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Abstract

The calculation of density-based basis-set correction (DBBSC), which remedies the

basis-set incompleteness (BSI) error of the correlation energy, is combined with local

approximations. Aiming at large-scale applications, the procedure is implemented in

our efficient local natural orbital-based coupled-cluster singles and doubles with per-

turbative triples [LNO-CCSD(T)] scheme. To this end, the range-separation function,

which characterizes the one-electron BSI in space, is decomposed into the sum of con-

tributions from individual localized molecular orbitals (LMOs). A compact domain

is constructed around each LMO, and the corresponding contributions are evaluated
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only within these restricted domains. Furthermore, for the calculation of the com-

plementary auxiliary basis set (CABS) correction, which significantly improves the

Hartree–Fock (HF) energy, the local density fitting approximation is utilized. The er-

rors arising from the local approximations are examined in detail, efficient prescreening

techniques are introduced to compress the numerical quadrature used for DBBSC, and

conservative default thresholds are selected for the truncation parameters. The effi-

ciency of the DBBSC-LNO-CCSD(T) method is demonstrated through representative

examples of up to 1000 atoms. Based on the numerical results, we conclude that the

corrections drastically reduce the BSI error using double-ζ basis sets, often to below 1

kcal/mol compared to the reliable LNO-CCSD(T) complete basis set references, while

significant improvements are also achieved with triple-ζ basis sets. Considering that

the calculation of the DBBSC and CABS corrections only moderately increases the

wall-clock time required for the post-HF steps in practical applications, the proposed

DBBSC-LNO-CCSD(T) method offers a highly efficient and robust tool for large-scale

calculations.

1 Introduction

Coupled-cluster (CC) methods1 are among the most powerful and accurate tools in quantum

chemistry for calculating correlation energies. These approaches systematically account for

electron correlation effects through an exponential wave function ansatz, leading to highly

precise results. However, a significant drawback of CC methods is their slow convergence with

respect to the size of the basis set, which mainly originates from the well-known inability of

conventional Gaussian basis sets to account for the electron-electron cusp of wave functions.

Achieving high accuracy typically requires the use of very large basis sets, dramatically

increasing computational requirements and time.

To address this problem in correlation energy calculations, explicitly correlated methods

were developed.2–4 By incorporating interelectronic distances into the wave function, these
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methods significantly improve convergence, achieving chemical accuracy with smaller and

more affordable basis sets. The R12 approach,5,6 using a linear correlation factor, was ini-

tially realized at the second-order Møller–Plesset (MP2) level.7 Later, further progress was

made with the introduction of a more sophisticated exponential correlation factor, known as

F12,8,9 which provides superior results compared to the original formalism. Other develop-

ments, including the fixed amplitude,10 density fitting (DF),11 and complementary auxiliary

basis set (CABS)12,13 approaches, have led to efficient implementations and successors in

the field.14–16 As a result, explicitly correlated approaches were also proposed for the highly-

accurate CC singles and doubles with perturbative triples [CCSD(T)] method.17–21

In addition to the above techniques, other methods have been suggested to reduce the

computation time associated with the use of extensive basis sets. One such method is

the frozen natural orbital (FNO) approximation.22–24 In FNO-CC methods, the natural

orbitals (NOs) are generated from a lower-level theory, such as MP2,25 and those with small

occupation numbers are frozen and excluded from the subsequent high-level CC calculations.

This significantly reduces the number of active orbitals without substantially sacrificing

accuracy, thereby decreasing the computational costs for CCSD(T) calculations. The FNO

approximation can also be improved by several correction schemes,26–28 and its application

has been extended to open-shell systems28,29 and higher-order CC methods.30 Additionally,

a reduced-cost explicitly correlated CCSD(T) approach has also been proposed utilizing

FNOs,31 further widening the applicability of the method to extended molecular systems.

Local approximations also offer a promising avenue for reducing computational expenses

by exploiting the rapid decay of electron-electron interactions with distance.32–47 The com-

mon feature of these schemes is that the occupied molecular orbitals (MOs) are localized

to minimize their spatial extents, and a very compact domain is constructed around each

localized MO (LMO), in which most of the important correlation interactions for the given

orbital can be described. These domains help eliminate negligible wave function parameters

and integrals, thereby accelerating the calculations. The most successful local CC methods
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also introduce FNO-like approximations and make use of pair- and orbital-specific NO sets

to further compress the MO space within the domain.48–52 Furthermore, these approaches

were combined with F12 techniques to accelerate the basis set convergence of local CCSD(T)

calculations.53–55

Another possible way to mitigate the cusp problem is the application of density func-

tional theory (DFT). This approach is well-suited for describing short-range interactions,

facilitating the achievement of the complete basis set (CBS) limit with smaller basis sets.

The well-established density functional approximations offer an outstanding accuracy-to-

cost ratio; however, the biggest drawback of the formalism is that these methods cannot be

systematically improved. Consequently, for high-precision applications, the use of DFT is

not recommended. Over the past decade, numerous attempts have been made to combine

the advantages of DFT and wave function theory (WFT).56–58 One of the most promising

approaches is the range-separated DFT (RS-DFT) formalism,59,60 where the Coulomb oper-

ator is divided into long- and short-range components. Since the long-range interactions are

effectively handled by WFT, and the semilocal functionals in DFT are good at capturing

short-range interactions, this approach successfully diminishes the cusp problem, leveraging

the benefits of both methods.61–70

In recent years, specifically for improving the description of correlation energy of WFT-

based methods, Toulouse, Giner, and their co-workers proposed a density-based basis-set

correction (DBBSC) relying on the RS-DFT formalism.71,72 The main objective of their

correction is to account for the missing part of short-range correlation effects arising due to

the incompleteness of the one-electron basis set. To this end, a spatial coordinate-dependent

range-separation function was introduced, which effectively quantifies the incompleteness

of a given basis set as the function of the spatial coordinate. The final correlation energy

correction can be computed in a single and cheap step through this local parameter, greatly

improving the correlation energy. The success of the procedure has been demonstrated

for thermochemical properties obtained with the CCSD(T) method, and it has also been
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extended to improve the calculation of other properties, such as dipole moments73,74 and

excitation energies.75

In this paper, we extend the applicability of the DBBSC and CABS corrections to large

molecular systems. To this end, we implement the procedure in our local natural orbital

(LNO)-based CCSD(T) [LNO-CCSD(T)] scheme,51,52,76–79 utilizing local approximations.

After a brief overview of the theoretical background, we demonstrate the efficiency of the

DBBSC-CCSD(T) method on smaller molecules. Subsequently, for extended systems, we ex-

amine the errors arising from local approximations and determine the default values for the

truncation parameters. The efficiency of the DBBSC-LNO-CCSD(T) approach is demon-

strated through real-life examples of 100–1000 atoms, where the calculated thermochemical

properties, reaction energies, and interaction energies are compared with high-quality LNO-

CCSD(T)/CBS references.

2 Theory

2.1 Density-based basis set correction

The main objective of DBBSC71,72 is to approximate the CBS correlation energy of a given

method by accounting for the missing part of the short-range correlation effects arising due

to the incompleteness of the finite one-electron basis set B. For the CCSD(T) approach, the

aimed correlation energy can be obtained as

ECBS
CCSD(T),c ≈ EB

CCSD(T),c + EB
DBBSC[n

B
HF] , (1)

where ECBS
CCSD(T),c and EB

CCSD(T),c are the CCSD(T) correlation energies in the CBS limit

and in basis set B, respectively. The basis-dependent complementary density functional,

EB
DBBSC[n

B
HF], with nB

HF as the Hartree–Fock (HF) electron density in B, is approximated

using a multideterminant (MD) Perdew–Burke–Ernzerhof (PBE) correlation functional72,80
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as

EB
DBBSC[n] =

∫
n(r)εMD−PBE,c(n(r), s(r), ζ(r), µ

B(r)) dr , (2)

where s is the reduced density gradient, ζ is the spin polarization, and µB is the space-

dependent local range-separation parameter. The final form of the range-separated corre-

lation functional, εMD−PBE,c(n, s, ζ, µ), has been proposed by Giner, Toulouse, and their

co-workers71,72,80,81 and interpolates between the standard PBE correlation functional,82

εPBE,c(n, s, ζ), at µ = 0 and the exact large-µ behavior62,83,84 yielding

εMD−PBE,c(n, s, ζ, µ) =
εPBE,c(n, s, ζ)

1 + β(n, s, ζ)µ3
, (3)

with

β(n, s, ζ) =
3

2
√
π(1−

√
2)

εPBE,c(n, s, ζ)

n2g0(n)
, (4)

where g0(n) represents the uniform electron gas on-top pair-distribution function.84,85

The dependence of the correction on the basis set arises from the local range-separation

parameter, which quantifies the spatial incompleteness of the given basis set B. The coupling

of DFT and WFT is accomplished by constructing a local real-space representation for

the electron-electron Coulomb operator projected onto the chosen basis set.71 This general

effective two-electron interaction operator, denoted by WB(r1, r2), can be defined using any

arbitrary wave function and pair density. However, as demonstrated in Ref. 71, the HF

wave function suffices to yield reliable results for weakly correlated systems. Consequently,

utilizing the frozen core approximation, the space-dependent range-separation parameter is

defined as71,72,81

µB(r) =

√
π

2
WB

HF(r, r) =

√
π

2

fB
HF(r)

nB
2,HF(r)

, (5)

where

nB
2,HF(r) = 2

∑
i

|ϕi(r)|2
∑
j

|ϕj(r)|2 (6)
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and

fB
HF(r) = 2

∑
pqij

ϕp(r)ϕi(r)(pi|qj)ϕq(r)ϕj(r) . (7)

In the above expressions, i, j . . . refer to correlated (non-frozen core) occupied spin orbitals, p,

q . . . are used for generic MO indices including core orbitals, (pi|qj) stands for a two-electron

integral using the conventional (11|22) notation, while ϕp(r) is the real-space representation

of the corresponding MO. To target EB
DBBSC, the rate-determining step is the construction

of the effective operator, particularly, the expression presented in the last equation. Never-

theless, the computational expenses and memory requirements can be decreased by utilizing

the DF approximation.86,87 In this approach, the matrix K with elements Kpi,qj = (pi|qj) is

factorized as K = IV−1/2V−1/2IT = JJT, with

JP
pi =

∑
Q

IQpiV
−1/2
PQ , (8)

where P and Q stand for the elements of the DF auxiliary basis, whereas IQpi and VPQ are

three- and two-center Coulomb integrals, respectively. Using this notation, the final form of

the intermediate fB
HF can be expressed as

fB
HF(r) = 2

∑
P

∑
i

ϕi(r)
∑
p

ϕp(r)J
P
pi

∑
j

ϕj(r)
∑
q

ϕq(r)J
P
qj . (9)

In practice, Eqs. 2, 5, 6, and 9 are evaluated using integration grids developed for DFT

methods.

The presented approach can efficiently approximate the correlation energy in the CBS

limit. However, especially for smaller one-electron basis sets, the HF energy also has a signif-

icant basis set incompleteness error. As demonstrated also in the context of DBBSC,86 the

CABS-corrected HF energies significantly enhance the accuracy of the calculations. Based
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on this finding, the final energy expression for the DBBSC-CCSD(T) method is obtained as

ECBS
CCSD(T) ≈ EB

DBBSC−CCSD(T) = EB
HF + EB

CABS + EB
CCSD(T),c + EB

DBBSC[n
B
HF] , (10)

where EB
HF and EB

CABS are the corresponding HF energy and CABS correction contributions,

respectively.

2.2 Local approximations

Molecular orbital localization and local approximations are key techniques for reducing the

complexity inherent in correlation energy calculations. By transforming delocalized canon-

ical orbitals obtained from HF calculations to LMOs,88 denoted by I, J . . . , the interac-

tion between electrons decreases more rapidly with their distance, and localized orbitals

primarily interact with their immediate neighbors.32,89–91 This disparity in the significance

of electron interactions across a molecule lays the groundwork for our local approxima-

tions.51,52,76–79,92,93 If one decomposes the correlation energy as the sum of contributions

from individual LMOs35,43,94,95 and constructs a compact local domain around each LMO

that includes all significant interactions, then the number of variables used for the calcula-

tions can be drastically reduced, while the error in the final result is negligible.52,77

Utilizing effective CCSD(T) implementations based on local approximations, the evalu-

ation of the DBBSC would be the rate-determining step in correlation energy calculations.

However, as Eq. 5 is also invariant to unitary rotations among the occupied orbitals, similar

approximations can be used for its evaluation. Assuming that the domains used in our LNO-

CCSD(T) scheme51,77–79 are sufficiently accurate for this purpose as well, the infrastructure

established therein can conveniently be applied in this case. Here, we briefly summarize

the steps required to construct such restricted and compact domains, while the detailed

descriptions can be found in our previous works.51,52,76–79 First, the so-called primary do-

mains (PDs) are constructed around each LMO, hereafter referred to as the central LMO,
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typically including its immediate environment. To accurately represent the virtual orbitals,

projected atomic orbitals (PAOs)32 are employed, which are constructed by projecting the

atomic orbitals (AOs) onto the space orthogonal to occupied MOs. The PDs are designed

to capture the most significant local interactions that directly impact the central LMO, en-

suring that primary electron correlation effects are properly represented. After assembling

the PDs, pair correlation energies are calculated using pair domains formed as the union of

a given LMO pairs’ PDs. The pair correlation energy is evaluated efficiently using multipole

expansions,51,93 and only the pairs surpassing a specific energy threshold are considered as

strong pairs.

Next, the so-called extended domains (EDs), denoted by E , are formed, which are pivotal

for refining the approximation of electron correlation energies further beyond the scope of

pair domains. The ED incorporates the central LMO and all LMOs that form strong pairs

with the central LMO. The virtual space of the ED is spanned by the PAOs constructed from

AOs that reside on the atoms of the PAO center domain. The latter includes the most impor-

tant atoms of the ED’s LMOs selected according to the Boughton–Pulay (BP) algorithm.96

This ensures that all significant interactions involving the central LMO are captured. To

adequately describe the correlation effects beyond immediate strong interactions, the EDs

also include additional PAOs that may not directly interact strongly with the central LMO

but contribute to the correlation energy through medium to long-range effects, which are

crucial for describing the subtleties of the electronic structure. The orthogonality of the

selected orbitals within the ED is ensured through Gram–Schmidt–Löwdin orthogonaliza-

tion technique.97,98 Finally, the orbitals of the ED are canonicalized by diagonalizing the

Fock matrix in its occupied and virtual space separately. For the evaluation of the Coulomb

integrals required for the calculation of the correlation contribution of the central LMO, the

DF approximation is employed, but the auxiliary basis contains only the auxiliary functions

residing on the atoms of the PAO center domain.

As mentioned, Eq. 5 can be evaluated using localized orbitals, and the corresponding
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contributions can be split up as the sum of contributions from individual occupied orbitals:

nB
2,HF(r) =

∑
I n

B
2,HF,I(r) and fB

HF(r) =
∑

I f
B
HF,I(r). Utilizing the local domain approach

described, the corresponding intermediates can be approximated for the Ith LMO within EI

as

nB
2,HF,I(r) = 2|ϕI(r)|2

∑
J∈EI

|ϕJ(r)|2 (11)

and

fB
HF,I(r) = 2ϕI(r)

∑
P∈EI

∑
p∈EI

ϕp(r)J
P
pI

∑
J∈EI

ϕJ(r)
∑
q∈EI

ϕq(r)J
P
qJ . (12)

At this point, an extension of the previous LNO methodology was required, as the summation

in the above expression includes core occupied orbitals too, while those are usually left out of

the domain construction when the frozen core approach is employed. Here, we first separately

localize the core and valence MO subspaces. Then, the core orbitals are selected that are

needed in the EDs and the transformation steps yielding the core LMO dependent three-

center integrals of the ED. To identify the core LMOs contributing to an ED, we determine

their BP domains using a tight truncation criteria also used for the ED atom list construction,

that is, 0.9999 by default and governed by the bpedo threshold.51,77 As the core LMOs are

highly localized, these BP lists are compact (ca. 5–10 atoms). Thus, we can assign a core

LMO to an ED if its entire BP list is included in that ED. This strategy may collect some

unnecessary core LMOs that are localized closer to the edges of the ED, but their relatively

small number brings in negligible additional costs.

We note that, in principle, the above contributions should be evaluated for the entire

integration grid. However, efficient prescreening techniques can be introduced. If the value

of the central LMO in a grid point, ϕI(r), is lower than a predefined threshold, denoted by

εpreI, the contributions associated with the corresponding grid point can be neglected within

the domain. This procedure will be referred to as preI, and it narrows the grid down to

the space where the value of the central LMO is non-negligible. In addition, the grid can be

further pruned by applying similar prescreenings for ϕJ(r) when evaluating the summation
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over J , using a different threshold denoted by εpreJ, resulting in J-selective grid batches for

those contributions. This procedure will be referred to as preI+preJ. The efficiency of these

schemes will be thoroughly discussed later. Notice that the summations in Eqs. 11 and 12

are performed over the orbitals and auxiliary functions of the ED. Consequently, thanks to

the grid prescreening, their evaluation scales linearly with the system size with either preI

or preI+preJ. Of course, the prescreening of the ϕI(r) values is quadratically scaling but its

time demand is negligible compared to the other steps of the calculation.

According to Eq. 10, the CABS correction is also required to calculate the DBBSC-

CCSD(T) total energy. In this case, the rate-determining step is the evaluation of the Fock

matrix within the space spanned by the HF MOs and the CABS virtuals. Since the CABS

is fairly large, this step could pose a serious limitation for extended systems. To avoid this

problem, the local DF (LDF) approximation is used for the exchange contribution of the Fock

matrix construction.93,99–102 That is, localized occupied MOs are used at the construction of

the exchange matrix, and for each LMO, a fitting domain is assembled that includes only a

limited number of DF auxiliary functions. To that end, Löwdin atomic charges are computed

for the LMOs, and all atoms with a charge greater than 0.05 are selected. Additionally, all

other atoms are included in the fitting domain of the LMO for which the electron repulsion

integrals involving the corresponding AOs and the basis functions residing on the atoms

selected in the first step are estimated to be greater than a predefined threshold denoted by

εLDF. The fitting functions in the restricted local domain are then included according to this

atom list, and these functions are applied to approximate the Coulomb integrals involving

the occupied LMO. This approximation formally reduces the quartic-scaling scaling of the

exchange computation to cubic. The scaling can be reduced to even linear if further domain

approximations are employed for the AOs.93,101,102 Hereinafter, if the local approximations

are utilized, we will refer to the DBBSC-CCSD(T) method as DBBSC-LNO-CCSD(T).

To accelerate basis set convergence, a rational alternative to the presented scheme could

be the F12-based CC methods using local approximations.53–55 However, the development
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and implementation of these excellent approaches are quite complicated and challenging. In

contrast, the advantage of the presented approach is its ease of implementation into existing

frameworks, and its favorable computational and memory requirements. Our goal with this

development is to enable the fast and efficient description of extensive molecular systems

where the single-determinant representation is adequate. Otherwise, neither the CCSD(T)

method nor the use of the HF wave function in Eq. 5 can describe the system properly, and

more complex multireference-based approaches are suggested.103

3 Computational details

3.1 Methods and basis sets

All calculations were carried out using the development version of the Mrcc suite of quan-

tum chemical programs.104,105 The technical details of our explicitly correlated,21,31 local

approximation based,51,52,76–79,92,93 LDF93,102 and DBBSC86 implementations were discussed

in our previous studies. The reference explicitly correlated CCSD(T) calculations were per-

formed with the CCSD(F12*) approach of Hättig et al.20 in conjunction with our (T+)

correction21 [CCSD(F12*)(T+)].

In this study, as the AO basis set, the correlation-consistent aug-cc-pVXZ (X = D, T,

Q)106–110 and Karlsruhe basis sets, such as def2-SVPD and def2-TZVP(PD),111,112 were em-

ployed. For the sake of brevity, the aug-cc-pVXZ basis sets will be referred to as aXZ. For

the CABS, the “OPTRI” bases of Yousaf and Peterson113,114 were applied. The choice is

straightforward for aXZ basis sets, while the aDZ-OPTRI and aTZ-OPTRI CABS were used

for def2-SVPD and def2-TZVP(PD), respectively. The DF approximation was invoked at

both the HF and the post-HF levels. Where the CABS correction or explicit correlation were

not applied, the corresponding fitting bases of Weigend115,116 were employed, otherwise, the

aug-cc-pV(X+1)Z-RI-JK and the aug-cc-pwCV(X+1)Z-RI basis sets117 were used, respec-

tively. The frozen core approximation was utilized in all post-HF calculations. For DBBSC,
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mainly the Treutler–Ahlrichs (TA) numerical quadratures118 were employed together with

the Log3 radial grid of Mura and Knowles,119 while the very fine default adaptive integra-

tion grid of the Mrcc package was also used for cross-validation. The reported computation

times are wall-clock times determined on a machine with 256 GB of main memory and an

AMD EPYC 7763 processor using 8 cores.

3.2 Benchmark sets and large-scale applications

To briefly assess the performance of approaches, the test set of Knizia, Adler, and Werner

(KAW)18 was used for benchmark calculations. This well-established compilation is often

employed to test explicitly correlated methods, covering a wide range of difficult examples,

which includes 49 atomization energies and 28 and 48 reaction energies of closed- and open-

shell systems, respectively, involving 66 species. The reference CBS values are two-point

extrapolated CCSD(T) a(5,6)Z energies taken from previous works.21,86,120

As extended molecular systems, well-established representative examples were selected.

The default values of the parameters introduced in this study (εpreI, εpreJ, and εLDF) were

determined using a single DNA adenine-thymine base pair (DNA1)
121,122 with aDZ and aTZ

basis sets and the vancomycin molecule49 with the def2-TZVP basis set.

The performance of the DBBSC-LNO-CCSD(T) method was tested with respect to the

LNO-CCSD(T)/CBS references, with a primary focus on thermochemical and kinetic prop-

erties, as well as interaction energies. Accordingly, barrier heights were calculated against

an a(Q+d,5+d)Z extrapolated reference for a halocyclization reaction.123,124 Here, an in-

tramolecular nucleophilic addition is induced on an olefin by the addition of a halogen

dichloro-dimethylhydantoin to the double bond via a base (quinuclidine) catalyst. Addi-

tionally, an organocatalytic Michael addition was selected, where the reaction of propanal

and β-nitrostyrene is facilitated by a diphenylprolinol silyl ether catalyst and a p-nitrophenol

cocatalyst. In this case, the largest species along the reaction path was inspected, that is,

the transition state of the carbon–carbon bond formation, for which a(T,Q)Z reference is
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available.77,125 Both examples exhibit the difficulties of forming a transition state complex

from 3–4 similar sized reactants and catalyst(s) prone to serious basis set superposition error,

as well as multiple simultaneous bond formation and breaking steps.

Reaction energies were also assessed, first, isomerization energies were computed for

the fourth reaction of the isomerization test set (ISOL4) by Grimme and co-workers using

a(Q,5)Z reference.77,126 In this challenging case, the two intermediate steps in a biosynthesis

are markedly different, so one cannot rely on any error compensation between the species.

Second, the AuAmin organometallic reaction77,127 was studied using a(Q+d,5+d)Z reference.

This reaction poses a significant challenge for local correlation methods because of the ex-

tensive contribution of numerous important but individually small noncovalent interactions.

Additionally, interaction energies were also inspected. For this purpose, the notoriously

complicated coronene dimer of the L7 set128 was selected, employing a(Q,5)Z values as ref-

erence.77,129 The dimerization energies of extended molecules with large interacting surfaces,

especially for extended and polarizable π–π interactions, are known to exhibit slow basis set

convergence. Furthermore, large-scale calculations illustrating the current capabilities of the

LNO-CCSD(T) implementation77 are presented for a lipid transfer protein (LTP),130 con-

taining 1023 atoms, where def2-(T,Q)ZVPPD reference is available. Here, in order to make

a comprehensive comparison, both counterpoise (CP)-corrected and CP-uncorrected values

will be discussed. In these benchmark calculations, our default settings were applied to the

local domain construction.77 The systems used to demonstrate the efficiency of the present

method are collected in Tables 1 and 2, while their graphical representations is available in

Fig. 1. The chemical properties discussed above were calculated from the total energies.

The Supporting Information includes all raw numerical data.
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Table 1: The CBS energies (in kcal/mol) used in the large-scale applications.

Name Type CBS energy CBS reference

Halocyclization Barrier height 9.06 a(Q+d,5+d)Z

Michael addition Barrier height −4.81 a(T,Q)Z

ISOL4 Isomerization energy 69.52 a(Q,5)Z

AuAmin Reaction energy −49.56 a(Q+d,5+d)Z

Coronene dimer Interaction energy −25.60 a(Q,5)Z

LTP Interaction energy −12.48 def2-(T,Q)ZVPPD

Table 2: The sizes of the largest species used in the large-scale applications.

Name Number of atoms Basis set
Total AO

functions

Total CABS

functions

Halocyclization 63 a(D+d)Z 1033 2892

a(T+d)Z 2203 3395

Michael addition 90 aDZ 1472 4190

aTZ 3155 4913

ISOL4 81 aDZ 1163 3239

aTZ 2576 3868

AuAmin 92 a(D+d)Z 1526 4325

a(T+d)Z 3248 5085

coronene dimer 72 aDZ 1320 3840

aTZ 2760 4440

LTP 1023 def2-SVPD 14730 46720

4 Results and discussion

4.1 Performance of DBBSC-CCSD(T) for smaller systems

First, we briefly evaluate the performance of DBBSC-CCSD(T) without local approxima-

tions. Though DBBSC-CCSD(T) was thoroughly benchmarked in our previous paper,86

particular aspects, such as its performance in comparison to basis set extrapolation or its

behavior with Karlsruhe-type basis sets, were not considered, and these are important from

the point of view of the present study. Here, we discuss the mean absolute errors (MAEs) of

atomization and reaction energies of the KAW test suite using various basis sets. To avoid

any potential issues arising from the selection of the numerical quadrature, the very fine
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Figure 1: Illustration of a) halocyclization transition state, b) Michael addition transition
state, c) ISOL4 isomerization reaction, d) AuAmin organometallic reaction, e) coronene
dimer, and f) lipid transfer protein complex.

TA5 grid was used for all calculations discussed in this subsection. First, the performance

of DBBSC-CCSD(T) is assessed in comparison with the CCSD(F12*)(T+) method and the

a[(X − 1), X]Z extrapolated CCSD(T) approach. For the latter, the common two-point

extrapolation formulas are used.131,132 The numerical results are depicted in Fig. 2. We

would like to emphasize that the trends observed for various thermochemical properties are

fairly consistent, and accordingly, only a short summary is presented. Similar results were

discussed in detail in our previous work.86 For atomization energies, the DBBSC-CCSD(T)

method exhibits surprising accuracy using even the smallest basis set, with a MAE of 1.8

kcal/mol. With increasing cardinal numbers, the performance of DBBSC-CCSD(T) remains

competitive, closely approaching the results obtained by the somewhat more demanding
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Figure 2: MAEs (in kcal/mol) of the KAW test set18 for the standard, F12, a[(X − 1), X]Z
extrapolated, and DBBSC-CCSD(T) methods using various basis sets.

CCSD(F12*)(T+) method. Using the aTZ basis set, the MAEs are 0.6 and 0.4 kcal/mol

for DBBSC-CCSD(T) and CCSD(F12*)(T+), respectively. The extrapolated CCSD(T) ap-

proach also shows significant improvements in comparison with the standard method; how-

ever, a(T,Q)Z extrapolation is required for precise results as the error is still higher than 1.6

kcal/mol with a(D,T)Z.

For closed-shell reaction energies, CCSD(F12*)(T+) consistently provides the best re-

sults, with the lowest errors across all basis sets. The MAE is already below 1.0 kcal/mol

using the aDZ basis set, while it drops to 0.3 and 0.2 kcal/mol with aTZ and aQZ, re-

spectively. The DBBSC-CCSD(T) method shows somewhat larger errors using the double-ζ

basis, while the difference in the MAEs becomes very small, less than 0.1 kcal/mol, for the

larger basis sets. Interestingly, the performance of the extrapolated CCSD(T) approach is

less satisfactory. In this case, the results barely surpass those obtained with the standard

CCSD(T) method. With the a(D,T)Z extrapolation, the error is 1.3 kcal/mol, while the error

decreases to only 0.6 kcal/mol when a(T,Q)Z is used. The rankings are similar for the open-

shell reaction energies. Accordingly, CCSD(F12*)(T+) is the most precise method, where

the MAE is 1.2 kcal/mol using the aDZ basis set, while it rapidly drops to 0.3 kcal/mol

with aTZ. In this case, the difference between the CCSD(F12*)(T+) and DBBSC-CCSD(T)

approaches is somewhat lower using smaller basis sets; however, this difference does not

disappear for larger basis sets. Nevertheless, the improvements are significant in comparison
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with the standard CCSD(T) approach as the MAEs are 2.0, 0.7, and 0.5 kcal/mol with the

aDZ, aTZ, and aQZ basis sets, respectively. This finding is also true for the extrapolated

CCSD(T) method, but the improvements are somewhat less pronounced. In general, we can

conclude that the DBBSC-CCSD(T) approach does not strictly outperform the explicitly

correlated CCSD(F12*)(T+) method, although the results are close. This finding is par-

ticularly true when we examine the results obtained with the aTZ basis set. Nevertheless,

what makes the DBBSC-CCSD(T) method desirable is that the required wall-clock times

are 40% lower in comparison with the explicitly correlated approach.86 The extrapolated

CCSD(T) also shows significant improvement over the standard approach; however, it is not

competitive against the former methods.

The performance of the standard and DBBSC-CCSD(T) approaches is well-known using

correlation-consistent basis sets. In order to gain a broader understanding of the application

of different basis sets, we briefly assess the capabilities of the Karlsruhe basis sets. These

results are collected in Table 3. Inspecting the atomization energies, comparing the aDZ

Table 3: MAEs (in kcal/mol) of the KAW test set18 for the standard and DBBSC-CCSD(T)
methods using various basis sets.

Atomization energies Closed-shell reaction energies Open-shell reaction energies

Basis set CCSD(T) DBBSC-CCSD(T) CCSD(T) DBBSC-CCSD(T) CCSD(T) DBBSC-CCSD(T)

aDZ 20.18 1.75 4.25 1.68 11.54 2.00

aTZ 6.45 0.59 1.71 0.42 4.59 0.73

def2-SVPD 14.90 1.70 5.94 2.08 8.32 2.17

def2-TZVP 10.53 1.38 3.83 1.17 5.70 1.07

def2-TZVPPD 6.49 0.70 1.25 0.60 3.89 0.94

and def2-SVPD sets, a noticeable improvement can be observed in the MAE for standard

CCSD(T), where the MAE drops from 20.2 kcal/mol with aDZ to 14.9 kcal/mol with def2-

SVPD. For DBBSC-CCSD(T), a modest improvement is shown from 1.8 to 1.7 kcal/mol,

supporting that DBBSC is already quite efficient, even with smaller basis sets. Moving to

aTZ and def2-TZVPPD, the results attained with the correlation consistent basis sets are

somewhat better; however, the difference is only 0.1 kcal/mol even for the standard CCSD(T)

method. As expected, the def2-TZVP basis set provides higher accuracy in comparison with
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def2-SVPD, but the additional polarization and diffuse functions are required for precise

calculations.

For closed-shell reaction energies, a quite different trend can be observed. For DBBSC-

CCSD(T), the aDZ and aTZ basis sets provide slightly more reliable results in comparison

with the corresponding def2-SVPD and def2-TZVPPD counterparts, respectively. The dif-

ferences are not significant, being around 0.3 kcal/mol in both cases. For the standard

CCSD(T) method using a double-ζ basis, the correlation consistent basis sets are better,

while for triple-ζ ones, def2-TZVPPD is the winner, although the differences are not sig-

nificant here either. In this case as well, it is true that increasing the size of the basis set

monotonically reduces the errors. Similar findings can be observed for open-shell reaction

energies. Again, for DBBSC-CCSD(T), somewhat higher accuracy can be achieved using the

correlation-consistent basis sets, but the difference does not exceed 0.2 kcal/mol in either

case. Conversely, for standard CCSD(T), somewhat better results can be achieved with the

def2-SVPD and def2-TZVPPD basis sets. In general, we can conclude that, especially for

DBBSC-CCSD(T), significant differences between the basis sets cannot be observed when

examining those of the same quality. Additionally, the MAE decreases with increasing size

of the basis set, and the def2-TZVP set can be a suitable alternative with an accuracy lying

between double- and triple-ζ basis sets supplemented with diffuse functions. The benefit is

that the size of def2-TZVP is about two thirds of that of aug-cc-pVTZ.

4.2 Determining default truncation parameters

The calculation of the range-separation function scales as NgridN
2
occN

2
basis, where Ngrid, Nocc,

and Nbasis are the number of grid points, number of occupied MOs, and the total number

of HF MOs, respectively. Since the number of grid points is very large for common DFT

applications, it is worth examining how dense numerical quadrature is necessary to evaluate

the current correction in order to minimize computational requirements. Accordingly, we

provide a short overview of the grid-requirement of the DBBSC-CCSD(T) method, illustrat-
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ing how accuracy varies with different TAn grids and basis sets for atomization energies, as

well as closed-shell and open-shell reaction energies. The numerical results using different

quadratures are presented in Fig. 3. For atomization energies, the results obtained with all
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Figure 3: MAEs (in kcal/mol) of the KAW test set for the DBBSC-CCSD(T) method using
various basis sets and TA grids.

the basis sets exhibit minimal variation across different TA quadratures. Accordingly, the

MAEs are fairly unchanged, remaining around 1.75 kcal/mol using the aDZ basis set and

0.60 kcal/mol with both the aTZ and aQZ basis sets, across all grids. The largest deviation

in the MAEs is 0.02 kcal/mol, which is highly acceptable. Similarly, for closed-shell reaction

energies, the errors are remarkably consistent. With the aDZ basis set, the MAE is close

to 1.70 kcal/mol, while it is consistently around 0.40 and 0.25 kcal/mol with aTZ and aQZ,

respectively, regardless of the quadrature applied. The errors for open-shell reaction energies

follow the same trend, with almost no fluctuation in the MAEs among different TA grids.

Again, the MAEs are approximately 2.00 kcal/mol with the aDZ and about 0.75 and 0.50

kcal/mol with the aTZ and aQZ basis sets, respectively, for all quadratures. Inspecting the

reaction energies, the largest difference does not exceed 0.01 kcal/mol. Based on these find-

ings, we can conclude that the nearly unchanged MAEs across various TA quadratures in all

types of properties imply that the smallest grid, TA1, is sufficient for practical applications

within the DBBSC-CCSD(T) scheme. Since more dense grids do not improve accuracy, using

TA1 minimizes computational requirements and time without sacrificing precision. These

findings will be verified on a larger example in the following.
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Next, we determine the magnitude of the errors arising from our local approximations.

For this purpose, extensive studies were carried out for the 62-atom DNA1 and the 176-

atom vancomycin molecules. For the former, reference DBBSC calculations were performed

without any approximations using our very fine adaptive grid. First, cross-validation was

accomplished by inspecting how the error changes when the TA1 quadrature is used. Then,

we examined the errors arising from our local approximation with the continuous tightening

of the parameters related to domain construction. These default parameter sets, labeled as

Normal, Tight, veryTight . . . , were determined and adjusted for our high-precision LNO-

CCSD(T) calculations.77 The calculations were carried out using both the aDZ and the aTZ

basis sets. For the vancomycin molecule, the examination of tightening parameter settings

was also accomplished; however, due to the size of the molecule, the reference DBBSC was

calculated using the TA1 grid with a veryTight set of domain construction parameters. In

this case, the def2-TZVP basis set was used. The results are depicted in Fig. 4. First, the
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Figure 4: Error (in µEh) of the DBBSC (solid) as a function of the domain construction
parameters. The dashed lines indicate the error of the TA1 grid compared to our highly
accurate adaptive grid. See text for further details.

results obtained for the DNA1 molecule are discussed, where the DBBSCs are −1.44003 and

−0.58212 Eh using the aDZ and aTZ basis sets, respectively. As can be seen, using a smaller

quadrature causes negligible error. The difference between the results obtained with TA1 and

the very dense adaptive grid is only 25 µEh, which is less than 0.5 µEh/atom. This finding

is true with both basis sets. The advantage of using the smaller TA1 quadrature is evident

as in this case, 15- and 20-times fewer grid points are needed with the aDZ and aTZ basis
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sets, respectively. The error arising from the domain construction is well-balanced with both

basis sets. Using the Normal parameter set, the error is approximately 250 µEh, which is 4

µEh/atom. By tightening the parameters, the error decreases monotonically, reaching only

100 µEh with the Tight criterion, and practically vanishes with the veryTight parameters.

When applying the Normal parameters, the relative error in DBBSC is around 0.02% and

0.04% for the aDZ and aTZ bases, respectively.

Since we observed that the error disappears with the veryTight parameters, using this

DBBSC, being−1.98980 Eh, as a reference, appears appropriate for the vancomycin molecule.

Here, the error for the default domain construction is around 600 µEh, which translates to

3 µEh/atom, while the relative error is 0.03% in this case. As can be seen, tightening the

parameters leads to rapid error convergence, with the Tight parameter set resulting in an

error of 50 µEh. Based on these results, we can conclude that the domain construction de-

signed for LNO-CCSD(T) calculations is also suitable for DBBSC. The domain construction

with the Normal parameters and the TA1 grid can be reliably used for larger systems with

basis sets of various quality.

Next, the prescreening of the grid will be scrutinized employing the same molecules and

the TA1 quadrature. The results are summarized in Fig. 5. As can be seen, regardless of
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Figure 5: Relative error of the DBBSC (solid) and the average percentage of retained grid
points (dashed) for various systems as a function of the corresponding truncation parameters.
See text for further details.

the basis set, the same results were obtained for the DNA1 molecule. Consequently, these

results are discussed together. First, let us consider the preI scheme. Inspecting the errors,
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it can be stated that the approximation is practically error-free up to a threshold value of

εpreI = 10−3. At this point, the deviation from the reference is approximately 5−10 µEh,

which is highly acceptable. The error then begins to increase, but even at εpreI = 10−2, the

relative error does not exceed 0.05%. Regarding the number of retained grid points, it can

be concluded that with increasing threshold value, as expected, it gradually and smoothly

decreases. Using εpreI = 10−3, only 20% of the total grid is retained, allowing the calculation

of contributions to be performed five times faster in this case.

With the preI+preJ scheme, the grid size can be further compressed selectively for

each J-dependent contribution (see Eq. 12). In this case, the threshold εpreI was fixed at

10−3. Accordingly, only the additional error is calculated. Changing the value of εpreJ yields

completely similar results as in the previous case. It can be stated that the approximation is

practically error-free up to εpreJ = 10−3, with the additional error being approximately 10−20

µEh. Using these conservative thresholds, for the calculation of J-dependent contributions,

which are the rate-determining steps within the domain, only 10% of the total grid is used.

Similar results were obtained for the vancomycin molecule using the def2-TZVP basis

set. Again, the preI and preI+preJ schemes are practically error-free up to εpreI and

εpreJ = 10−3. The error is around 20 µEh for preI, while the additional error amounts to 40

µEh with the preI+preJ prescreening. Considering the magnitude of relative errors, these

inaccuracies are negligibly small. Based on these results, we chose a default value of 10−3

for the prescreening parameters. Examining the number of the retained grid points for the

vancomycin molecule, we can conclude that higher speedups can be gained in this case. This

is not surprising as vancomycin is larger, but the extent of the LMOs remains similar. With

the preI scheme, 8% of the grid points are retained, while with the second prescreening, only

4% of the quadrature is utilized for calculating the J-dependent contributions. Interestingly,

for both DNA1 and vancomycin, this corresponds to 15k grid points for the I-dependent and

7k grid points for the J-dependent contributions within a domain. Hence, it is assumed that

these favorable numbers will remain unchanged for even larger molecules.
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Finally, the CABS correction is inspected utilizing the LDF approximation, and the cor-

responding εLDF parameter is determined. For these calculations, the same molecules and

basis sets were used. The results are presented in Fig. 6. For the DNA1 molecule, we see
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Figure 6: Relative error of the CABS correction (solid) and the average number of atoms in
fitting domains (dashed) as a function of the corresponding truncation parameter.

similar patterns in the relative error and the average number of atoms in the fitting do-

mains when the aDZ and aTZ basis sets are employed. Specifically, the CABS correction is

−0.19589 and −0.03191 Eh with the aDZ and aTZ basis sets, respectively. The approxima-

tion remains completely error-free up to a threshold value of εLDF = 3.0 a.u. in both cases,

while the relative errors are only around 0.02% with εLDF = 5.0 a.u. At this threshold value,

the local domain contains on average only 7 atoms, which significantly reduces the compu-

tational requirements. As the threshold increases, the error rises, but even at εLDF = 10.0

a.u., the relative error remains under 0.25%. In this case, only the atoms selected based

on Löwdin charges remain in the local fitting domain, which are formed on average of 2.5

atoms.

For the vancomycin molecule using the def2-TZVP basis set, the CABS correction is

−0.134878 Eh. Regarding the error measures, similar observations can be made; however,

the error starts to increase slightly earlier compared to the previous case, which may be due

to the lack of diffuse functions. In this case, the approximation is error-free up to εLDF = 1.0

a.u., and the relative error lies below 0.20% at εLDF = 5.0 a.u., which is still highly acceptable.

At this threshold value, the local domains contain on average only 4 atoms, which explains
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the larger error compared to what we observed for the DNA1 molecule. Using the atom

lists compiled based on Löwdin charges, the error does not exceed 0.25% in this case either.

Taking into account these results, we chose a default value of εLDF = 5.0 a.u. for the

truncation parameter. This value strikes a balance between computational efficiency and

the accuracy of the CABS correction, keeping relative errors within acceptable limits while

optimizing the number of atoms in the fitting domains.

To provide insight into the computational requirements of the DBBSC-LNO-CCSD(T)

method for systems of size similar to these molecules, the wall-clock times required for the

rate-determining steps are presented using the default truncation thresholds. The results are

summarized in Table 4. As can be seen, neither the DBBSC nor the CABS correction is the

Table 4: Wall-clock times (in min) required for the corresponding post-HF steps with the
default thresholds using various basis sets.

DNA1 vancomycin

Step aDZ aTZ def2-TZVP

LMP2 correlation energy 6.2 26.4 87.0

LNO-CCSD(T) correlation energy 53.8 162.3 608.6

CABS correction 5.5 16.3 76.0

DBBSC 5.0 12.0 37.7

rate-determining step. The time required for the CABS calculations is comparable to that

needed for the local MP2 (LMP2) steps, while the DBBSC calculations take significantly less

time. Compared to LNO-CCSD(T), the determination of the DBBSC and CABS corrections

increases the computation time required for the post-HF steps by approximately 20%. For

example, for the DNA1 molecule with the aTZ basis set, the wall time increases from 162

minutes to 191 minutes. Considering the efficiency of the method, which will be discussed in

detail in the following subsection for extended systems, this overhead is highly acceptable.
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4.3 Large-scale applications with DBBSC-LNO-CCSD(T)

In what follows, the performance of the DBBSC-LNO-CCSD(T) method is demonstrated

for real-life examples where reliable CBS references are still available. First, the barrier

heights are discussed, and the results are depicted in Fig. 7. For the halocyclization reaction
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Figure 7: Error (in kcal/mol) of the barrier heights for the halocyclization (solid) and Michael
addition (dashed) reactions using various basis sets.

using the aDZ basis set, the CABS correction reduces the basis set error of HF from −7.94

to −1.73 kcal/mol, while the DBBSC decreases the correlation energy error from −6.32 to

1.57 kcal/mol. The error in the barrier height calculated from the total energies is −14.26

kcal/mol without corrections and −0.17 kcal/mol with corrections. As can be seen, there

is a slight error compensation between the HF and correlation energies in this case, but

the performance of the DBBSC-LNO-CCSD(T) method is still remarkable. The importance

of corrections is also evident with the aTZ basis set. Here, the corrections reduce the HF

energy error by 1 kcal/mol and the correlation energy error by 3 kcal/mol. Overall, the

LNO-CCSD(T) level basis set error with respect to the CBS reference is −5.64 kcal/mol,

whereas the DBBSC-LNO-CCSD(T) method has an error of −1.57 kcal/mol. Expressing

the improvement in terms of relative errors, it decreased from around 150% to 5% and from

60% to 20% with the aDZ and aTZ basis sets, respectively. A slight drawback is that the

error for the DBBSC-LNO-CCSD(T) method does not decrease in this case with increasing

basis set size, but this would be hard to expect after achieving almost perfect results with

the aDZ basis set.
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Similar results can be observed for the Michael addition reaction. In this case, compared

to the previous example, the HF energy error is somewhat smaller, while the correlation

energy error is more significant. Using the aDZ basis set, the HF energy error with the

correction decreases from −6.21 to −1.05 kcal/mol, while the correlation energy error drops

from −10.27 to −0.49 kcal/mol. Accordingly, the error in the barrier height calculated

from the total energies decreases from −16.47 to −1.55 kcal/mol using the DBBSC-LNO-

CCSD(T) method. With the aTZ basis set, the LNO-CCSD(T) error amounts to −6.07

kcal/mol, while with corrections, it is −2.02 kcal/mol. Inspecting the relative errors, with

the aDZ basis set, it decreased by an order of magnitude, from 300% to 30%, while the

improvement, 130% to 40%, with the aTZ basis set is still considerable.

Reaction energies were also calculated, the performance of the DBBSC-LNO-CCSD(T)

method for the ISOL4 isomerization reaction and for the AuAmin organometallic reaction

is summarized in Fig. 8. First, the ISOL4 reaction is discussed. Starting with the aDZ
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Figure 8: Error (in kcal/mol) of the ISOL4 isomerization reaction (solid) and the AuAmin
organometallic reaction (dashed) using various basis sets.

basis set, the HF energy error is significantly reduced by the CABS correction, dropping

from 11.93 to 2.46 kcal/mol. Without the DBBSC correction, the correlation energy error is

around 11 kcal/mol, while the inclusion of DBBSC reduces it to −2.05 kcal/mol. The error

in the isomerization energy obtained from the total energy is 22.60 and 0.41 kcal/mol for the

LNO-CCSD(T) and DBBSC-LNO-CCSD(T) approaches, respectively. Again, a small error

cancellation shows up between the HF and correlation energies for DBBSC-LNO-CCSD(T),
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but the magnitude of this effect is highly tolerable. For the aTZ basis set, the HF energy

shows a minimal error, both with and without the CABS correction. The LNO-CCSD(T)

correlation energy error is around 6 kcal/mol without the DBBSC correction, whereas it is

moderated to 2.09 kcal/mol with the correction. Since the HF energy is practically error-

free with these basis sets, the total energy errors match the correlation energy errors. The

relative errors in this case are already smaller. The error of the LNO-CCSD(T) method is

approximately 30% and 10% using the aDZ and aTZ basis sets, respectively. For DBBSC-

LNO-CCSD(T), the result is practically error-free with the aDZ basis set, while the relative

error is 3% with the aTZ basis set.

The difficulty of the AuAmin reaction is clearly visible. The HF energy is already close

to the CBS limit using the aDZ basis set. The error is only 0.71 kcal/mol, which is reduced

by 0.09 kcal/mol with the CABS correction. The correlation energy error is more significant,

being 7.41 kcal/mol, which the DBBSC reduces to below 0.30 kcal/mol. Using the larger

basis sets, the errors further decrease, the HF energy error is practically the same with and

without the CABS correction, while the correlation energy error is halved from 3.47 kcal/mol

with the correction. The error calculated from the total energies is 8.15 and 3.60 kcal/mol

for the LNO-CCSD(T) method using the aDZ and aTZ basis sets, respectively, while these

values are 0.92 and 1.66 kcal/mol for the DBBSC-LNO-CCSD(T) approach.

The performance of DBBSC-LNO-CCSD(T) for interaction energies was also scrutinized.

The results for the coronene dimer are shown in Fig. 9. Here, both CP-corrected and
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Figure 9: Error (in kcal/mol) of the coronene dimer interaction energy for the CP-corrected
(solid) and CP-uncorrected (dashed) results using various basis sets.
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-uncorrected results are assessed. As can be seen, the errors calculated from the CP-corrected

values are nearly perfect for all methods, basis sets, and energy contributions. With the

aDZ basis set, the HF energy error is 0.19 and 0.05 kcal/mol without and with the CABS

correction, respectively. The correlation energy error slightly exceeds 1 kcal/mol with the

LNO-CCSD(T) method, while the DBBSC correction reduces the error by half. When using

the aTZ basis set, the already low errors decrease further, not exceeding 0.1 kcal/mol in

any case. For the CP-uncorrected results, the errors are more pronounced. In this case, the

advantage of the DBBSC-LNO-CCSD(T) method becomes evident. The HF energy error

is nearly −9 kcal/mol with the aDZ basis set, and the CABS correction decreases this to

−2.24 kcal/mol. An even greater improvement, −15.75 to −3.80 kcal/mol, is observed in the

correlation energy. For the interaction energies calculated from the total energies, the −24.60

kcal/mol error is reduced to its quarter by the DBBSC-LNO-CCSD(T) method. When

applying the aTZ basis set, the errors are smaller, but significant improvements can still be

observed with the corrections. The HF energy error decreases from −1.10 to −0.26 kcal/mol,

while for the correlation energy, it decreases from −8.06 to −3.69 kcal/mol. Concerning the

total energy, the error is nearly −10 kcal/mol for LNO-CCSD(T), which drops to below −4

kcal/mol with the corrections. Regarding the relative errors, with the aDZ basis set, the

error decreases from 100% to 25%, while with aTZ, it reduced from 40% to 15%. The benefit

of evaluating DBBSC results both with and without CP-correction is that they become much

closer (than without DBBSC) and their difference can be used as a tighter estimate of the

remaining basis-set incompleteness.

The wall-clock times are also discussed for these representative examples. The times

required for the post-HF steps are summarized in Table 5. Inspecting the results, we can

conclude that the calculation of the DBBSC and CABS corrections still does not pose sig-

nificant obstacles, although it varies from system to system which correction is more costly.

For instance, for the halocyclization reaction using a double-ζ basis set, the determination

of DBBSC is somewhat more time-consuming, while with the triple-ζ basis set, the CABS
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Table 5: Wall-clock times (in min, upper panel) required for the corresponding post-HF
steps using various basis sets. For each example, the largest species is shown.

Halocyclization Michael addition ISOL4 AuAmin coronene dimer

Step a(D+d)Z a(T+d)Z aDZ aTZ aDZ aTZ a(D+d)Z a(T+d)Z aDZ aTZ

ELNO−CCSD(T),c 78.2 221.8 323.1 968.8 24.5 76.7 372.0 1162.5 1132.2 3113.8

ECABS 5.6 16.5 13.7 40.7 5.8 18.0 28.5 70.5 12.5 34.5

EDBBSC 7.2 15.5 25.3 66.8 2.7 5.9 43.2 117.0 57.4 160.0

Overhead 16.4% 14.4% 12.1% 11.1% 34.7% 31.1% 19.3% 16.1% 6.2% 6.2%

correction becomes more costly. Nevertheless, it can be seen that the overhead in both cases

is around 15%. Similar conclusions can be drawn for the other examples, although the ex-

tent of the overhead varies. This is, of course, consistent with the electronic structure of the

molecules and the dimensions of the local domains. The smallest overhead was obtained for

the coronene dimer, where the domains are large due to the delocalized electronic structure,

making the CC part relatively expensive. In this case, the overhead is about 6% regardless of

the basis set. In contrast, for the isomerization reaction, the additional computational cost

is around 30%, which is still acceptable considering the fairly inexpensive CC part and the

overall performance of the corrections. Inspecting the favorable total wall-clock times, we

can conclude that the calculation of molecular systems containing 100 atoms can be routinely

performed with the DBBSC-LNO-CCSD(T) method.

Illustrating the current capabilities of DBBSC-LNO-CCSD(T), interaction energies for

an LTP system have been calculated. The results are collected in Table 6. Similar to the

coronene dimer, the CP-corrected results are closer to the CBS references in all cases. Here,

the HF energy error is only 0.6 kcal/mol, the LNO-CCSD(T) correlation energy error is 3.2

kcal/mol, and the interaction energy error calculated from the total energies is 2.6 kcal/mol

due to slight error compensation. Since the CBS reference for the LNO-CCSD(T) total

energy is −12.48 kcal/mol, this represents a 20% deviation when expressed as a relative

error. The DBBSC and CABS corrections further improve the results. In this case, the HF

error decreases to 0.5 kcal/mol, while the correlation energy error drops to 0.2 kcal/mol.

As a result, the error in the total interaction energy falls below 1 kcal/mol, precisely to 0.7

kcal/mol. For the CP-uncorrected results, the differences are more significant. The CABS
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Table 6: CABS and DBBSC corrections to LNO-CCSD(T) energies as well as basis-set
errors of HF energies, LNO-CCSD(T) correlation energies, LNO-CCSD(T) total energies,
and DBBSC-LNO-CCSD(T) total energies (in kcal/mol, upper panel); wall-clock times (in
hours), and memory requirements (in GB) for the LTP system using the def2-SVPD basis
set. The latter two quantities are given for the calculation of the dimer containing 1023
atoms.a

Corrections Errors

CABS DBBSC HF
LNO-CCSD(T)

corr. energy
LNO-CCSD(T)

DBBSC-

LNO-CCSD(T)

CP-corrected −0.11 3.34 0.59 −3.15 −2.56 0.66

CP-uncorrected 15.99 33.56 −21.68 −59.44 −81.12 −31.57

Wall-clock time 66.9 5.5 272.5 65.9 338.4 410.8

Memory requirement 196.9 5.8 14.3 20.8 20.8 196.9
aThe corresponding CBS interaction energies calculated from the HF energies, LNO-CCSD(T) correlation
energies, and LNO-CCSD(T) total energies are 87.94, −100.42, and −12.48 kcal/mol, respectively.

correction reduces the HF energy error from 21.7 to 5.7 kcal/mol, while the error in the

correlation energy decreases from 59.4 to 25.9 kcal/mol with DBBSC. For the total energy,

the absolute error is 81.1 kcal/mol without corrections, which reduces to 31.6 kcal/mol. This

represents a 60% reduction in the errors.

To discuss the resource demands of the method, the wall-clock times and memory require-

ments are assessed. The calculation of the DBBSC still needs less than a 10% overhead, but

the time required for the CABS correction significantly increases for such extended systems.

This also assumes very compact local domains. In this case, the time required for the CABS

correction is approximately equal to the time spent on computing the CC correlation energy,

which is around 65 hours. The total wall-clock time for the post-HF steps is approximately

6 days, while the HF calculation utilizing the LDF approximation takes more than 10 days.

Therefore, solving the HF equations remains the rate-determining step, at least for such large

systems and with the default LNO-CCSD(T) thresholds. Regarding memory requirements,

we can conclude that the CABS correction is the bottleneck. The calculation of the corre-

lation energy within the LNO-CCSD(T) framework requires only 21 GB of main memory,

while the DBBSC correction needs an additional 6 GB. In contrast, for the construction of

the Fock matrix including the CABS basis functions, where the number of basis functions
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exceeds 60k, the minimum required memory is around 200 GB. Nonetheless, this amount

of memory is nowadays easily available, demonstrating that the DBBSC-LNO-CCSD(T)

method is wide accessible, e.g., for biomolecules exceeding 1000 atoms.

5 Conclusions

In this study, the calculation of DBBSC was extended to large molecules. To this end,

we utilized the infrastructure developed for our highly efficient LNO-CCSD(T) approach

based on local approximations. In this case, the calculation of the required quantities is

decomposed into the sum of contributions from individual LMOs. For these orbitals, a con-

strained local domain is formed, and the corresponding contributions are evaluated only

within this compact subspace, thus reducing the number of variables used in the calcula-

tions. The determination of the range-separation function necessary for DBBSC, which is

the rate-determining step of the procedure, is also possible by utilizing local approximations.

This only required relatively minor modifications to the existing infrastructure established

for LNO-CCSD(T) calculations, which should be also possible for other local correlation

approaches. Furthermore, the LDF approximation was applied to the calculation of the

CABS correction. In this case, the local fitting domain contains only the atoms and their

associated auxiliary functions necessary for the accurate fitting of the integrals of the given

LMO thereby significantly speeding up the calculations.

The numerical quadrature required for the DBBSC calculation was carefully examined.

The computation time needed to determine the range-separation parameter linearly depends

on the number of grid points. Since the grid can be very large in general applications, it is

advisable to select the smallest possible mesh to minimize the costs. We demonstrated that

using TAn quadratures for the correction, the smallest grid is highly sufficient. The largest

difference between the TA1 and TA5 quadratures is only 0.02 kcal/mol in thermochemical

properties determined for the KAW benchmark set. This finding was also confirmed for
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larger molecules. Subsequently, we demonstrated that the local approximations used for

LNO-CCSD(T) calculations are adequately accurate for determining the range-separation

function and the DBBSC correction. For extended systems, it was proven that the error from

the local approximation is around 3-4 µEh/atom employing the default (Normal) parameter

settings. In addition, efficient prescreening techniques were presented for grid compression.

With these practically error-free procedures, the grid points used within the domain can be

significantly reduced. Applying the proposed preI+preJ scheme, on average, 15k grid points

are needed for the less costly I-dependent contributions, while 7k grid points are required

for the rate-determining J-dependent contributions within the domains. The error of this

procedure for the DNA1 and vancomycin molecules ranges from 30 to 50 µEh, which, when

expressed as a relative error, is negligibly small. Then, the error of the LDF approximation

for the CABS correction was determined. It was shown that for basis sets containing diffuse

functions, the local fitting domain contains on average 7 atoms, with an expected relative

error of approximately 0.02%. For basis sets without diffuse functions, the domains contain

fewer atoms, thus the error begins to increase earlier, but even with the minimal atom list

selected solely based on Löwdin charges, it did not exceed 0.25%.

Using the defined truncation parameters, the efficiency of the DBBSC-LNO-CCSD(T)

method was demonstrated for extended systems of 100–1000 atoms. For this purpose, bar-

rier heights, reaction energies, and interaction energies were calculated for real-life examples

where reliable LNO-CCSD(T)/CBS references were available. Based on the numerical re-

sults, we concluded that the corrections drastically reduce the basis set incompleteness error,

especially when double-ζ basis sets are used. In these cases, the error often did not exceed

1 kcal/mol, but significant improvements can also be achieved with triple-ζ basis sets. A

minor drawback is that the error of the DBBSC-LNO-CCSD(T) method does not always

decrease monotonically with increasing basis set size, but this is hard to expect after the

almost perfect double-ζ results. Nevertheless, the corrections always improve the results,

regardless of the quality of the basis set used. Considering the computational overhead in
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practical applications, the calculation of the post-HF steps takes only 5−30% more time

compared to LNO-CCSD(T) calculations, which allows the accurate description of extended

molecular systems within a reasonable computational timeframe.
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The Supporting Information is available free of charge on the ACS Publications website.
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