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of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest,

Hungary

2)HUN-REN–BME Quantum Chemistry Research Group, Műegyetem rkp. 3.,
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The theory of analytic gradients is presented for the projector-based density func-

tional theory (DFT) embedding approach utilizing the Huzinaga-equation. The ad-

vantages of the Huzinaga-equation-based formulation are demonstrated. In particu-

lar, it is shown that the projector employed does not appear in the Lagrangian, and

the potential risk of numerical problems is avoided at the evaluation of the gradi-

ents. The efficient implementation of the analytic gradient theory is presented for

the approaches where hybrid DFT, second-order Møller–Plesset perturbation theory

(MP2), or double hybrid DFT is embedded in lower-level DFT environments. To

demonstrate the applicability of the method and to gain insight into its accuracy, it

is applied to equilibrium geometry optimizations, transition state searches, and po-

tential energy surface scans. Our results show that bond lengths and angles converge

rapidly with the size of the embedded system. While providing structural parameters

close to high-level quality for the embedded atoms, the embedding approach has the

potential to relax the coordinates of the environment as well. Our demonstrations on

a 171-atom zeolite and a 570-atom protein system show that the Huzinaga-equation-

based embedding can accelerate (double) hybrid gradient computations by an order

of magnitude with sufficient active regions and enables affordable force evaluations

or geometry optimizations for molecules of hundreds of atoms.
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I. INTRODUCTION

Modeling complex chemical systems poses a difficult challenge for electronic structure

theory. Many of these systems contain hundreds if not thousands of atoms while exhibiting

complicated interactions. The application of many correlation methods like coupled-cluster

(CC) or second-order Møller–Plesset perturbation theory (MP2) is prohibited due to the

excessive computer time that they would require. On the other side, density functional

theory (DFT)1 provides reasonable accuracy at a modest price. As a result, DFT has

become one of the most prominent tools in computational chemistry. Despite its favorable

properties, there are applications, for example, molecular dynamics simulations, where the

cost of DFT calculations is still beyond reach, or its accuracy is not satisfactory.

A possible solution to these problems is offered by quantum embedding methods, where

the system is divided into smaller subsystems, which can be treated at different levels of

theory. Thus, for the chemically active subsystem, we can use a more accurate and more

costly high-level method, while for the remaining environmental subsystem, a faster but

probably less accurate low-level method can be applied. Accordingly, embedding methods

suit the best for the situations where the chemically relevant region is spatially localized to

a relatively small portion of the whole system. The usefulness of this approach has been

demonstrated in many applications, the interested readers are referred to reviews on this

topic.2–7

In quantum embedding methods, the active subsystem is typically described with a

quantum mechanical (QM) method, for example, CC, MP2, or hybrid8 or double hybrid

(DH)9 DFT. For the environment, the preferred methods are force-field molecular mechan-

ics (MM), semi-empirical, or QM methods including mainly DFT without Hartree–Fock

(HF) exchange.

Although the division of the modeled system is a common idea of all embedding methods,

there are many different realizations. The most notable ones are QM/MM4,10, density matrix

embedding11, embedded mean-field theory12, frozen density embedding13–15, ONIOM16–18,

subsystem DFT19, fragmentation methods20–25, projection based embedding (PbE)6,26–30,

and its Huzinaga-equation-based variant31–34.

In PbE, the system is divided into two parts, an environment and an active subsystem.

The environment is treated with a low-level DFT approach, while for the active part, a
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high-level DFT or a wave function (WF) method is employed. The molecular orbitals

(MOs) of the environment and the active part are kept orthogonal to each other. This

way nonadditive interaction terms do not appear in the theory, which significantly simplifies

embedding calculations. In the original formulation of PbE, the orthogonality is imposed

approximately by a projector (P) added to the Fock matrix (F): F + µP, where µ is a

large level shift parameter and P projects onto the subspace spanned by the environmental

MOs. In the µ → ∞ limit, the PbE is exact, meaning that the orbitals are orthogonal to

each other, and the projector’s contribution to the embedding energy vanishes. However, in

practice, only a finite µ can be used, which introduces numerical errors in both the energy

and the orthogonality.

On the other side, Huzinaga embedding utilizes the Huzinaga equation35 to maintain the

orthogonality of the MOs. This approach is theoretically exact, that is, it does not introduce

any numerical artifacts in either the energy values or the orthogonality constraints resulting

in a more stable algorithm. We give a more detailed description of the method in Sect. II A.

Single point energy calculations are sufficient for particular applications. In many cases,

however, the analytic gradients of the energy with respect to the nuclear coordinates are

also required. Such applications are, for instance, equilibrium and transition state (TS)

optimizations, reaction path searches, or molecular dynamics simulations. Analytic gradients

were implemented for many of the aforementioned methods18,36–49, and some of them (e.g.,

ONIOM, QM/MM, frozen density embedding, embedded mean field theory) have a relatively

straightforward gradient theory. In the case of projection based embedding, the final energy

is not variational with respect to all of its parameters. The general and well established way

of dealing with this problem is the method of Lagrange multipliers, which was successfully

used for the original formulation of PbE as well36.

In this study, we present the theory and efficient implementation of the analytic gradients

for the Huzinaga embedding method alongside illustrative applications. After describing the

theoretical background, we benchmark our implementation on various test molecules and

reactions. We demonstrate its efficiency and reliability with geometry optimizations, TS

searches, and potential energy surface scans, and we also provide representative timing

data.

4

https://doi.org/10.26434/chemrxiv-2024-n4zhb ORCID: https://orcid.org/0000-0001-6692-0879 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-n4zhb
https://orcid.org/0000-0001-6692-0879
https://creativecommons.org/licenses/by-nc-nd/4.0/


II. THEORY

In this section, we present the theoretical background of our work. First, the Huzinaga

embedding scheme is discussed briefly, then the gradient theory is described in more detail

supposing closed-shell systems and restricted orbitals. For reference, we compiled the most

important notations used in this article in Table I. The superscripts A, B, and AB refer

to the active part, the environment, and the whole system, respectively. The high- and

low-level self-consistent field (SCF) calculations are labeled with 1 and 2, respectively.

TABLE I: List of the most important notations used in this study

Notation Description Notation Description

µ, ν, ρ, . . . Atomic orbitals Cµp Low-level MO coefficients

i, j, k, . . . Occupied orbitals CBµp Low-level environment MO coefficients

a, b, c, . . . Virtual orbitals CAµp Low-level active MO coefficients

p, q, r, . . . General MO C̃Aµp High-level active MO coefficients

DAB
µν Low-level SCF density DA

µν Low-level active SCF density

DB
µν Low-level environment SCF density D̃A

µν High-level active SCF density

A. Huzinaga embedding

We assume that the low-level SCF equations have been solved for the entire system

with E2[D
AB] being the final SCF energy. In the next step, we want to replace the low-level

active subsystem energy E2[D
A] with the corresponding high-level subsystem energy E1[D̃

A]

resulting in the energy expression

E12 = E2[D
AB]− E2[D

A] + E1[D̃
A]. (1)

The SCF energies E2 and E1 are defined as

Ei[D] = Tr {hcoreD}+
1

2
Tr
{
DGi[D]

}
+ Exc

i , (i = 1, 2) (2)

where hcore is the core Hamiltonian, Exc
i is the exchange-correlation contribution in the case

of DFT calculations, and Gi is the sum of the Coulomb and exchange matrices

Gi
µν [D] =

∑
σλ

Dλσ

[
(µν|λσ)− 1

2
cHFx(µλ|σν)

]
. (3)
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In this equation, (µν|λσ) is a four-center Coulomb integral, and cHFx stands for the coefficient

of the exact exchange (cHFx = 1 for HF). To improve the energy value in Eq. (1), a first-order

correction is added

ESCF
tot = E2[D

AB]− E2[D
A] + E1[D̃

A] + Tr

{
(D̃A −DA)

∂E12

∂DA

}
, (4)

which is our final SCF energy. The last term describes the interaction between the subsys-

tems, and it will be referred to as the embedding energy and denoted by Eembed.

To calculate the high-level MOs C̃A, and thus the D̃A density, ESCF
tot is optimized with

respect to the C̃A
µi coefficients assuming that the high-level MOs are orthogonal to each other

and to the environmental MOs CB. To that end, we define the Lagrangian

LHuzinaga = ESCF
tot +

∑
ij

x̃ij
∑
µν

[
C̃A
µiSµνC̃

A
νj − δij

]
+
∑
ij

yij
∑
µν

C̃A
µiSµνC

B
νj, (5)

where the second and third terms are the orthogonality conditions with S being the atomic

orbital (AO) overlap matrix, and x̃ and y are the Lagrange multipliers.

To determine the environmental orbitals and an initial set of high-level MOs, the low-

level ones are localized. For each localized MO (LMO), we identify the atoms on which it

is localized. The identification can be based on different measures. In this work, we used

the Mulliken population meaning that an LMO is added to the set of high-level MOs if

its Mulliken population on the active atoms exceeds a certain threshold31. The remaining

orbitals are labeled as environmental orbitals.

The Lagrangian in Eq. (5) has to be stationary with respect to the optimal high-level

MO coefficients leading to the equation

∂LHuzinaga

∂C̃A
ωk

= 4
∑
ν

F̃ωνC̃
A
νk + 2

∑
i

x̃ik
∑
ν

SωνC̃
A
νi +

∑
i

yki
∑
ν

SωνC
B
νi = 0. (6)

Here, we introduced the notation

F̃µν =
∂ESCF

tot

∂D̃A
µν

=
∂E1[D̃

A]

∂D̃A
µν

+
∂E12[D

AB]

∂DA
µν

= F 1
µν [D̃

A] + F 2
µν [D

AB]− F 2
µν [D

A], (7)

where F2 denotes the low-level Kohn–Sham (KS) matrix calculated with either the DAB or

the DA densities, while F1[D̃A] is the KS matrix of the high-level SCF method. The last two

terms in Eq. (7) define the embedding potential. Eq. (6) is called the Huzinaga equation35,

which can be solved by a regular SCF procedure with an effective Fock matrix defined by

H = F̃− SDBF̃− F̃DBS, (8)
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to which we will refer as the Huzinaga matrix in the following.

If we want to use a WF method for the active subsystem, we still solve Eq. (6) to calculate

the high-level orbitals. Then, the final energy is defined as the sum of the WF correlation

energy EWF
1 and the total SCF energy as

Etot = ESCF
tot + EWF

1 . (9)

B. Gradient theory

In this section, we discuss the theory of the analytic gradients. We divide our analysis

into two parts. First, the gradients for the DFT-in-DFT embedding are derived, while in

the second part, we present the WF-in-DFT gradient theory. Although there are numerous

WF methods, in this study, we opt to implement the gradients for MP2 only due to its

applicability for larger active spaces, and this way we can use DH functionals as well.

1. DFT-in-DFT gradient theory

The Huzinaga embedding method is not fully variational, which can be handled with

the method of Lagrange multipliers50,51. In the case of DFT-in-DFT embedding, we start

from the Lagrangian of Eq. (5). As described in Sect. II A, this functional is stationary with

respect to the high-level subsystem orbitals. However, we still have to add further terms to

make it variational with respect to the low-level orbitals as well.

To enforce that the low-level MOs satisfy the low-level SCF equations, we have to add

the Brillouin and the orthogonality constraints,∑
ai

zai
∑
µν

CµaCνiF
2
µν [D

AB] +
∑
pq

xpq
∑
µν

[CµpSµνCνq − δpq] , (10)

to our Lagrangian, where z and x are Lagrange multipliers.

For the selection of the active subspace orbitals, the low-level occupied MOs have to be

localized. To incorporate this step into our Lagrangian, we have to include a localization

constraint. In principle, any localization method could be employed, however, we only

implemented this constraint for the Boys–Foster localization52, which reads as∑
i>j

zlocij rij, rij =
∑

α=x,y,z

[∑
µν

(CµiCνi − CµjCνj) Jαµν
∑
µν

CµiCνiJ
α
µν

]
(11)
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with Jα being the AO dipole moment integral matrices, that is,

Jαµν = 〈µ|α |ν〉 (α = x, y, z), (12)

and zlocij is the corresponding Lagrange multiplier. Note that in the case of core-valence

separation, we have to add a separate localization condition for both the core and the

valence orbitals: ∑
i,j∈core
i>j

zloc,cij rij +
∑

i,j∈valence
i>j

zloc,vij rij. (13)

Moreover, a core-valence separation condition has to be explicitly included that reads as∑
i∈core

j∈valence

zcvij
∑
µν

CµiCνjF
2
µν [D

AB]. (14)

With all this in mind, we can conclude our final Lagrangian for DFT-in-DFT embedding:

LDFT-in-DFT = LHuzinaga +
∑
ai

zai
∑
µν

CµaCνiF
2
µν [D

AB] +
∑
pq

xpq
∑
µν

[CµpSµνCνq − δpq] +

∑
i,j∈core
i>j

zlocij rij +
∑

i,j∈valence
i>j

zloc,vij rij +
∑
i∈core

j∈valence

zcvij
∑
µν

CµiCνjF
2
µν [D

AB]. (15)

The next step is to determine the Lagrange multipliers in Eq. (15). They can be calculated

by using the fact that the Lagrangian has to be stationary with respect to the high- and

low-level orbitals. One can easily see that by taking the derivative of the Lagrangian with

respect to the high-level occupied orbitals, we arrive at the Huzinaga equation [Eq. (6)], and

thus the x̃ and y multipliers can be computed as

x̃kl = −2
∑
µν

C̃A
νkC̃

A
µlF̃µν , ykl = −4

∑
µν

CB
µlC̃

A
νkF̃µν . (16)

The rest of the multipliers are determined from the condition∑
ω

Cωp
∂L
∂Cωq

= 0. (17)

Let us introduce the following notations:

Apq =
∑
ω

Cωp
∂

∂Cωq

[
ESCF

tot +
∑
ij

yij
∑
µν

C̃A
µiSµνC

B
νj

]
, (18)

Ãpq[z] =
∑
ai

zai
∑
ω

Cωp
∂

∂Cωq

[∑
µν

CµaCνiF
2
µν [D

AB]

]
, (19)
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Ãcvpq[z
cv] =

∑
i∈core

j∈valence

zcvij
∑
ω

Cωp
∂

∂Cωq

[∑
µν

CµiCνjF
2
µν [D

AB]

]
, (20)

Bpq[z
loc] =

∑
ij

zlocij
∑
ω

Cωp
∂rij
∂Cωq

(i > j). (21)

To simplify the derivation, we introduce the antisymmetric part of Eq. (17):∑
ω

Cωp
∂L
∂Cωq

−
∑
ω

Cωq
∂L
∂Cωp

= 0. (22)

Assuming that x is symmetric, it drops out of this equation. The multipliers zcv, zloc,c, and

zloc,v are calculated from the occupied-occupied part of Eq. (22). For zloc,c and zloc,v, this

equation reads as

Bij[z
loc]−Bji[z

loc] + Aij − Aji = 0 (i > j), (23)

where i and j label core orbitals for zloc,c and valence orbitals for zloc,v. For zcv, we get a

similar equation:

Ãcvij [zcv]− Ãcvji [zcv] +Bij[z
loc,v]−Bji[z

loc,c] + Aij − Aji = 0, (24)

where i and j label core and valence orbitals, respectively. The multiplier of the Brillouin

condition is calculated by solving the occupied-virtual part of Eq. (22):

Ãai[z]− Ãia[z] + Ãcvai [z
cv] +Bai[z

loc,c] +Bai[z
loc,v] + Aai − Aia = 0, (25)

which is called the coupled-perturbed KS equation (CPKS) or coupled-perturbed HF equa-

tion (CPHF) if the low-level method is HF. The last remaining multiplier, x, is determined

from Eq. (17) by substituting all the other known multipliers.

Although all the above equations are linear, their matrices are generally too large to be

stored in the memory. To circumvent this issue, we use a subspace method to solve these

equations. Our approach was detailed in Ref. 53.

C. MP2-in-DFT and DH-in-DFT gradient theory

The derivatives of MP2-in-DFT and DH-in-DFT are similar, therefore, we discuss them

together. To calculate the total energy, we have to add the (possibly scaled) MP2 energy to

the total SCF energy, that is,

Etot = ESCF
tot + aMP2EMP2[C̃

A], (26)
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where EMP2[C̃
A] is the Hylleraas functional

EMP2[C̃
A] =

∑
abij

T̃ ijab(ai|bj) +
∑
pq

D(2)
pq F̃pq[D̃

A]. (27)

In this equation, (ai|bj) are the four-center two-electron integrals in the MO basis, T̃ ijab stands

for the contravariant MP2 amplitudes

T̃ ijab = 2T ijab − T
ji
ab, (28)

where T ijab denotes the MP2 amplitudes. The MP2 density D(2) is defined as

D
(2)
ij = −2

∑
k

Tr
{
TikT̃kj

}
, D

(2)
ab = 2

∑
ij

[TijT̃ji]ab, D
(2)
ia = D

(2)
ai = 0. (29)

For MP2-in-DFT, aMP2 = 1, and the high-level SCF method is HF. In the case of DH-in-

DFT, aMP2 equals the weight of the MP2 term in the DH-DFT energy expression, and the

high-level SCF is a general KS calculation.

Unfortunately, the Hylleraas functional54,55 is not variational with respect to the MOs,

thus further constraints are required. Due to the fact that the MP2 energy depends on

the high-level virtual orbitals, we have to include them in the orthogonality conditions of

Eq. (5): ∑
pq

x̃pq
∑
µν

[
C̃A
µpSµνC̃

A
νq − δpq

]
+
∑
pj

ypj
∑
µν

C̃A
µpSµνC

B
νj. (30)

A Brillouin condition has to be added for the high-level orbitals as well:

∑
ai

z̃ai
∑
µν

C̃A
µaC̃

A
νiF̃µν [D̃

A] (31)

with z̃ai being the corresponding Lagrange multiplier. Please note that we use the F̃ KS

matrix defined by Eq. (7) instead of the Huzinaga matrix of Eq. (8). This is due to the

fact that the extra terms in the Huzinaga matrix are required to enforce the orthogonality

conditions, which are already included in our Lagrangian.

Finally, if the frozen core approximation is also applied in the MP2 calculation, then a

new constraint has to be introduced to the Lagrangian to ensure the core-valence separation:

∑
i∈core

j∈valence

z̃cvij
∑
µν

C̃A
µiC̃

A
νjF̃µν [D̃

A]. (32)
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Despite of the formal similarity, Eqs. (32) and (14) are different constraints, and in a frozen

core calculation, both have to be included in the Lagrangian. It is also important to note

that the summation in Eq. (32) runs over the core and valence orbitals that are included in

the active subsystem. With these modifications, the final MP2-in-DFT Lagrangian reads as

L = Etot +
∑
pq

x̃pq
∑
µν

[
C̃A
µpSµνC̃

A
νq − δpq

]
+
∑
pj

ypj
∑
µν

C̃A
µpSµνC

B
νj+

∑
i∈core

j∈valence

z̃cvij
∑
µν

C̃A
µiC̃

A
νjF̃µν [D̃

A]+
∑
ai

z̃ai
∑
µν

C̃A
µaC̃

A
νiF̃µν [D̃

A]+
∑
pq

xpq

[∑
µν

CµpSµνCνq − δpq

]
+

∑
i,j∈core
i>j

zloc,cij rij +
∑

i,j∈valence
i>j

zloc,vij rij +
∑
ai

zai
∑
µν

CµaCνiF
2
µν [D

AB]+

∑
i∈core

j∈valence

zcvij
∑
µν

CµiCνjF
2
µν [D

AB], (33)

where Etot is defined by Eq. (26).

The Lagrange multipliers are determined in two main steps. In the first step, we calculate

the multipliers associated with the high-level SCF and MP2 methods, namely z̃cv, y, x̃, and

z̃. Next, the remaining multipliers are determined corresponding to the low-level MOs. Both

steps are carried out in a similar way as described for the DFT-in-DFT embedding. For

more details, see Appendix A.

Although the theory of the Huzinaga embedding gradient seems to be similar to that of

the original PbE36, there are particular differences. In PbE, the orthogonality constraints

are enforced by a projector, which enters the Lagrangian through the total energy and the

Brillouin condition for the high-level SCF. In our case, the projector appears in the Huzinaga

matrix, which is not present in the Lagrange function. Instead, our Lagrangian contains the

exact orthogonality conditions, which results in slightly more multipliers to be determined.

However, they can be calculated at practically no cost [see Eq. (16)]. Meanwhile, our

approach is theoretically exact and avoids the potential risk of numerical problems in the

evaluation of both the energy and the gradient due to the level shift of the projector.

The handling of the core orbitals is also different. In the implementation of PbE

gradient36, the core and valence orbitals are separated neither during the localization nor

in the Lagrangian despite using the frozen-core approximation for the correlation calcula-

tions. Localizing the core and valence orbitals together can introduce an unwanted mixing
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of the two, while the Lagrange function loses its exactness due to omitting the constrain

in Eq. (32). In our code, the core and valence orbitals are localized separately, which is

included in the Lagrangian through the constraints in Eqs. (13) and (14), moreover the

frozen-core approximation is also handled exactly with Eq. (32).

D. Gradient calculation

To calculate the final gradient, the Lagrange function has to be differentiated with respect

to the nuclear coordinates. In order to save computer time, we have to collect similar terms

and calculate their derivatives together. We discuss the gradient evaluation for the DH-in-

DFT embedding scheme, the other two, DFT-in-DFT and MP2-in-DFT, are special cases

of it.

By collecting the various orthogonality conditions, it is easy to see that the derivative of

the AO overlap matrix S(q) is contracted with the effective density:

P S
µν =

∑
pq

x̃pqC̃
A
µpC̃

A
νq +

∑
pj

ypjC̃
A
µpC

B
νj +

∑
pq

xpqCµpCνq. (34)

The derivatives of the localization conditions can be determined by differentiating Eq. (11).

Without the core-valence separation, the (Jα)(q) dipole integral derivatives are multiplied

with

(P loc
α )µν =

∑
i>j

[
zlocij J

α
ii(CµiCνi − CµjCνj) + zlocij (Jαii − Jαjj)CµiCνj

]
. (35)

If the core and valence orbitals are localized separately, the effective density is the sum of

the core and valence contributions:

Ploc
α = Ploc,c

α + Ploc,v
α , (36)

where Ploc,c
α and Ploc,v

α are formally defined as in Eq. (35), but the summation is restricted

to the core or valence orbitals, respectively.

The remaining terms contain the core Hamiltonian hcore, four-center AO integrals,

Coulomb and exchange matrices, and exchange-correlation contributions. For brevity,

let us introduce the auxiliary quantities

d̃µν =
∑
i∈core

j∈valence

z̃cvij C̃
A
µiC̃

A
νj +

∑
ai

z̃aiC̃
A
µaC̃

A
νi + aMP2

∑
pq

D(2)
pq C̃

A
µpC̃

A
νq, (37)
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dµν =
∑
i∈core

j∈valence

zcvij CµiCνj +
∑
ai

zaiCµaCνi, (38)

which are the effective AO matrices multiplying F̃ and F2 in Eq. (33). The core Hamiltonian

is present in the total SCF energy and the KS matrices F̃ and F2. Therefore, the effective

density contracting h
(q)
core is

Ph = DB + D̃A + d̃ + d. (39)

The Coulomb and exchange matrices Gi[D] defined by Eq. (3) appear in both the total

SCF energy and the KS matrices. Starting with G2[DAB], it contributes to the energies

E2[D
AB], Eembed [see Eqs. (2) and (4)], and the KS matrices F̃ and F2. Consequently, the

corresponding effective density is

PAB
G =

1

2
DAB + PAB, PAB = (D̃A −DA) + d̃ + d, (40)

where 1
2
DAB and D̃A−DA come from E2[D

AB] and Eembed, respectively. In a similar fashion,

we can derive the effective densities for G2[DA] and G̃1[DA]

PA
G =

1

2
DA + PA, PA = (D̃A −DA) + d̃ (41)

P̃A
G =

1

2
D̃A + P̃A, P̃A = d̃. (42)

Let us denote the exchange-correlation matrices by F2
xc[D

AB], F2
xc[D

A], and F1
xc[D̃

A],

where the naming convention follows that of the Gi matrices. They appear in the KS

matrices alongside the Gi matrices. Therefore, their effective densities are PAB, PA and

P̃AB, respectively. The final terms are the derivatives of the exchange-correlation energies

and the amplitude-dependent parts of the Hylleraas functional, which are evaluated as for

regular DH-DFT calculations.

To sum up our results, we present the full energy gradient:

dEtot

dq
= L(q) = Tr

{
h(q)
coreP

h
}

+ Tr
{
S(q)PS

}
+
∑

α=x,y,z

Tr
{

(Jα)(q)Ploc
α

}
+

Exc
2 [DAB](q) − Exc

2 [DA](q) + Exc
1 [D̃A](q)+

Tr
{
F2

xc[D
AB](q)PAB

}
− Tr

{
F2

xc[D
A](q)PA

}
+ Tr

{
F1

xc[D̃
A](q)P̃A

}
+

Tr

{
G2[DAB](q)

(
1

2
DAB + PAB

)}
− Tr

{
G2[DA](q)

(
1

2
DA + PA

)}
+

Tr

{
G1[D̃A](q)

(
1

2
D̃A + P̃A

)}
+ 2

∑
ijab

T̃ ijab(ai|bj)
(q). (43)
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The most time consuming step of the evaluation of Eq. (43) is the calculation and contraction

of the integral derivatives. To save computer time, in both the energy and the gradient

evaluation, we used the density fitting approximation (DF)56–60 for both SCF and MP261.

The three-center integral derivatives are computed four times, three of them required for

the derivative of the three different Gi matrices and one for the last term in Eq. (43).

At this state, our program supports only MP2 as high-level wave function method. It

should be straightforward to generalize the theory for other WF methods (for example CC)

as well. If analytical gradients are already implemented for these WF methods, then it can

be adapted for embedding calculations with minor modifications.

III. COMPUTATIONAL DETAILS

Our method has been implemented in the Mrcc quantum chemistry program package62,63

and it will be available in the next release. For details concerning the testing of the cor-

rectness of our implementation, see Appendix B. We also demonstrate the utility of our

gradient implementation with geometry optimizations, TS searches, and potential energy

surface (PES) scans.

In our first test set, we took the molecules from three reactions12,31: the substitution

reaction of 1-chlorodecane with a hydroxide anion to form 1-decanol and a chloride anion,

the Diels–Alder reaction of octadecanonaene and 1,3-butadiene, and the deprotonation of

decanoic acid (see Fig. 1). Geometry optimizations were performed on both the reactants

and the products. Using the Slater–Dirac (LDA)64,65; the Perdew, Burke, and Ernzer-

hof (PBE)66; the hybrid PBE (PBE0)67; Becke’s three-parameter hybrid (B3LYP)8,68; and

Grimme’s two-parameter DH (B2PLYP)9 functionals, three embedding schemes were tested

for each molecule: PBE0-in-LDA, B2PLYP-in-PBE, and MP2-in-B3LYP. To avoid any am-

biguity stemming from the integration grid, a 770-point Lebedev grid69 with the Log3 radial

quadrature70 was employed without any pruning. Dunning’s correlation consistent double-ζ

(cc-pVDZ)71,72 basis set was applied with the density fitting approximation for the SCF

and the MP2 calculations as well. The auxiliary basis sets were cc-pVDZ-RI-JK73 and

cc-pVDZ-RI74,75, respectively.

To test our method for TS optimization, we considered a Michael-addition reaction76

where propanal and β-nitrostyrene react catalyzed by morpholine (Fig. 5). Key interme-
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diates with a cyclobutane (CB) and a dihydrooxazine N -oxide (OO) motifs are studied

alongside the TS between them, as the relative stability of the intermediates and the bar-

rier height was found highly sensitive to the quality of the employed DFT method.76 The

structure of this TS was optimized with a variety of methods: PBE, PBE0, PBE0-in-PBE,

PBE0-2-in-PBE and PBE0-DH-in-PBE, where PBE0-277 and PBE0-DH78 are PBE0-based

DH functionals, and the resulting geometries were compared. Weigend and Ahlrichs’ triple-

ζ valence polarized (def2-TZVPP)79 AO basis set and the D3 dispersion correction80 with

Becke–Johnson damping81 were used in all calculations. The D3 coefficients for PBE0-2 and

PBE0-DH were taken from Ref. 82. The fitting basis set was def2-QZVPP-RI-JK73 (def2-

QZVPP79 for hydrogen atoms) for all SCF and def2-TZVPP-RI74 for MP2 calculations.

Here, we used the default 590-point adaptive Lebedev grid with the Log3 quadrature.

Next, we performed a potential energy surface scan for a zeolite catalyzed methylation of

propylene. Following Ref. 83, we employ an extensive cluster model of 171 atoms (Fig. 7).

In the reactant state, a methyl group is bound to the acidic oxygen atom of the zeolite.

Then, the methyl cation is transferred to the propylene, and finally, a hydrogen of the

propylene bonds to an oxygen of the zeolite. The initial geometry of the model system is

displayed in Fig. 7, while the reaction is shown in Fig. 8. For the active space, we selected

the atoms of the methyl, propylene, the oxygen which the methyl is bonded to, and its

first and second neighbors. In all calculations the def2-SVP79 basis set was used with the

def2-QZVPP-RI-JK73 fitting basis set for the SCF calculations (def2-QZVPP79 for the H

atom) and def2-SVP-RI for MP2. The DFT grid was the Treutler–Ahlrichs number 3 grid84

using the Log3 radial quadrature.

Finally, we present timing data as well. For this purpose, the zeolite model and the

catechol-O-methyltransferase (COMT) enzyme32 was selected. All timing measurements

were performed on an AMD EPYC 7763 CPU using eight cores.

IV. RESULTS

A. Equilibrium geometry optimization

Figs. 2, 3, and 4 show the results for the three investigated reactions (substitution of 1-

chlorodecane, Diels–Alder addition, and deprotonation of decanoic acid). The mean absolute
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FIG. 1: Molecules used for geometry optimization.

errors (MAEs) of the bond lengths, bond angles, and dihedral angles are plotted with respect

to the size of the active system on the left panel of the figures. The errors were calculated

with respect to a reference geometry determined using the high-level method exclusively. A

particular bond length was chosen for each system between the heavy atoms of the smallest

active space, and its error was also plotted on the top right panels of the figures. Additionally,

the reaction energies were also determined and plotted on the bottom right panels. The first

data point on each subplot (i.e., zero carbon atom) shows the results calculated with the

low-level method only.

Starting with the geometry errors, it is apparent that they decrease with increasing active

subsystem size in almost all cases, which is the expected behavior. The mean errors in the

bond lengths are below or around 0.04 bohr for all molecules and subsystem sizes, which is

an acceptable difference. The low-level methods give larger errors than the corresponding

embedding schemes with small active spaces in almost all cases. The only exception is the

octadecanonaene with MP2-in-B3LYP.

The errors in the bond angles are typically below 0.3◦ and show a decaying trend. The

exceptions are the octadecanonaene and the decanoate molecules with MP2-in-B3LYP. The

errors for octadecanonaene start slightly higher, around 0.4◦, and decrease rather slowly

with increasing subsystem size. The error gets smaller at every second configuration, where

the border of the active region cuts a single C–C bond. On the other hand, the accuracy

does not increase when a double C–C bond is cut.

In the case of decanoate (Fig. 3), a jump in the error of the MP2-in-B3LYP bond and
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FIG. 2: MAEs for the optimized geometry parameters of 1-chlorodecane and 1-decanol and

the reaction energies of the substitution reaction. The size of the embedded subsystem was

systematically increased by one carbon atom. The embedded subsystem of one carbon

atom contains also the hydroxyl group or the chlorine atom.

dihedral angles can be observed with two carbon atoms in the active subspace. This cal-

culation predicts a symmetric structure where the carboxylate group is within the plane of

the carbon chain instead of the correct, tilted geometry. Although it could be an artifact

of the optimizer due to the flat potential energy surface, it turns out that the symmetric

configuration is the energetically optimal one with this subspace selection. The optimizer

predicts the same structure even if the maximal step size is set to a small value (0.05 atomic

units). This indicates that small subsystems (i.e., 1–2 bonds away from the chemical change)

cannot always describe the important part of a molecule, and thus, their general application

is not recommended without thorough benchmarking.

For bond angles, the low-level method performs similarly as the embedding calculations

with small active spaces, except for 1-decanol and 1-chlorodecane. In these cases, we need

medium-sized active regions to get errors below those of the low-level methods. This indi-
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FIG. 3: MAEs for the optimized geometry parameters of decanoic acid and decanoate and

the reaction energies of the deprotonation reaction. The size of the embedded subsystem

was systematically increased by one carbon atom. The embedded subsystem of one carbon

atom contains also the two oxygen atoms or the oxygen atom plus the hydroxyl group.

cates that there are relatively strong interactions between the subsystems, thus more active

atoms are required to be able to relax the geometry of the environment as well.

In spite of these exceptions, our general observation is that the errors of the bond angles

decay quickly and converge to the reference values systematically. In most cases, the errors

remain controlled even for small active spaces, however, some systems with too compact

active regions may exhibit larger errors or unusual behavior.

Regarding the dihedral angles, we get a relatively small mean error of less than 0.3◦ in

most cases, and they converge to zero systematically with increasing subsystem size. Larger

errors can be seen for the product of the Diels–Alder reaction (Fig. 4) for small active spaces,

especially with the MP2-in-B3LYP embedding scheme, where the MAE exceeds 1.2◦. This

error drops below reasonable values quickly as we expand the subsystem size, and a fast

convergence to the reference structure can be observed. As in the case of bond angles, a
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FIG. 4: MAEs for the optimized geometries of the reactant and product of the Diels–Alder

reaction and the corresponding reaction energies. The embedded subsystem of two carbon

atoms includes the two carbons in the middle of the molecules and it is extended

symmetrically in both directions.

huge jump can be seen for decanoate with MP2-in-B3LYP which can be explained as before.

The embedding methods perform better than the low-level one in the case of dihedral

angles. The only exceptions are the 1-decanol and 1-chlorodecane molecules due to similar

reasons as for the bond angles.

To sum up, the errors in the geometry are moderate in most cases even for small active

spaces, and there is a decaying trend in the mean errors in all three types of geometrical

parameters. This means that the high-level method applied to a small active subspace has

the potential to relax the coordinates of the environment as well resulting in a more accurate

structure for the whole molecule and not just for the active part.

Looking at the errors of the bond lengths in the active space (top right panel in Figs. 2–

4), similar observations can be made as before. For most subsystem sizes, the errors are

small, typically below 5 · 10−3 bohr. The only outlier is octadecanonaene, where errors up
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to 2 · 10−2 bohr are measured with the smaller active regions. Nonetheless, a relatively fast

convergence can be seen for all cases and accurate results can be achieved with small to

medium-sized active regions. Importantly, the bond lengths in the embedded region are

about an order of magnitude more accurate than for the entire molecule (cf. the top left and

right panels of Figs. 2–4). Moreover, the embedding calculations give smaller errors than

the low-level method in almost all cases. There is only one exception, octadecanonaene with

MP2-in-B3LYP, which is expected based on the top left plot of Fig. 4.

The reaction energies show similar convergence properties as the geometric coordinates.

In most cases, a fast and systematic convergence is measured, accurate result are achieved

with medium-sized active spaces and even small active regions can outperform the low-

level methods. Moreover, when σ-bonds are cut, 2–3 active carbon atoms are sufficient for

sub-kJ/mol accuracy. The only out of ordinary case is the Diels–Alder addition with the

methods MP2-in-B3LYP and B2PLYP-in-PBE. Although convergence is achieved, it is slow

and less systematic than in other cases. Interestingly, PBE0-in-LDA exhibits much faster and

smoother convergence properties. These results indicate that modeling conjugated systems

with embedding methods requires extra attention, not just in the selection of the active

space but also at pairing of the high- and low-level methods. The other exception is the

deprotonation of the decanoic acid, where PBE0-in-LDA gives relatively large errors at small

active regions. This can be explained with the large error of the LDA functional, which is

corrected by PBE0, but several active carbon atoms are required to fully mitigate this effect.

Nonetheless, this error gets smaller with expanding subspace, and chemical accuracy can be

achieved with medium-sized active regions including 3–4 bonds away from the deprotonated

oxygen.

B. Transition state optimization

Next, we tested our embedding gradient program by optimizing the TS for an organic

reaction containing 40-atom species. The reaction and the chosen active space are depicted

in Fig. 5. The PBE, PBE0, PBE0-in-PBE, PBE0-2-in-PBE and PBE0-DH-in-PBE models

were employed, and the resulting geometries were compared with the ones optimized with

PBE0-DH and PBE0-2.

The deviations of the geometrical parameters (bond lengths, bond angles, dihedral angles)
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FIG. 5: The reaction studied for the TS optimization. The rightmost picture shows the

active space: the atoms with a solid color are the active ones, while the transparent atoms

belong to the environment.

were calculated and plotted in histograms (Fig. 6). The latter are made from 20 bins between

0 and the maximal error of the given coordinate type among all functionals. On the y axis,

we plotted the normalized frequency of errors,

yi =
ni∑
i ni

,

where i runs through the bins, and ni denotes the number of points in the ith bin.

It is easy to see from the data that the maximum error of the bond lengths is below 0.05

bohr with all functionals. This is acceptable from a practical point of view, especially since

the active region covers only the atoms within 2 bonds of the breaking C–O bond. The

differences are much more pronounced for the bond and dihedral angles. With PBE, we

get relatively large errors with maxima around 2◦ and 8◦ in the bond and dihedral angles,

respectively. The spread of the errors is slightly larger in the case of the PBE0-2 reference.

With PBE0, the errors drop significantly, the largest differences for bond and dihedral

angles are below 1◦ and 3◦, respectively. As for PBE, we get less accurate agreement with

the PBE0-2 reference structure.

Using embedding methods, we can clearly improve the results calculated with PBE. For

PBE0-in-PBE the spread of the errors is just slightly larger than for PBE0 and it is more

visible for the bond lengths and bond angles. Regarding the DH functionals, we get similar

results as for PBE0-in-PBE. In the case of the PBE0-DH reference, the best accuracy is

achieved by PBE0-DH-in-PBE, although its advantage is marginal over the other methods.
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FIG. 6: TS structure errors compared to PBE0-DH (left) and PBE0-2 (right) references.

Each row shows the error of the three different geometrical parameters for a given

computational method.

On the other side, PBE0-2-in-PBE predicts less accurate dihedral angles than the other

embedding schemes, however, the differences are small.

Nonetheless, these observations show that treating just a small part of the molecule at

a higher level of theory can lead to substantial improvements in molecular structures. This

agrees with our conclusions drawn for equilibrium geometries that the high-level method

applied to the active space can relax the environmental coordinates as well. Most probably

this effect gets weaker with increasing distance from the active region, however, we could

demonstrate it for smaller molecules containing a couple of dozens of atoms.

The geometry errors were calculated for the active subspace as well (Tables II and III). To

that end, all internal coordinates within the active region were collected, and the maximum

and mean absolute differences were determined compared to the PBE0-DH and PBE0-2

reference structures. The largest errors are produced by PBE as expected based on Fig. 6.

The rest of the methods performed similarly, larger differences are observed only for the

22

https://doi.org/10.26434/chemrxiv-2024-n4zhb ORCID: https://orcid.org/0000-0001-6692-0879 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-n4zhb
https://orcid.org/0000-0001-6692-0879
https://creativecommons.org/licenses/by-nc-nd/4.0/


TABLE II: Geometry errors of the TS for the active region compared to the PBE0-DH

reference. The error of the bond length is given in bohr, the errors of the bond and

dihedral angles are measured in degrees.

Bond Length Bond angle Dihedral angle

Method Max Mean Max Mean Max Mean

PBE 0.050 0.025 1.85 0.35 8.19 1.96

PBE0 0.009 0.006 0.34 0.10 2.17 0.59

PBE0-in-PBE 0.010 0.006 0.30 0.09 1.74 0.52

PBE0-2-in-PBE 0.010 0.003 0.51 0.17 1.40 0.42

PBE0-DH-in-PBE 0.003 0.001 0.29 0.09 0.84 0.31

dihedral angles. PBE0-in-PBE yields fairly good results seemingly outperforming PBE0

in most cases. However, it is true only for the active part of the molecule, the overall

performance of PBE0 is better as it was discussed above.

The DH functionals give similar results, and we get higher accuracy for both the PBE0-2

and the PBE0-DH references with the corresponding DH-in-PBE embedding scheme. Gen-

erally speaking, the lowest errors are achieved with these embedding methods, but PBE0-in-

PBE yields similar or better errors for the bond angles against the PBE0-DH reference and

has the lowest maximal error in the dihedral angles for the PBE0-2 reference. Comparing

the bond length errors only for the active atoms to those for the entire molecule (Fig. 6

vs. Tables II and III), these structural parameters are again an order of magnitude more

accurate for the active region.

The barrier heights were also calculated for this reaction and they are shown in Table IV.

The various levels of DFT predict significantly different barrier heights, the difference is

over 20 kJ/mol between PBE and the DH functionals. The underestimated GGA barrier

and the improved hybrid and DH results are consistent with the trends obtained with the

local natural orbital CCSD(T)85,86 reference in Ref. 76. Embedding methods can improve

upon the pure DFT barrier, and the resulting barriers are close to that of the high-level

methods. For the DH functionals, the values predicted with the embedding schemes are

within 1 kJ/mol with respect to the parent DH method, while PBE0-in-PBE is even more

accurate giving an error less than 0.1 kJ/mol compared to PBE0. These errors support our
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TABLE III: Geometry errors of the TS in the active space compared to PBE0-2 reference.

The error of the bond lengths is given in bohr, the errors of the bond and dihedral angles

are measured in degrees.

Bond length Bond angle Dihedral angle

Method Max Mean Max Mean Max Mean

PBE 0.042 0.024 1.85 0.43 8.64 2.47

PBE0 0.009 0.006 0.70 0.22 2.70 1.22

PBE0-in-PBE 0.009 0.006 0.77 0.20 1.50 1.17

PBE0-2-in-PBE 0.004 0.002 0.52 0.15 2.83 0.79

PBE0-DH-in-PBE 0.017 0.003 0.64 0.16 2.26 0.95

previous findings that embedding calculations supply results similar to those of the high-

level methods provided that the active region was selected carefully. Importantly, here, an

active region of only 11 heavy atoms could provide sub-kJ/mol accuracy.

TABLE IV: Barrier heights (in kJ/mol) for the Michael-addition reaction of Fig. 5.

Method Barrier height Method Barrier height

PBE 99.3

PBE0 116.0 PBE0-in-PBE 116.1

PBE0-2 125.7 PBE0-2-in-PBE 126.6

PBE0-DH 124.5 PBE0-DH-in-PBE 125.2

C. Potential energy surface scan

To further demonstrate the possible applications of our embedding gradient implementa-

tion, we studied a zeolite catalyzed methylation reaction of propylene. The structure of the

zeolite model and the reaction are shown in Figs. 7 and 8. It is known in the literature that

various DFT functionals predict significantly different barrier heights83. Our goal is to show

that embedding methods can provide accurate barriers without the large cost of performing

(double) hybrid structure optimizations for the entire cluster. To that end, we recorded a
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FIG. 7: The structure of the zeolite model. The transparent atoms constitute the

environment, and the atoms with a solid color are added to the active space.

FIG. 8: The methylation of propylene inside the zeolite model. The pictures from left to

right show the reactant, the TS, and the product configurations, respectively. Only the

atoms of the active space are plotted.

potential energy surface around the transition state. The TS structure from Ref. 83 was used

as a starting point, and the PES was scanned towards both the reactant and the product.

The geometries were relaxed only with PBE and PBE0-in-PBE, and then the PBE0-2-

in-PBE and PBE0-DH-in-PBE energies were evaluated at the geometries optimized with
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PBE0-in-PBE. The active space contained the atoms of the propylene, the methyl group of

the zeolite, the oxygen to which the methyl is bonded, and the first and second neighbors

of this oxygen. The resulting energy surfaces are plotted in Fig. 9.

The PBE and PBE0-in-PBE surfaces start to separate from each other already close to

the reactant state, and the gap widens until the TS is reached. The estimated difference

in the barrier heights from the surface scan is slightly above 20 kJ/mol, which is expected

based on the previous results83. Passing the TS, the energy surfaces come closer to each

other, and the differences become more modest.

For the DH functionals, we did not relax the geometries but used the ones calculated

with PBE0-in-PBE. The PES curve of PBE0-DH-in-PBE is closer to PBE0-in-PBE with an

estimated barrier height difference of 10 kJ/mol. The PBE0-2-in-PBE result deviates a lot

more, the energy barrier is almost 20 kJ/mol larger than for PBE0-in-PBE. Relaxing the

geometries would result in smaller estimated barrier energies. Based on the observations

of Sect. IV B, this effect would be more pronounced for PBE0-2-in-PBE. As we have seen,

the structure errors of PBE0-2-in-PBE were larger compared to PBE0-DH-in-PBE or even

PBE0-in-PBE indicating that the geometries predicted with PBE0-2-in-PBE might differ

more significantly from the ones calculated with PBE0-in-PBE.

D. Timings

We measured timing data for the zeolite and the COMT systems. Calculations were

carried out with the def2-SVP and def2-TZVPP basis sets for the zeolite and with def2-SVP

for the COMT system. def2-SVP was paired with the cc-pVDZ-RI-JK fitting basis set for

SCF and def2-SVP-RI for MP2. In the case of def2-TZVPP, the def2-QZVPP-RI-JK and

def2-TZVPP-RI fitting basis sets were used for the SCF and MP2 calculations, respectively.

The timings are presented in Tables V, VI, and VII.

Starting with the zeolite system, it contains 171 atoms with 1292 electrons in total, of

which 612 are core electrons. The number of AO basis functions for def2-SVP is 2137,

whereas the SCF and correlation fitting basis sets contain 11599 and 7186 functions, respec-

tively. With def2-TZVPP there are 4974 AOs, the number of auxiliary functions is 12614

for the SCF and 12904 for MP2.

Looking at the data in Table V, it is obvious that, as expected, PBE is significantly
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FIG. 9: The PES of the methylation reaction. The energy of the reactant was chosen to be

zero for all methods. The DH-in-PBE surfaces were calculated using the geometries

optimized with PBE0-in-PBE.

TABLE V: Timing data for the zeolite system using the def2-SVP basis. All timings are

measured in minutes. The numbers in parenthesis show how much the given step

contributes to the total runtime in percent.

Low-level method - - - PBE PBE PBE

High-level method PBE PBE0 PBE0-2 PBE0 PBE0-2 PBE0-DH

Low-level SCF - - - 16.1 (16.7) 21.1 (6.9) 20.6 (7.5)

High-level SCF 18.1 (88.4) 733.3 (90.5) 806.0 (8.0) 55.2 (57.5) 81.5 (26.5) 63.4 (23.2)

MP2 - - 7331.8 (72.8) - 35.6 (11.6) 36.5 (13.3)

Total energy 18.1 (88.4) 733.3 (90.5) 8137.9 (80.8) 71.3 (74.2) 138.2 (44.9) 120.5 (44.0)

Multipliers - - 1412.9 (14.0) 11.8 (12.3) 101.6 (33.0) 88.0 (32.2)

Gradient 2.4 (11.6) 77.1 (9.5) 520.7 (5.2) 13.0 (13.5) 68.0 (22.1) 65.3 (23.8)

Total gradient 2.4 (11.6) 77.1 (9.5) 1933.6 (19.2) 24.8 (25.8) 169.6 (55.1) 153.4 (56.0)

Energy+gradient 20.5 810.3 10071.5 96.0 307.9 273.9
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faster than any other method. It takes 50 times more time to calculate a PBE0 energy and

gradient. It is also apparent that the gradient calculation itself takes only a small fraction

of the total runtime for both PBE and PBE0.

With the embedding schemes, we can achieve convincing improvements in computer

timings. It takes eight times less to calculate the energy and gradient for PBE0-in-PBE

than for PBE0. We could measure around 10- and 3-times speedups for the energy and

gradient evaluations, respectively.

The difference is more pronounced for the DH functionals. A PBE0-2 gradient calculation

was also carried out for this system. The SCF iteration took around 13 hours, while the MP2

energy evaluation lasted 5 days and required 1 TB of disk space for the MP2 amplitudes.

After this, the evaluation of the gradient was around 32 hours, thus, the whole calculation

took just a few hours less than one week. Compared to this, the energy evaluation for the

embedding methods PBE0-2-in-PBE and PBE0-DH-in-PBE required around 2 hours, which

corresponds to a more than 60-fold speedup. The gradient calculation took approximately

2.5-3 hours, which is an order of magnitude faster than for PBE0-2. Although the total

energy and gradient calculation still takes around 5 hours, these methods are already feasible

options for geometry optimization.

For PBE and PBE0, the large portion of the total runtime (85-90%) is spent on the

energy calculation. In the case of PBE0-2 the energy evaluation took 80% of the total

runtime due to the large amount of data moved between the main memory and the disk.

The relative runtime of the energy calculation drops to around 70% for PBE0-in-PBE due to

the additional time needed for the determination of the multipliers. This gap shrinks further

for the embedding schemes using DH functionals, where the gradient and energy calculations

require around the same time, however, the gradient evaluation becomes the slightly more

dominant step. This can be explained with the second, high-level CPKS equation which has

to be solved. Moreover, the gradient of the last term in Eq. (43), the contribution of the

amplitudes, also requires a significant amount of time.

By careful inspection of Table V, one can notice that there are different timing data for

the low-level PBE calculations. This is the result of the different iteration count due to

the tighter SCF convergence thresholds used if post-SCF correlation calculations are carried

out.

The timings calculated with the def2-TZVPP basis set are shown in Table VI. For PBE,
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TABLE VI: Timing data for the zeolite system using the def2-TZVPP basis. For details,

see the caption of Table V.

Low-level method - - PBE PBE PBE

High-level method PBE PBE0 PBE0 PBE02 PBE0-DH

Low-level SCF - - 52.4 (14.3) 59.7 (3.2 ) 50.63 (2.3)

High-level SCF 49.4 (85.3) 2072.2 ( 90.0 ) 228.1 (62.2) 259.8 (14.0) 281.9 (12.6)

MP2 - - - 818.6 (44.1) 1043.8 (46.7)

Total energy 49.4 (85.3) 2072.2 ( 90.0 ) 280.6 (76.5) 1138.2 (61.3) 1376.4 (61.6)

Multipliers - - 37.0 (10.1) 334.6 (18.0) 402.1 (18.0)

Gradient 8.5 (14.7) 229.1 ( 10.0 ) 49.2 (13.4) 385.0 (20.7) 456.2 (20.4)

Total gradient 8.5 (14.7) 229.1 ( 10.0 ) 86.163 (23.5) 719.6 (38.7) 858.3 (38.4)

Total Energy+Gradient 57.9 2301.4 366.729 1857.8 2234.7

PBE0, and PBE0-in-PBE, the particular steps contribute to the total runtime in similar

proportions as for the def2-SVP basis set. The total runtime of PBE0-in-PBE is around

6 hours, which is a 6-fold speedup compared to PBE0. In the case of the DH functionals,

the MP2 energy evaluation becomes the most time consuming step due to the increased

memory requirements resulting in expensive data movements between the memory and the

disk. These calculations took over 30 hours, which can be limiting in applications like

geometry optimizations or TS searches. We note that typical organic molecules of the same

size contain fewer electrons and thus fewer AOs. As a result, similar calculations would

require less computer time.

We measured timing data for the COMT system as well. The whole protein contains 3420

atoms, of which 571 QM atoms were selected and surrounded by an MM environment. For

the embedding calculations, two different active spaces were used, one with 50 atoms and

another one with 64 atoms, denoted by COMT-1 and COMT-2, respectively. The different

regions are shown in Fig. 10. We only tested the PBE and PBE0-in-PBE methods in this

case, the measured data are collected in Table VII.

The majority of the computer time (over 80%) is spent on the solution of the high-level

SCF equations. Compared to this, the low-level SCF requires only a small fraction (7–9%)

of the computation time, and even the gradients can be evaluated relatively quickly (10%)
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FIG. 10: The COMT-1 (left) and COMT-2 (right) test systems. The outer blue region was

described with MM, the green colored part is the QM environment, while the QM active

atoms are shown in magenta.

as well. The calculation of the Lagrange multipliers takes around a quarter of the gradient

evaluation and just a few percent of the total runtime.

Although we did not perform PBE0 calculations for the full QM region, we can give an

approximate timing. There are in total 1106 MOs in the QM region, and only 105 and 139

MOs were selected as high-level ones for the COMT-1 and COMT-2 systems, respectively.

The computer time is dominated by the energy calculation, more precisely, by the calculation

of the exchange matrix, which scales linearly with the number of MOs. Thus, the estimated

runtimes are around 11 and 13 days for the COMT-1 and COMT-2 systems, respectively,

which translate to speedups of around 7-10 times.

The entire calculation for these systems took 1-2 days, which is relatively lengthy for

geometry optimization but suitable for the calculation of first-order properties. We note

that our SCF implementation can handle multiple Message Passing Interface (MPI) threads.

Running the SCF program in MPI parallel mode could improve the total runtime of our

calculations. On the other side, our gradient code is not MPI parallel yet, therefore, the

proportion of the gradient evaluation would most probably flip over in an MPI parallel

run and it would require an overwhelmingly large part of the total runtime. This test

shows clearly that increasing the scalability of our gradient code with MPI could extend the

applicability of this implementation foreshadowing possible further developments.
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TABLE VII: Timing data for the COMT systems using the PBE0-in-PBE approach. For

details see the caption of Table V.

System COMT-1 COMT-2

Low-level SCF 175.7 (8.9) 196.9 (6.7)

High-level SCF 1474.9 (74.8) 2298.4 (78.7)

Total energy 1644.8 (83.7) 2495.3 (85.5)

Multipliers 97.1 (4.9) 110.2 (3.8)

Gradient 224.2 (11.4) 313.3 (10.7)

Total gradient 321.2 (16.3) 423.5 (14.5)

Energy+gradient 1971.8 2918.7

V. CONCLUSIONS AND OUTLOOK

In this article, we have presented the theory, efficient implementation, and demonstrative

applications of analytic gradients for the Huzinaga-equation-based embedding method. Sev-

eral test calculations have been performed on various molecular systems, and the method

has been applied to equilibrium geometry optimizations, TS searches, and potential energy

surface scans.

We have demonstrated that in geometry and TS optimizations, the present embedding

method can relax not just the structure of the active subspace but that of the environ-

ment as well, thus, increasing the accuracy of the low-level method for the environment.

The calculated structures converge to the ones determined with the high-level methods by

systematically expanding the active subsystem. With PES scans for the zeolite-catalyzed

methylation reaction, we could demonstrate that treating just a small fraction (ca. 10%) of

the whole system on a higher level of theory can drastically change the calculated properties,

in this case, the reaction barrier height.

We have also presented timing data. It has been shown that with small active subsystems,

significant, up to an order of magnitude, speedups can be achieved compared to the high-

level methods. In the case of DFT-in-DFT embedding, the energy evaluation requires the

majority of the computer time, while for DH-in-DFT, the gradient calculation is the more

time consuming step. The presented developments accelerate (double) hybrid DFT gradient

31

https://doi.org/10.26434/chemrxiv-2024-n4zhb ORCID: https://orcid.org/0000-0001-6692-0879 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-n4zhb
https://orcid.org/0000-0001-6692-0879
https://creativecommons.org/licenses/by-nc-nd/4.0/


computations for systems of up to a few hundred QM and ca. 20–50 embedded atoms to a

widely accessible time already with 8 cores of a single processor.

At this point, our gradient code is shared-memory parallel only, and it can use around

a dozen of processor cores efficiently. Further developments should focus on increasing

scalability by implementing a hybrid distributed- and shared-memory parallel version. Other

possible ways to broaden the applicability of our approach is the implementation of AO basis

set truncation29, the use of local fitting SCF methods53,87, and the implementation of WF-

in-DFT gradients for other WF methods as well.
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32

https://doi.org/10.26434/chemrxiv-2024-n4zhb ORCID: https://orcid.org/0000-0001-6692-0879 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-n4zhb
https://orcid.org/0000-0001-6692-0879
https://creativecommons.org/licenses/by-nc-nd/4.0/


Methodology (equal); Writing – review & editing (equal). Mihály Kállay: Conceptualization
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Appendix A: Calculation of Lagrange multipliers for DH-in-DFT and

MP2-in-DFT embedding

Introducing the variables

AApq = aMP2

∑
ω

C̃A
ωp

∂Etot

∂C̃A
ωq

(A1)

Ãcv,Apq [z̃cv] =
∑
i∈core

j∈valence

z̃cvij
∑
ω

C̃A
ωp

∂

∂C̃A
ωq

[∑
µν

C̃A
µiC̃

A
νjF̃µν [D̃

A]

]
(A2)

ÃApq[z̃] =
∑
ai

z̃ai
∑
ω

C̃A
ωp

∂

∂C̃A
ωq

[∑
µν

C̃A
µaC̃

A
νiF̃µν [D̃

A]

]
, (A3)

we first solve the equation∑
ω

C̃A
ωi

∂L
∂C̃A

ωj

−
∑
ω

C̃A
ωj

∂L
∂C̃A

ωi

= Ãcv,Aij [z̃cv]− Ãcv,Aji [z̃cv] + AAij − AAji = 0 (A4)

for z̃cv, where i and j label core and valence orbitals, respectively. Next, we determine the

z̃ multiplier from∑
ω

C̃A
ωa

∂L
∂C̃A

ωi

−
∑
ω

C̃A
ωi

∂L
∂C̃A

ωa

= ÃAai[z̃]− ÃAia[z̃] + Ãcv,Aai [z̃cv] + AAai − AAia = 0, (A5)

where i denotes any occupied orbital. By substituting z̃ and z̃cv into the equation∑
ω

C̃A
ωp

∂L
∂C̃A

ωq

= AApq + ÃApq[z̃] + Ãcv,Apq [z̃cv] + xpq = 0, (A6)

we get the x̃ multiplier. Finally, y is determined from the equation∑
ω

CB
ωi

∂L
∂C̃A

ωp

= 0. (A7)
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The rest of the multipliers can be obtained similarly as in the case of the DFT-in-DFT

embedding. The only difference is in the definition of the Apq matrix of Eq. (18) due to the

high-level Brillouin condition:

Apq =
∑
ω

Cωp
∂

∂Cωq

[
Etot +

∑
pj

ypj
∑
µν

C̃A
µpSµνC

B
νj +

∑
ai

z̃ai
∑
µν

C̃A
µaC̃

A
νiF̃µν [D̃

A]

]
. (A8)

Appendix B: Comparison with numerical gradient

To verify the correctness of our implementation, the analytic gradients were compared

to the numerical ones. To that end, we used a distorted ethanol molecule36. The analytic

gradients were calculated with the default thresholds, whereas the numerical ones were

determined using a four-point finite difference scheme with a step size of 0.005 bohr. We

employed Dunning’s cc-pVDZ basis set and a 770-point Lebedev grid in all calculations.

The active space contains the OH group. The data are shown in Table VIII. The errors are

well below our threshold for geometry convergence (10−4 a.u.). The differences are little bit

larger for DFT calculations, which is a result of neglecting the geometry dependence of the

integration grid.

TABLE VIII: Root-mean-square (RMS) error (in a.u.) of analytic gradients compared to

numerical ones for a few methods.

Method RMS error

PBE 4.96 · 10−7

PBE0-in-PBE 1.62 · 10−6

MP2-in-HF 1.94 · 10−8

We also have to note that the exact orthogonality condition is only fulfilled if the Huzinaga

equations are solved exactly, which might bring in some error in the gradient as well. To

check the accuracy of the orthogonality, the maximal element of the matrix (C̃A)TSCB

was monitored for different convergence thresholds. For a looser threshold of 10−6 Eh, the

maximal matrix element is in the order of 10−11, while for the default threshold (10−8 Eh),

it drops down to 10−13. As a result, the orthogonality condition is satisfied at a very high

accuracy even with loose convergence criteria, thus it should not introduce any measurable
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error into the gradient.
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M. Farkas, P. D. Mezei, and R. A. Horváth, Mrcc, a quantum chemical program suite.

See https://www.mrcc.hu/. (Accessed December 1, 2023).

37

https://doi.org/10.26434/chemrxiv-2024-n4zhb ORCID: https://orcid.org/0000-0001-6692-0879 Content not peer-reviewed by ChemRxiv. License: CC BY-NC-ND 4.0

https://doi.org/10.26434/chemrxiv-2024-n4zhb
https://orcid.org/0000-0001-6692-0879
https://creativecommons.org/licenses/by-nc-nd/4.0/


64P. A. M. Dirac, Proc. R. Soc. London A. 123, 714 (1929).

65J. C. Slater, Phys. Rev. 81, 385 (1951).

66J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

67J. P. Perdew, M. Ernzerhof and K. Burke, J. Chem. Phys. 105, 9982 (1996).

68C. Lee, W. Yang and R. G. Parr, Phys. Rev. B. 37, 785 (1988).

69A. D. Becke, J. Chem. Phys. 88, 2547 (1988).

70M. E. Mura and P. J. Knowles, J. Chem. Phys. 104, 9848 (1996).

71T. H. Dunning Jr., J. Chem. Phys. 90, 1007 (1989).

72D. E. Woon and T. H. Dunning Jr., J. Chem. Phys. 98, 1358 (1993).

73F. Weigend, J. Comput. Chem. 29, 167 (2008).
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75F. Weigend, A. Köhn and C. Hättig, J. Chem. Phys. 116, 3175 (2002).
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