimation of the velocity
considering velocity-varying tire parameters. Moreover, an
estimation method is presented for 6x6 vehicles using the
Levenberg-Marquardt algorithm [6]. The main advantage of
these methods is that the estimation accuracy is not directly
affected by the dataset. Moreover, the estimation within the
ranges, which are not covered by the dataset, also provides
higher accuracy than a machine learning-based solution.
Despite the advantages, the nonlinearities and uncertainties
are hard to handle using classical approaches.

In recent years, the ultra-local model-based approach has
gained attention. Although the original formalism of the
ultra-local model-based structure is developed for control-
oriented problems [7], it has potential to use in estimation
processes [8]. The method promises that it can take into
account the unmodeled dynamics and uncertainintes of the
system by the ultra-local model, which is computed from the



input and the derivatives of the output signals.
The paper presents a polytopic LPV-based lateral con-

trol solutions, whose performance level is increased by a
LPV and ultra-local model-based observer algorithm. The
observer estimates the slip angles of the front and rear axles,
while the ultra-local model is used to update the cornering
stiffness of the vehicle. Then, a lateral control algorithm is
proposed, which can utilize the updated cornering stiffness
and the estimated slip angles. The operation and the effec-
tiveness of the proposed methods are demonstrated a through
a simulation example conducted in MATLAB/Simulink en-
vironment and in the CarMaker simulation software.

The structure of the paper is the following: The lateral
vehicle dynamics and the modified, slip angle-oriented state
space representation of the vehicle is detailed in Section II.
The ultra-local model-based approach and the LPV design is
briefly described in Section III. The whole observer design
can be found in Section III. The lateral control design is
presented in Section IV. Finally, a simulation example can
be found in Section V, which also includes test scenarios
with modified external parameters.

II. MODELING OF LATERAL DYNAMICS

Firstly, the lateral vehicle model is presented in this
section. Most of the lateral control-oriented papers use the
classical bicycle model, which consists of two state variables:
yaw-rate and the lateral velocity or side-slip angle, see [9].
Although this formalism is widely used in lateral control
design, it is not suitable for estimating the front and rear
slips. Therefore, a modified version is used in this paper,
whose states are the slip angles, presented in [10].

A. Modified bicycle model

The original single-track vehicle model has two main
equations describing the yaw-motion and the lateral accel-
eration of the vehicle:

Izψ̈ = Ff (αf )lf −Fr(αr)lr (1a)

mvx(ψ̇ + β̇) = Ff (αf ) + Fr(αr), (1b)

where Iz denotes the yaw-inertia, m is the mass, ψ̇ represents
the yaw-rate, β is the side-slip of the ceneter of gravity
(CoG), vx is the longitudinal velocity, Fi(αi) i ∈ [f, r] is the
lateral forces on the front (f) and rear (r) axis as a function
of the slips:

αf = δ − β − ψ̇lf
vx

, (2a)

αr = −β +
ψ̇lr
vx

, (2b)

where δ is the steering angle and lf , lr are geometric
parameters.

By taking the derivative of the side slips (2) and the
equations of the original model (1), the following two

equations can be constructed:

α̇r − α̇f =
lf + lr
Iz

(Ff (αf )lf −Fr(αr)lr)− δ̇ (3a)

α̇f lr + α̇rlf = vx(αr − αf ) + vxδ + lr δ̇− (3b)

− lf + lr
mvx

(Ff (αf ) + Fr(αr))

Using the modified equations (3) a state-space representation
can be built up with states of αf , αr, more details can be
found in [10].

B. State-space representation

The modified bicycle model can be transformed into a
parameter-dependent state-space representation. The lateral
force function can be linearized in the following way: Fi =
Ciαi. Ci is the cornering stiffness. The cornering stiffness
can vary during the operation of the vehicle thus it is handled
as a scheduling parameter.

ẋv = Av(ρ)xv +Bv(ρ)uv, (4a)

yv = cTv (ρ)xv, (4b)

[
α̇f

α̇r

]
=

[
a11(ρ) a12(ρ)
a21(ρ) a22(ρ)

]
︸ ︷︷ ︸

Av(ρ)

[
αf

αr

]
+

[
b1(ρ)
b2(ρ)

]
︸ ︷︷ ︸
Bv(ρ)

δ, (4c)

may = mvx(β̇ + ψ̇) =
[
Cf (t) Cr(t)

] [αf

αr

]
, (4d)

where the output of the system is the lateral force (mv̇y =
may = mvx(β̇ + ψ̇)), and scheduling vector consists of the
following variables: ρ = [Cf (t), Cr(t), vx(t)].
Other parameters of the state-matrices are detailed in [11].

III. OBSERVER DESIGN

In this section, the ultra-local model-based observer design
is briefly presented for estimating the slip angles of the
vehicle. The goal of the ultra-local model is to deal with
the parameter uncertainty caused by the cornering stiffness.

A. Ultra-local model

The ultra-local model-based control strategies were pre-
sented in [7], [12], [13]. This control technique computes
a so-called ultra-local model to deal with uncertainties and
unmodelled dynamics. The ultra-local model is continuously
update and used as an additional control signal. The ultra-
local model is computed from the control signal (u) and the
νth derivative of the output y(ν):

y(ν) = F + αu, (5)

where F is the ultra-local model, α is a tuning parameter, y
is the measured output of the system. The ultra-local model
can be computed as:

F = y(ν) − αu (6)



The ultra-local model is augmented with a traditional con-
troller to guarantee zero steady-state error as:

uulm =
−F + y

(ν)
ref + C(s)e

α
. (7)

The structure of C(s) is not prescribed or restricted it can be
freely chosen, such as PID [12] or LQR [14]. The presented
ultra-local model will be used in the observer design without
any additional controller.

B. LPV-based observer design

The presented polytopic state-space representation has
three scheduling parameters, thus an LPV-based observer
design is selected, which is briefly detailed in the followings.
A general LPV system can be described as, see [15]:

ẋ = A(ρ)x+B(ρ)u (8a)

y = cT (ρ)x+D(ρ)ω (8b)

where: A(ρ), B(ρ), cT (ρ), D(ρ) are the state matrices, x
is the states-vector of the system, u is the control input, y
represents the output while ω is the external disturbance.

The goal of the observer design is to minimize the error
between the estimated and real states:

e = x− x̂, |e| → min! (9)

where x̂ is the estimated state-vector, which can be computed
as [16]. The predefined performances can be guaranteed
by minimizing the L2 norm from the disturbances to the
performances:

inf
L(ρ)

sup
ρ∈ϱ

sup
∥ω∥2 ̸= 0,
ω ∈ L2

∥ze∥2
∥ω∥2

, (10)

This optimization problem can be solved by using LMI or
Lyapunov function-based solutions, see [17], [18].

C. Combined observer

The structure of the ultra-local model and the LPV-based
observer is shown in Figure 1. The LPV observer has
three scheduling parameters: cornering stiffness (Cf ,Cr) and
the longitudinal velocity (vx). The longitudinal velocity is
measurable while the cornering stiffness is computed from
the ultra-local model in the following way: The effect of

Vehicle

LPV
model

+
-

ULM and
cornering stiffness

estimation

ALIEN
filter

LPV observer ULM cornering stiffness estimation

Combined observer

ALIEN
filter

Fig. 1. Schematic structure of the observer

the ultra-local model can be transformed into a deviation of

the estimated states (∆ẋv). Av,1,1 is derived from the state
matrix Av (4) containing that part of the matrix, which is
related to the cornering stiffness. The other part of the state
matrix Av is assumed to be constant.

∆ ˙̂xv = Av,1,1(C∆mx̂) (11)

where C∆m =

[
∆Cf 0
0 ∆Cr

]
. Then the change of the

cornering stiffness can be computed from the inverted matrix:[
− l2f

Izvx
− 1

mvx

lf lr
Izvx

− 1
mvx

lrlf
Izvx

− 1
mvx

− l2r
Izvx

− 1
mvx

]−1 [
vx

lf+lr
+ φ

vx
lf+lr

]
uulm =

=

[
∆Cf α̂f

∆Crα̂r

]
(12)

Finally, the updated cornering stiffness is:

Ĉf (t) = Ĉf (t− 1) + ∆Cf (t) (13)

Ĉr(t) = Ĉr(t− 1) + ∆Cr(t) (14)

More details on the observer design can be found in [11].

D. Lateral controller

Since the presented modified bicycle model does not
contain the lateral position as a state, it must be augmented
in order to guarantee tracking performances. First, the lateral
acceleration is computed as:

v̇y =
αf lf + αrlr

m
−

[
(αr − αf + δ)

v2x
lf + lr

]
(15)

Then, by integrating the lateral velocity, the lateral position
can be determined:

ẋe = Ae(ρ)xe +Be(ρ)ue, ye = cTe (ρ)xe, (16)


α̇f

α̇r

v̇y
vy

 =


a11(ρ) a12(ρ) 0 0
a21(ρ) a22(ρ) 0 0

lf
m +

v2
x

lf+lr
lr
m − v2

x

lf+lr
0 0

0 0 1 0


︸ ︷︷ ︸

Ae(ρ)


αf

αr

vy
yp

+ (17)

+


b1(ρ)
b2(ρ)

− v2
x

lf+lr

0


︸ ︷︷ ︸

Be(ρ)

δ,

IV. LPV CONTROL DESIGN

The main goal of the LPV control design is to guarantee
the accurate and stable trajectory tracking of the vehicle even
under extraordinary circumstances such as low µ surface.
The LPV model has three scheduling parameters: vx = {10−
25}m/s, Cf = {160000−250000}N/rad, Cr = {160000−
250000}N/rad. The performances of the control design can
be summarized as:
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Fig. 2. Augmented plant

• Trajectory tracking As the main goal, the controller
must guarantee the trajectory tracking of the vehicle,
which means the minimization of the error between the
reference trajectory (yref ) and the measured position
(y).

z1 = yp,ref − yp, |z1| → min, (18)

• Slip angles In order ot guarantee the stability of the
vehicle, the slip angles of the front and rear axles
(αf , αr) must be minimized:

z2 = αf , |z2| → min, (19)
z3 = αr, |z3| → min. (20)

• Intervention The steering system and the vehicle have
their own limitations therefore the intervention also
must be minimized:

z4 = δ, |z2| → min. (21)

The presented performances can be achieved by using differ-
ent weighting functions as shown in Figure IV. For example,
the weighting function Wref is used to scale the reference
trajectory. Whilst Wz,1 guarantees the trajectory tracking de-
pending on the frequency. Wz,2 and Wz,3 are to minimize the
slip angles, while Wz,3 weights the intervention. Finally, the
weighting functions Ww,1, Ww,2 and Ww,3 are to attenuate
the noises on the measured signals.

The augmented state-space representation can be written
as:

ẋe = Ae(ρ)xe +Be(ρ)ue +Be,w(ρ)we, (22a)
ze = Ce,1(ρ)xe +De(ρ)ue. (22b)

The design of an LPV controller leads to a quadratic
optimization problem, which can be solved by selecting an
adequate controller (K(ρ)). This controller must guarantee
the quadratic stability of the closed-loop system. Moreover,
the induced L2 norm from the disturbances to the perfor-
mances must be smaller than a given value γ.

inf
K(ρ)

sup
ρ∈Fρ

sup
∥w∥2 ̸=0,w∈L2

∥z∥2
∥w∥2

, (23)

where Fρ bounds the scheduling variables.

V. SIMULATION EXAMPLE

In this section, a comprehensive simulation example is
presented to show the operation and the effectiveness of the
proposed observer and control algorithms. The observer and
the controller have been implemented in MATLAB/Simulink
environment, while the vehicle model is given by the high-
fidelity simulation software, CarMaker. A Tesla Model S has
been chosen as the test vehicle. During the simulation the
vehicle is driven along a section of the Formula 1 track
Suzuka and the adhesion coefficient is set to µ = 0.5.
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Fig. 3. Test track

The track and the path of the vehicle are shown in Figure
3. The track includes several sharp bends. The vehicle is
able to follow the predefined path with high accuracy. The
maximal lateral error is around 1m, which is an acceptable
value considering the low adhesion coefficient and the sharp
bends.

The longitudinal velocity profile is illustrated in Figure 4,
which changes between vx ∈ {13, 19}m/s. The yaw-rate of
the vehicle is demonstrated in Figure 5. Its maximal value is
around 0.3rad/s, which means that the vehicle is close to its
psychical on a low adhesion coefficient surface. The lateral
acceleration is depicted in Figure 6. Similarly to the yaw-
rate, the lateral acceleration also indicates that the vehicle is
close to its physical limits since its maximal value is around
0.5m/s2.

The estimation of the front slip angle is shown in Figure
7. The blue line represents the measure value from the
CarMaker simulation software, while the red one illustrates
the estimated signal. As the result shows, the observer is able
to estimate the slip angle with high accuracy, the averaged
error is smaller than < .001rad.
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Fig. 6. Lateral acceleration

The cornering stiffness, which is a scheduling parameter
of the controller is shown in Figure 8. The output of
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Fig. 7. Front slip angle

the CarMaker is given by the blue line, while the result
of the observer is illustrated by the red line. During the
simulation, the reference cornering stiffness is computed by
the lateral force and the side slip angle (C = Fy/α). As the
result shows the ultra-local model-based observer is able to
estimate the cornering stiffness with high accuracy.
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Fig. 8. Front cornering stiffness

Finally, the steering angle is demonstrated in Figure 9. It
varies between δ ∈ {−0.06, 0.04}rad, which is a reasonable
range for these conditions.

VI. CONCLUSION

In the paper, a novel slip estimation and lateral control
algorithm have been proposed for autonomous vehicles. The
slip estimation algorithm was based on the ultra-local model
and the polytopic LPV framework, while for the control
design, an LPV approach was used. The results of the
observer are used as a scheduling variable within the control
algorithm. The presented algorithm has been implemented in
MATLAB/Simulink connected to the vehicle dynamics sim-
ulation software, CarMaker. The methods have been tested
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Fig. 9. Steering angle

through a comprehensive simulation example to show their
operation and their effectiveness. The presented simulation
showed the vehicle was able to follow the predefined path
even under extreme circumstances such as a low adhesion
coefficient.
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