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1 Abstract

Developing full-dimensional machine-learned potentials with the current “gold-standard”

coupled-cluster (CC) level is a challenging already for medium-sized molecules due to the

high computational cost. Consequently, researchers are often bound to use lower-level elec-

tronic structure methods such as density functional theory or second-order Møller–Plesset

perturbation theory (MP2). Here, we demonstrate on a representative example that gold-

standard potentials can now be effectively constructed for molecules of 15 atoms using off-

the-shelf hardware. This is achieved by accelerating the CCSD(T) computations via the

accurate and cost-effective frozen natural orbital (FNO) approach. The ∆-machine learn-

ing (∆-ML) approach is employed with the use of permutationally invariant polynomials to

fit a full-dimensional PES of the acetylacetone molecule, but any other effective descriptor

and ML approach can similarly benefit from the accelerated data generation proposed here.

Our benchmarks for the global minima, H-transfer TS, and many high-lying configurations

show the excellent agreement of FNO-CCSD(T) results with conventional CCSD(T) while

achieving a significant time advantage of about a factor of 30 – 40. The obtained ∆-ML PES

shows high fidelity from multiple perspectives including energetic, structural, and vibrational

properties. We obtain the symmetric double well H-transfer barrier of 3.15 kcal/mol in ex-

cellent agreement with the direct FNO-CCSD(T) barrier of 3.11 kcal/mol as well as with

the benchmark CCSD(F12*)(T+)/CBS value of 3.21 kcal/mol. Furthermore, the tunneling

splitting due to H-atom transfer is calculated using a 1D double-well potential, providing

improved estimates over previous ones obtained using an MP2-based PES. The methodology

introduced here represents a significant advancement in the efficient and precise construction

of potentials at the CCSD(T) level for molecules above the current limit of 15 atoms.
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2 Introduction

The potential energy surface (PES) originating from the Born–Oppenheimer approximation,

that is the electronic energy of a molecule or material expressed as a function of its nuclear

coordinates, plays a central role in theoretical and computational modeling. At least for

relatively small systems and/or cost-efficient approximate models, it is possible to obtain

(a required portion of) the PES in real time by repeatedly extracting the energies and

gradients (or forces) from electronic structure models for the relevant nuclear configurations.

However, the computational expense becomes prohibitive as the complexity of the electronic

structure theory and the size of the system increases. An alternative approach constructs a

precise analytical representation of the PES fitted to datasets of electronic energies (and/or

gradients) that cover the required dimensions of the configuration space. Since the PES

establishes a connection between the configuration of atomic nuclei and the forces acting upon

them, it is key in numerous fields including reaction dynamics, kinetics, and thermodynamics,

vibrational analysis incorporating both harmonic and anharmonic aspects, spectroscopic

properties connected to nuclear motion, and structure optimization.

In the past 15 years, significant progress has been made in the enhancement of nonpara-

metric machine learning (ML) approaches used to fit large datasets of electronic energies (

and/or gradients) for molecules and molecular clusters. Three commonly utilized techniques

for this purpose include permutationally invariant polynomials (PIPs), a linear regression

method, as well as neural networks (NN), and Gaussian process regression (GPR), which

are both non-linear regression methods.1–11 Extending these methods to larger molecules of

interest in the fields of chemistry, physics and biology presents a significant challenge.
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Another major obstacle in the PES development for molecules of increasing size is to

retain models of sufficiently high predictive power. Both the number of data points needed

for PESs with increasing degrees of freedom and the computational cost of the quantum

chemistry models scales steeply with the systems size. In particular, coupled-cluster (CC)

models, with well converged wave-function and basis set expansions have proven their accu-

racy for a wide range of molecular and material properties.12–14 Especially, the CC method

with single and double excitations (CCSD) augmented with perturbative triples correction

[CCSD(T)]15 is generally considered as the “gold standard” of quantum chemistry. However,

the steep O(N 4)- and O(N 7)-scaling data storage and operation count complexity with sys-

tem size N hinders the routine application of conventional CCSD(T) for PESs of systems

above ca. 10–12 atoms.

Regarding the acceleration of CCSD(T), shared-memory intra-node (Open Multi-Processing,

OpenMP) and/or multinode (Message Passing Interface, MPI) parallelization ideas were

extensively explored.16–26 For example, the hybrid MPI/OpenMP CCSD(T) from one of

us utilizes all permutational symmetries of the CCSD(T) equations while exhibiting the

highest peak-performance utilization reported so far.26 Still, our record-sized single-point

CCSD(T)/quadruple-ζ computation for a 31-atom molecule took almost 3 days on 224 cores,

which illustrates that the routine generation of extensive databases, training sets, or PESs

remains a bottleneck with conventional CCSD(T), at least for molecules of a few dozen

atoms.

Explicitly correlated (F12) CC approaches can also be effective to reduce the basis set re-

quirement of CCSD(T),27–29 out of which our recent (T+) approach in combination with the

CCSD(F12*) model30 was shown to be particularly effective.31,32 Alternatively, reduced-cost

CCSD(T) approaches, such as the here employed frozen natural orbital (FNO) method (see

Sect. 3.1) can be utilized to compress the space spanned by the virtual molecular orbitals

(MOs).33–37 The combination of the FNO approach with our MPI/OpenMP CCSD(T) imple-

mentations was especially beneficial to enable basis set limit FNO-CCSD(T) computations
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for up to 50 atoms.32,36

In addition to the high cost of single-point CCSD(T) computations, the number of con-

figurations required for high-dimensional PES construction also steeply increases with the

number of atoms. Therefore, to compute PESs of larger molecules, lower-level electronic

structure methods like density functional theory (DFT) and second-order Møller–Plesset

perturbation theory (MP2) are employed, while CCSD(T)-level PESs of molecules above 10

atoms have been reported in only a handful of recent studies.38–48 As an illustration, the

symmetric gradient domain machine learning model have been proposed to construct global

the force field of flexible molecules up to with 15 atoms at the CCSD(T) level by Tkatchenko

and co-workers in 2018.38 In 2019, Roitberg and co-workers introduced a transfer learn-

ing (TL) technique to develop neural network potentials for several organic and drug like

molecules approaching CCSD(T) quality correcting a DFT dataset.40 Meuwly and co-workers

employed TL using thousands of local CCSD(T) energies to improve their MP2-based neural

network PESs for malonaldehyde, acetoacetaldehyde, and acetylacetone.41 Recently, Daru,

Behler, and Marx reported a high dimensional coupled-cluster level neural network potential

for liquid water for condensed phase simulations including nuclear quantum effects via path

integral dynamics.46

Instances of PESs for chemical reactions involving 6–10 atoms have been documented,

which were constructed by fitting tens or even hundreds of thousands of CCSD(T) energy

data points.49–52 In 2016, Bowman and co-workers reported the PES for 10-atom formic acid

dimer (HCOOH)2, using 13475 energies at CCSD(T)-F12 and triple-ζ level of theory.53 This

PES was subsequently applied for zero-point energy computation using the diffusion Monte-

Carlo (DMC) method and ground-state tunneling splitting for the H-transfer process. The

cost-reduction capabilities of local approximations to CCSD(T)54–57 has also motivated their

use in PES development for medium-sized systems.41,43,44,46 In 2021, a 15-atom acetylacetone

PES was developed by Bowman and co-workers using 2151 local approximated CCSD(T)-F12

computations.43 More recently, Nandi et al. utilized an efficient fragment-based molecular
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tailoring approach to construct full-dimensional CCSD(T) PESs for 15-atom acetylacetone

and tropolone molecules.44,58 The latter tropolone PES is extensively used for ring-polymer

instanton calculations to compute tunneling splittings in agreement with the experimental

values.58

To advance high-throughput reference data generation required, e.g., for the PES gen-

eration protocols of systems of up to about 15–20 atoms, like in the present study, we

recommend and employ here the FNO-CCSD(T) model for the first time. We combine the

uniquely efficient FNO-CCSD(T) implementation36,37 of the Mrcc program suite59,60 (see

Sect. 3.1) and advanced ML approaches (see Sect. 3.2) to enable routine PES generation at

the 15-atom scale on the example of acetylacetone. For that, we first extend the previous

FNO benchmarks on, e.g., atomization and reaction energies, as well as molecular interac-

tions32,36,37,61 to configuration energies required for the PES fitting by assessing the accuracy

of FNO-CCSD(T) against approximation free CCSD(T) reference. Then, we recommend ac-

curate and routinely applicable settings suitable for high-throughput FNO-CCSD(T) compu-

tations, which we also employ for several hundreds of acetylacetone configurations to develop

its CCSD(T)-level PES. Here we use PIP method to fit the coupled-cluster level PES. The

PIP approach is well-established and has been successfully applied for small to medium-sized

molecules with numerous applications. Next, this PES is utilized for conducting overall fi-

delity assessments such as geometry optimization, calculating normal mode frequencies, and

determining the tunneling splitting for the H-transfer process.

The paper is organized as follows. In the next section, we provide a brief overview of the

FNO-CCSD(T) technique utilized for data generation, as well as the PIP approach to fitting

the PES employing the ∆-ML method. Then, we present benchmark results for the accuracy

of the FNO-CCSD(T) method as well as the newly fitted PES. Finally, the “Conclusions and

Outlook” section ends the paper.
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3 Methods

3.1 Accelerated coupled cluster methods

The main computational difficulties with CCSD(T) originate from the equations determining

the CCSD and (T) amplitudes, which exhibit O(N 6)- and O(N 7)-scaling operation count

complexity, respectively, and O(N 4)-scaling data complexity (for both terms). For the tar-

geted 15-atom system, even with some of the well-optimized implementations and 10–20-core

processors, the steep scaling of CCSD(T) already requires hours to days of wall-clock time

and tens to hundreds of GBs of data with sufficiently large, triple- or quadruple-ζ basis sets.

Recent developments, such as the use of density-fitting (DF),24–26,62,63 help to reduce the

latter storage challenges. For example, our recent integral-direct DF-CCSD(T) implementa-

tion eliminated problematic disk I/O and network traffic bottlenecks as well as also enabled

us to develop the most data- and memory-economic algorithms for both the CCSD26 and

the (T)63 parts reported so far.

Considering the generation of extensive benchmark data sets, such as with the large

number of configuration energies for the PES fitting here, the overall task already consists of

many independent CCSD(T) computations. Thus, parallelization within a single CCSD(T)

computation is only useful up to a certain number of cores, where the available processor

performance can be effectively utilized (given other limitations, such as memory or data

transfer bottlenecks). For instance, it is not efficient to run 128 different single-thread

CCSD(T) jobs on the 128-core nodes employed here due to data bandwidth bottlenecks,

while providing multiple (ca. 16–32-core) jobs per node with separate memory channels

appear to be highly effective.

Therefore, it is worthwhile to reduce the computational cost via the frozen natural orbital

(FNO) approach.33–37 The natural orbitals (NOs) of FNO method are usually obtained as the

eigenvectors of a one-particle density matrix, built mostly using a model wavefunction, such

as MP1.33–37 Then, the NOs with occupation numbers below a threshold are kept frozen,
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that is, only the most important, n̄v number of frozen NOs are taken into account in the

remainder of the CCSD(T) computation. The benefit is that the rate-determining steps

of both CCSD and (T) scale with the fourth power of the number of virtual orbitals, nv.

Consequently, a theoretical speedup of (nv/n̄v)4 can be anticipated for the most demanding

steps of both the CCSD and the (T) parts. Additionally, the memory requirement for

the DF integrals and the doubles amplitudes also decreases by a factor of (nv/n̄v)2, while

a factor of (nv/n̄v)3 data compression is realized for intermediates required for the (T)

algorithm.26,63,64 Such data compression has an additional benefit for our integral-direct DF-

CCSD(T) algorithm,36 eliminating the need for repeated four-center ERI assembly in the

FNO-CCSD(T) computations presented here. Moreover, both in our conventional26 and

FNO-based36 CCSD(T) codes of the Mrcc program suite59,60 the operation count and the

memory requirement are fully optimized by exploiting all permutational symmetries with an

unparalleled 50–70% peak performance utilization up to hundreds of cores. In addition, all

terms of our DF-CCSD(T) code are hand-optimized,26,63 which is particularly important for

maintaining the high efficiency with compressed FNO-basis sets.36 Moreover, the negligible

disk I/O and network use allow for the execution of a large number of medium-sized CCSD(T)

computations simultaneously on the same cluster/node and network file system.

Due to the properties of the MP one-particle density matrix, the FNO approach can be

interpreted as the singular value decomposition (SVD) of the MP doubles amplitude ten-

sor, and thus the FNO approximation provides an optimized model basis for the truncated

representation of the wavefunction. Analogous to the FNO method, the natural auxiliary

function (NAF) approach was introduced to compress the three-center ERIs appearing in

DF methods via SVD.36,65 To that end, the NAFs can be considered as the optimal linear

combination of the DF auxiliary functions. Similarly to the case of the FNOs, the compres-

sion rate of the NAF basis can be controlled via a single truncation parameter by dropping

singular vectors with a singular values below the NAF threshold. The NAF approximation

is very robust and its accuracy can be set to approach that of the DF approximation.36,65
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The combination of the FNO and NAF approaches is beneficial, since after the introduction

of the molecule-specific and compressed FNO virtual basis, the number of remaining FNO

product densities decreases by a factor of (nv/n̄v)2. Consequently, a significant DF auxiliary

basis compression can be achieved by generating a molecule specifically optimized NAF basis

corresponding to only the retained FNO basis.

The error of the FNO and NAF basis compressions can be corrected via an MP2 level

energy correction:36,37

EFNO−CCSD(T) = E
CCSD(T)
FNO + EMP2

MO − EMP2
FNO , (1)

where the subscripts indicate that the corresponding CCSD(T) or MP2 energies are evaluated

using the compressed FNO (and NAF) basis or the complete molecular orbital (MO) (and

DF auxiliary) basis.

3.2 ∆-Machine Learning for PES construction

∆-Machine learning66–68 is a general method to bring a property, such a PES, trained on

an efficient lower-level method close to the accuracy of a higher-level method. Here, we

correct an MP2-level PES to the gold standard CCSD(T) level, for which ∆-ML approach

was already employed and tested extensively also by some of us.43,69,70 The underlying theory

of the ∆-ML approach can be succinctly summarized by the following equation:

VLL→CC = VLL + ∆VCC−LL (2)

In this equation, VLL→CC represents the corrected potential energy surface, VLL denotes

a PES fitted to low-level electronic energies, such as from DFT or MP2, and ∆VCC−LL

corresponds to the correction PES which is a fit to the difference in high-level and low-

level energies only (i.e. here without gradients). It is worth noting that the variation of

∆VCC−LL, which represents the difference between CCSD(T) and DFT/MP2 energies, is not
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as pronounced as that of VLL in relation to nuclear configurations (see below in Fig. 5).

Consequently, only a smaller number of high-level electronic energies are sufficient for fitting

the correction PES. In our current application to acetylacetone, a total of 430 FNO-CCSD(T)

electronic energies were computed to accomplish this corrected potential fitting.

Here, we employ the PIP approach to fit both the VLL and ∆VCC−LL PESs. The theory of

permutationally invariant polynomials is well-established and has been presented in several

review articles.1,2,71–73 In terms of a PIP basis, the potential energy, V , can be written in a

compact form as

V (x) =

np∑
i=1

cipi(x), (3)

where ci are linear coefficients, pi are PIPs, np is the total number of polynomials for a

given maximum polynomial order and x are Morse variables. For example, xαβ is given by

exp(−rαβ/λ), where rαβ is the internuclear distance between atoms α and β. The range

(hyper)parameter, λ, was chosen to be 2 bohr. The linear coefficients are obtained using

standard least squares methods for a large data sets of electronic energies (and when available

gradients as well) at scattered geometries.

In order to develop a corrected PES, we need to generate a dataset of high- and low-level

energies. In this study, we used MP2/aug-cc-pVTZ energies and gradients as low-level data.

The low-level PES, VLL is taken from previously reported data by Chen Qu and co-workers74

which was a fit using a data size of 5454 energies and their corresponding gradients spanning

the energy range of 0 - 40 000 cm−1. More details of this VLL PES can be found in Ref. 74.

We briefly note that the model and basis set employed for the FNO and NAF corrections

in Eq. (1) is MP2 with the same basis set used for the CCSD(T) computation, which are in

general independent from the low-level model and basis set choices.

To develop the correction PES, we train ∆VCC−LL on the difference between the FNO-

CCSD(T) and MP2 absolute energies (with aug-cc-pVTZ basis) for 430 geometries (provided

in the Supplementary Material). The dataset of 430 geometries were sparsely selected from

the MP2 dataset of 5454 geometries, which was taken from recently reported data by Nandi
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et al.44 A low-order PIP fit was employed because the difference ∆VCC−LL is not as strongly

varying as VLL with respect to the nuclear configuration. We used maximum polynomial

order of 2 with permutational symmetry {1,2,5,7} (this symmetry indicates that the trans-

ferring “H” atom is treated as distinguishable, remaining seven “H” atoms are permutable

with each other, as the two “O” atoms and five “C” atoms) to fit the training data set. This

leads to a total of 86 PIP bases such as unknown coefficients. The PIP basis to fit these VLL

and ∆VCC−LL PESs were generated using the latest MSA software.75,76 These coefficients

are determined by a standard linear least-square regression method.

4 Computational details

All conventional26 and reduced-cost32,36,37 CCSD(T) computations were performed with the

2022 release of the Mrcc quantum chemistry program suite, available open-source for aca-

demic use.59,60 Closed-shell references and the frozen core approximation were applied in

all correlation calculations. All valence occupied orbitals were kept in the FNO-CCSD(T)

computations, only the virtual orbital space was compressed via the FNO approach, which

was governed by the lnoepsv keyword. For all reduced-cost FNO-CCSD(T) computations

the default threshold of the NAF approach was employed irrespective of the FNO threshold,

that is 0.05 a.u., set automatically via the naf_cor keyword of Mrcc.

For the AO basis set, the correlation consistent X-tuple-ζ (aug-)cc-pVXZ (X =D, T, and

Q) sets77,78 were employed with the corresponding DF auxiliary bases, (aug-)cc-pVXZ-RI-

JK79 and (aug-)cc-pVXZ-RI.80 For the CCSD(F12*)(T+) explicitly correlated calculations

the correlation consistent X-tuple-ζ cc-pVXZ-F12 (X = T, Q) AO basis sets81 and the

corresponding cc-pVXZ-F12-OPTRI CABS bases were employed.82,83 The extrapolations of

the HF84 and the correlation energies85 towards the complete basis set (CBS) limit were

performed separately, according to standard expressions. The extrapolated results will be

denoted as CBS(X,X + 1).
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The wall-clock time measurements were carried out using 16 cores per job of 64-core AMD

Epyc 7H12 CPUs. The employed two-socket nodes were in a national level computer cluster

under production use, executing competing tasks of multiple users. The nodes contain about

220 GB accessible memory (allowing 27 GB memory/job) and do not have local disks, only

network storage access.

5 Results and Discussions

In this Section we benchmark the computational settings used for the FNO-CCSD(T) PES

generation. A few important configurations (see Fig. 1) are considered including the global

minima (GM), a low-laying saddle point (TS-I), H-transfer transition state [TS(H)], a high

energy structure denoted as A2, as well as 20 additional configurations exhibiting some of

the highest uncertainty in comparison to previous results.43 Then, after obtaining the FNO-

CCSD(T) training set for 430 configurations and fitting the PES, the high quality of the

PES will be illustrated on various structural and vibrational properties of acetylacetone.

5.1 Accuracy of the FNO-CCSD(T) configuration energies

The FNO approach (including also the NAF approximations) has been extensively bench-

marked on, e.g,. atomization, reaction, and non-covalent interaction energies.32,36,37 These

properties are expected to be somewhat more challenging than the present case, as better

compensation of FNO errors can be expected for energy differences between configurations of

the same molecule. However, since such configuration energy tests are not yet available, we

explore the accuracy of the FNO-CCSD(T) approach against the approximation free refer-

ences. The FNO truncation errors of FNO-CCSD(T) with respect to the FNO approximation

free reference are collected in Fig. 2 for the TS(H) and A2 configuration energies.

The previously established36,37 default (5·10−5 or 3·10−5) and tighter (10−5) FNO thresh-

olds are found to be highly reliable here too. Thus, we also explore more cost-efficient FNO
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Figure 1: Geometry of global minimum (GM), low-laying saddle point (TS-I), H-transfer sad-
dle point [TS(H)], and a high-energy structure (A2) of acetylacetone and their corresponding
electronic energies (cm−1) relative to the global minimum from ∆-ML PES. (Atomic num-
bering scheme was used to generate PIP bases to fit VLL PES.)
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Figure 2: FNO truncation error for the TS(H) barrier height (left) and A2 configuration
energy (right) with respect to the FNO threshold with aug-cc-pVXZ basis sets. The re-
sults are arranged to show increasing accuracy corresponding to decreasing FNO truncation
threshold values on the x axis.
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settings of 3 · 10−4 and 10−4, out of which 10−4 performs very well. First, the aug-cc-pVDZ

(green circles) FNO errors in Fig. 2 are only moderately higher than those obtained with the

practically more relevant aug-cc-pVTZ (red crosses) and aug-cc-pVQZ (blue squares) ones.

Moreover, systematic convergence of the (absolute) FNO errors is found with tightening the

FNO thresholds. Regarding the aug-cc-pVTZ and aug-cc-pVQZ basis sets, the FNO errors

are within the [-0.11,0.07] kcal/mol or [-39,24] cm−1 range already with the 10−4 threshold

for both the barrier height and the A2 configuration energy. It is also satisfactory, that the

corresponding (absolute) FNO errors are below 0.03 kcal/mol or 10 cm−1 with the one step

tighter, 3 · 10−5 FNO settings.

While the accuracy of the FNO approach is the most important up to the region of

TS(H), we also estimate the magnitude of the largest inaccuracies along the entire investi-

gated interval of the PES. To that end, we selected 10 additional configurations where the

largest disagreements occurred with the previously obtained local approximated CCSD(T)

dataset.43 All of these 10 configurations turned out to be of very high energy in the range of

[33.6,87.9] kcal/mol or ca. [11750,30750] cm−1 above the GM. Therefore, we extended this

list with 10 configurations selected randomly from the interval between the TS(H) and the

configuration at the lower end of the above interval (33.6 kcal/mol).

In Fig. 3 we plot the resulting FNO errors corresponding to the 10−4 settings compared

to the DF-CCSD(T) reference for these 10+10 configurations [as well as TS(H) and A2].

As expected, the FNO errors somewhat increase with the increasing configuration energy,

which appears to be quite systematic for the randomly selected 10 configurations. In this

region, the previously found FNO error of ca. 0.1 kcal/mol (35 cm−1) roughly doubles by

reaching the 30 kcal/mol (10500 cm−1) configuration energy range. The average error up to

this point is 0.15 kcal/mol (52 cm−1), which is excellent considering the low probability of

such high-energy configurations. The largest expected uncertainties can be estimated for the

other 10 structures in the [33.6,87.9] kcal/mol or [11750,30750] cm−1 region. Indeed, here the

average error grows to 0.3 kcal/mol (105 cm−1), which is again acceptable considering the
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Figure 3: FNO-CCSD(T) configuration energy errors compared to the DF-CCSD(T)/aug-
cc-pVTZ reference for all investigated configurations including TS(H), A2, 10 configurations
with the highest uncertainty from the [33.6, 87.9] kcal/mol or [11750,30750] cm−1 interval,
and 10 randomly selected configurations from the [3.1, 33.6] kcal/mol or [1084,11750] cm−1
interval.

very low population of these high-energy configurations. All in all, the steepness of the FNO

error increase is much lower than the corresponding increase in the configuration energies,

and more importantly, very small compared to the exponential decrease in the populations

of these configurations.

We also study the FNO-CCSD(T) wall times as a function of the basis set and FNO

threshold choice (Fig. 4). Considering the 3–4-fold increase of the wall times stepping from

10−4 to 3 ·10−5 FNO settings and the satisfactory performance of both, FNO-CCSD(T)/aug-

cc-pVTZ with 10−4 FNO threshold offers the best accuracy/cost performance for large-scale

data generation in PES fitting.

As collected in Table 1, this choice corresponds to a speed up factor of 38 compared

to the FNO approximation free CCSD(T)/aug-cc-pVTZ computations. In absolute terms,

the FNO-CCSD(T)/aug-cc-pVTZ correlation energy computations with 10−4 settings take

about 3–4 minutes with an additional 1–2 minutes for the SCF and integral transformation

steps. These FNO-CCSD(T)/aug-cc-pVTZ computations require a minimum of 0.8 GB

or, without any repeated integral evaluations, only a few GBs of memory. These hardware
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Figure 4: FNO-CCSD(T) correlation energy computation time measurements (in minutes)
on 16 cores for the various FNO settings and basis sets.

requirements and the comparable amount of disk and network use make these FNO-CCSD(T)

computations especially suitable for high-throughput reference data generation, e.g., for PES

fitting or ML training tasks. For example, the 430 points used here for the acetylacetone PES

would take less than 2 days on a 16 core machine, which could go down to about 6 hours

when using all 128 cores of the here employed dual-socket AMD node. Running 8 FNO-

CCSD(T) jobs on such nodes is feasible due to the moderate, few GB memory requirement

(Table 1) and limited I/O and network use of the FNO-CCSD(T) implementation26,36 in the

Mrcc program suite.59,60

Table 1: Wall times, speedups as well as minimal memory requirements (in GB units)
without and with the FNO approach using the 10−4 threshold and aug-cc-pVXZ basis sets.
The maximum utilized memory (in GB units) columns show the memory consumption of the
jobs, while the minimal requirement would be sufficient for execution (with some repeated
integral evaluation steps). The last column holds the corresponding FNO error in the TS(H)
barrier height.

X Wall time [min] Speedup CCSD(T) memory FNO-CCSD(T) memory FNO error
CCSD(T) FNO-CCSD(T) min max used min max used [cm−1]

D 3.7 0.9 3.9 1.0 7.4 0.27 1.3 -4.7
T 119.4 3.1 38.3 10.4 51.2 0.80 6.3 3.5
Q 995.2 4.1 240.9 64.7 107.5 0.99 8.3 6.2
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5.2 Fitting and benchmarking the PES

We develop a new full-dimensional PES of acetylacetone at the FNO-CCSD(T)/aug-cc-pVTZ

level of theory using the ∆-machine-learning (∆-ML) approach. To obtain this CCSD(T)

PES we add the correction ∆VCC-LL to the low-level MP2 PES, VLL. So, the development

of this PES can be divided into two parts: low-level PES (VLL) and a correction PES

(∆VCC-LL). Here we use a previously reported VLL PES which is fit to 5454 energies and

their corresponding gradients computed at the MP2/aug-cc-pVTZ level of theory.74 For this

fit, a maximum polynomial order of three was used which led to a total of 6207 PIP basis

functions. The symmetry designation for this fit was {1,2,2,2,6,1,1}, meaning that the two

oxygens (atoms 2 and 3) are treated as equivalent, as are the two carbons (atoms 4 and

5), the two terminal carbons (atoms 6 and 7), and the six hydrogens (atoms 8–13) on the

terminal carbons are treated equivalent too (as labeled in Fig. 1). The remaining ’H’ atoms

and the central carbon are treated as unique. The weighted average fitting RMS errors for

energies and gradients were 49 cm−1 and 29 cm−1 bohr−1, respectively. More details of this

PES can be found in Ref. 74.

To develop a new correction PES, we train ∆VCC-LL on the difference between the FNO-

CCSD(T) and MP2 absolute energies of 430 geometries. A plot of ∆VCC-LL versus the MP2

energies is shown in Fig. 5. Note that we reference ∆VCC-LL to the minimum of the difference

between the FNO-CCSD(T) and MP2 energies (roughly -23 436 cm−1). The energy range

of ∆VCC-LL is about 1800 cm−1 in Fig. 5, which is much smaller than the MP2 energy range

relative to the minimum value (roughly 35 000 cm−1).74

Thus, the difference ∆VCC-LL is not as strongly varying as VLL with respect to the

nuclear configuration, and a low-ordered polynomial can be employed to fit this. We use a

maximum polynomial order of 2 with permutational symmetry {1,2,5,7} to fit the dataset

which leads to a much smaller number (86) of unknown linear coefficients. We perform both

weighted average and unweighted fitting for ∆VCC-LL. In the process of weighted average

fitting, a weight is assigned to each data point based on its energy. The weight is given by
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Figure 5: Plot of ∆VCC−LL (relative to the reference value i.e. -23 436 cm−1) vs MP2 energy
relative to the global minimum value.

wt = E0/(E0 + dE), where dE is the energy relative to the minimum in a.u., and E0 is the

parameter that we could modify. For the unweighted fitting, E0 is typically set as a large

number, such as 1010 a.u., resulting in all weights essentially being 1. In this case, we chose

E0 to be 0.02 a.u. to achieve the desired weighted average fitting matching Ref. 74. The

RMSEs for the weighted and unweighted fitting are 11 cm−1 and 52 cm−1, respectively. To

examine the performance of the PES, we use weighted averaged ∆VCC-LL fitting only.

We add this correction ∆VCC-LL to the low level MP2 PES, VLL to obtain the total

CCSD(T) energies. We perform geometry optimization and normal-mode frequency calcula-

tions for global minimum (GM) geometry, and two TS geometries to examine the fidelity of

this PES. These two TSs are TS-I in which the torsional angle of one methyl rotor is shifted

by 60◦ compared to GM, and the H-transfer saddle point is denoted as TS(H). The structure

of these geometries is shown in Fig. 1. We obtain the symmetric double well H-transfer

barrier as 1103 cm−1 or 3.15 kcal/mol, whereas the CCSD(F12*)(T+)/CBS(T,Q) value is
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1124 cm−1 or 3.2 kcal/mol, which is an excellent agreement. Note that it is a significant

improvement over the MP2-based PES,74 which leads to a barrier height of 745 cm−1 or 2.13

kcal/mol. Additionally, we observe that the TS-I is only 162 cm−1 or 0.46 kcal/mol higher

in energy compared to the global minimum.

Next, to examine the vibrational frequency predictions of the PES, we perform normal-

mode analyses for the global minimum and H-transfer saddle point geometries. A comparison

of harmonic mode frequencies for these two structures is shown in Table 2 along with the

previously reported results from MP2 PES (VLL) and local CCSD(T)-F12 calculations.43

For most of the modes in Table 2, the differences between VLL and VLL→CC frequencies are

small. Nevertheless, for high-frequency modes, this difference is more significant, especially

for mode 32 of the global minimum and the imaginary-frequency mode of the TS(H). It is a

major improvement over the MP2-based PES.

Another important aspect of this PES is the symmetric double well potential associated

with the H-transfer process, which is essential for calculating the ground state tunneling

splitting. In this context, we applied an approximate 1D approach to obtain the tunneling

splittings following Ref. 86 (see Fig. 6).

In short, we derived a 1D potential, denoted V (Qim), which represents the minimum

energy pathway as a function of the imaginary-frequency mode (Qim) corresponding to the

hydrogen transfer saddle point geometry. This was achieved by optimizing on the VLL→CC

PES all other coordinates while keeping Qim values fixed, except the methyl rotors, which

cannot be described using rectilinear normal coordinates. These are held fixed at the saddle

point values all the way along the path. Mostly due to the fixed methyl orientation and

partly due to the fitting error, the barrier height of this 1D Qim path is 940 cm−1 or 2.69

kcal/mol and it is 147 cm−1 lower than the direct FNO-CCSD(T) value or 163 cm−1 lower

than the barrier on the VLL→CC surface. This mass-scaled 1D potential is shown in Fig.

6. This approach is sufficient to test the fidelity of the fitting, while we note that a more-

than-1D representation would be required for more accurate barriers and tunneling splitting
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Table 2: Harmonic frequencies (in cm−1) of the global minimum and H-transfer saddle point
of acetylacetone obtained from the local CCSD(T)-F12, VLL→CC , and VLL PESs .

GM TS(H)

mode local CCSD(T)a VLL→CC VLL
a local CCSD(T)a VLL→CC VLL

a

1 113 97 97 1278i 1044i 921i
2 133 119 119 100 56 53
3 169 155 153 121 61 57
4 197 188 189 165 158 156
5 236 223 229 198 196 198
6 372 360 364 289 281 285
7 392 383 390 412 410 417
8 505 498 507 537 527 531
9 554 564 567 540 535 539

10 643 652 650 578 581 580
11 654 652 656 661 646 645
12 793 795 803 767 739 740
13 919 880 921 781 744 756
14 942 907 936 949 932 953
15 951 926 942 992 977 979
16 1010 1002 1014 1035 1026 1039
17 1040 1037 1048 1037 1032 1043
18 1050 1048 1058 1054 1054 1060
19 1072 1064 1071 1067 1055 1062
20 1192 1187 1200 1195 1175 1189
21 1276 1264 1290 1308 1229 1223
22 1393 1371 1384 1341 1332 1347
23 1405 1391 1399 1406 1397 1409
24 1424 1423 1433 1413 1410 1422
25 1462 1442 1470 1481 1483 1496
26 1480 1481 1494 1487 1483 1496
27 1483 1483 1497 1488 1485 1500
28 1488 1493 1505 1491 1487 1502
29 1502 1500 1512 1569 1543 1567
30 1670 1647 1655 1613 1609 1629
31 1709 1695 1704 1624 1634 1670
32 3047 3019 2855 1904 1709 1685
33 3052 3060 3095 3054 3019 3098
34 3118 3069 3099 3057 3061 3099
35 3122 3156 3178 3130 3163 3190
36 3157 3162 3187 3132 3163 3190
37 3165 3185 3208 3154 3181 3207
38 3220 3193 3218 3156 3182 3208
39 3257 3235 3258 3241 3255 3282

a From Ref. 43
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Figure 6: One-dimensional V (Qim) path for H transfer in AcAc.

values.

The splittings are obtained through straightforward 1D-DVR calculations,87 which in-

volve computing the energies of the ground and first excited vibrational states along the

V (Qim) pathway. It is worth noting that the same method was employed to calculate tun-

neling splittings for H-atom and D-atom transfer in malonaldehyde.86 Remarkably, there

the 1D-DVR outcomes consistently demonstrated a close correspondence with the rigorous

full-dimensional diffusion Monte Carlo splittings, typically falling within a 10 percent margin

of agreement (as that 1D potential could represent the barrier from the global minima due

to the simpler structure of malonaldehyde). Employing the 1D approach here, we obtain

the ground state tunneling splitting of the H-transfer process as 71 cm−1 for this barrier

height of 940 cm−1, which is a significant improvement compared to the MP2 PES result.74

In contrast, a previously reported tunneling splitting value of 32 cm−1 was obtained with

the associate barrier height of 1234 cm−1 through rigorous DMC calculation using the local

CCSD(T)-F12/cc-pVTZ-F12 PES by Chen et al.43 Given the well-established fact on the
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sensitivity of tunneling splitting to the barrier height, we aim to directly compare 1D-DVR

tunneling splittings across different acetylacetone PESs, each associated with distinct 1D

V (Qim) barrier heights (see Table 3).

Table 3: Ground-state tunneling splittings of acetylacetone obtained from 1D V (Qim) (with
and without morphing) potential with indicative barrier height.

PES Barrier (cm−1) Splitting (cm−1)

MP2 (without morphing)a 586 141
MP2 (morphing)a 745 104
local CCSD(T) (without morphing)b 1055 48
local CCSD(T) (morphing)c 1234 38
VLL→CC (without morphing) 940 71

a From Ref. 74.
b From private communication.
c From Ref. 43.

For instance, employing the full-dimensional PES at the MP2 level, the 1D-DVR splitting

for H-transfer was found to be 141 cm−1 with a barrier height of 586 cm−1, which transforms

to 104 cm−1 after morphing74 the 1D V (Qim) potential with a barrier height of 745 cm−1.

Similarly, the tunneling splitting is estimated as 48 cm−1 with a barrier height of 1055 cm−1

from the local CCSD(T)-F12 PES,43 and after morphing the 1D potential, it becomes 38

cm−1 with a corresponding barrier height of 1234 cm−1.43

This analysis highlights the sensitivity of the tunneling splitting value to the barrier height

and other PES parameters. While higher-dimensional computations will be the subject of a

forthcoming study, our primary objective here was to present a full-dimensional acetylacetone

PES using the cost-effective and highly accurate FNO-CCSD(T) data and benchmark its

fidelity on various structural and dynamic properties, including the symmetric double well

H-transfer motion.
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6 Conclusions and outlook

Here, we present the first results with the highly promising combination of accelerated

CCSD(T) and advanced ∆-machine learning methods to extend the reach of gold standard-

level global PES generation for medium-sized molecules. We show that around a factor of

40 cost-reduction can be achieved by compressing the orbital space used for the CCSD(T)

computations via the first application of the frozen natural orbital (FNO) approach in this

context. Detailed benchmarks for the 15-atom acetylacetone molecule show that for key,

lower-energy configurations, such as the first transition state, the FNO errors are negli-

gible being in the 0.01 kcal/mol or ca. 5 cm−1 range. These uncertainties stay around

0.15 (0.3) kcal/mol or ca. 50 (100) cm−1 on the average (at the worst cases) even for the

very high energy configurations up to ca. 100 kcal/mol or 35000 cm−1, which are required

for quantum nuclear computations. This is achieved via a cautious relaxation of usually

highly-conservative FNO settings, which can be systematically improved to the conventional

CCSD(T) result.

The ∆-ML approach brings significant additional cost-reduction, as it enables the cor-

rection of a low-level, cost-effective PES to the CCSD(T) level via an order of magnitude

less CCSD(T)-level data points. By also utilizing the permutationally invariant polynomial

(PIP) approach tailor-made for PES representation, hundreds (instead of tens of thousands)

of CCSD(T) computations were sufficient here for the 15-atom acetylacetone. The com-

bination of FNO method with Mrcc’s highly-optimized CCSD(T) implementation, which

is developed specifically for such reduced-cost applications, enables FNO-CCSD(T)/aug-cc-

pVTZ computations for such 15-atom molecules within ca. 5 minutes on 16 cores. All in all,

the FNO-CCSD(T) ∆-ML PES construction exhibited an unprecedented efficiency, enabling

the required 430 FNO-CCSD(T)-level computations on a single, relatively accessible 128-core

AMD node in around 6 hours. Since the FNO-CCSD(T)-based data set generation is inde-

pendent from the parameters of the PES representation, any other efficient descriptor and/or

ML method combination can similarly benefit from this advancement. The obtained ∆-ML
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PES is representative of the expectable accuracy also with other ML methods. It shows

high fidelity from multiple perspectives, including energetic, structural, and (an)harmonic

vibrational properties, such as the tunneling splitting corresponding to the symmetric double

well H-transfer barrier of acetylacetone. In a forthcoming work, this study will be extended

to additional CCSD(T) cost-reduction approaches also at the basis set limit, as well as to a

broader set of molecules and quantum nuclear properties.
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