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Abstract

The extension of the highly-optimized local natural orbital (LNO) coupled-cluster

(CC) with single-, double-, and perturbative triple excitations [LNO-CCSD(T)] method

is presented for high-spin open-shell molecules based on restricted open-shell references.

The techniques enabling the outstanding efficiency of the closed-shell LNO-CCSD(T)

variant are adopted, including the iteration- and redundancy-free MP2 and (T) formu-

lations, as well as the integral-direct, memory- and disk use economic, and OpenMP-

parallel algorithms. For large molecules, the efficiency of our open-shell LNO-CCSD(T)

method approaches that of its closed-shell parent method due to the application of re-

stricted orbital sets for demanding integral transformations and a novel approximation
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for higher-order long-range spin-polarization effects. The accuracy of open-shell LNO-

CCSD(T) is extensively tested for radicals and reactions thereof, ionization processes,

as well as spin-state splittings and transition-metal compounds. At the size range,

where the canonical CCSD(T) reference is accessible (up to 20–30 atoms) the average

open-shell LNO-CCSD(T) correlation energies are found to be 99.9–99.95% accurate,

which translates into average absolute deviations of a few tenth of a kcal/mol in the

investigated energy differences already with the default settings. For more extensive

molecules the local errors may grow but they can be estimated and decreased via af-

fordable systematic convergence studies. This enables the accurate modeling of large

systems with complex electronic structure, as illustrated on open-shell organic rad-

icals and transition metal complexes of up to 179 atoms, as well as on challenging

biochemical systems, including up to 601 atoms and 11,000 basis functions. While the

protein models involve difficulties for local approximations, such as the spin states of a

bounded iron ion or an extremely delocalized singly occupied orbital, the correspond-

ing single-node LNO-CCSD(T) computations were feasible in a matter of days with

10s to a 100 GB of memory use. Therefore, the new LNO-CCSD(T) implementation

enables highly-accurate computations for open-shell systems of unprecedented size and

complexity with widely accessible hardware.

1 Introduction

The accurate modeling of open-shell species remains challenging due to their potentially com-

plicated electronic structure. Among those, the systems of interest here exhibit a high-spin

open-shell ground state wave function, which can usually be described by single-reference

quantum chemical methods. Such a wide range of systems include radicals appearing as

stable species, or intermediates and transition states of reactions, products of ionization or

electron attachment processes, etc. often relevant in redox, atmospheric, polymer, combus-

tion, astro-, and electrochemistry, just to name a few representative fields.1
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While density functional theory (DFT) based methods remain the workhorse of compu-

tational chemistry due to their relatively affordable cost, cases posing challenges for DFT

approaches occur more often for open-shell than for closed-shell systems. Therefore both

the necessity and the difficulties of utilizing the wave function based treatment of electron

correlation were extensively studied also for open-shell species.2–4 While the second-order

Møller–Plesset (MP2)5 approach remains popular due to its cost-efficiency and relative sim-

plicity, coupled-cluster (CC) methods represent a faster converging series to the chemically

accurate (within 1 kcal/mol) description of processes of single-reference species.6,7 In par-

ticular, the “gold standard” CC model with single, double (CCSD), and perturbative triple

excitations [CCSD(T)],8 offers a good compromise between computational-cost and robust

accuracy.

Still, the steep O(N 4)- and O(N 7)-scaling data storage and operation count complexity

of CCSD(T) with system size N limits its applicability range to molecules of up to 20–25

atoms. This is an even more severe problem for open-shell species, where unrestricted CC

formalisms require the solution of about three times as many equations as their restricted

counterparts. Moreover, the higher technical complexity of the unrestricted CC methods

also slows down the adaptation of new approaches proposed frequently only for the spin-

restricted case. For example, density-fitting (DF, or resolution-of-identity) approaches can

help to deal with the O(N 4)-scaling storage complexity,9–13 while efficient parallelization can

reduce the wall time (but not the scaling) of CCSD(T).11–17 However, even the combination

of these techniques with additional advancements in our recent integral-direct, parallel DF-

CCSD(T) implementation pushes the limits of conventional CCSD(T) computations only up

to 30 atoms.13

This motivates the introduction of reduced-scaling approximations, such as the robust

frozen natural orbital (NO) approach,18,19 which can extend the applicability range of NO-

CCSD(T) somewhat further.20,21 Alternatively, one can also accelerate the basis set con-

vergence via explicitly correlated (F12) CC methods22–24 leading to more compact atomic
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orbital (AO) basis set requirements. However, even our recent combination of the NO ap-

proach and an optimized F12 implementation25 allowed us to approach the complete basis

set (CBS) limit for closed-shell species of up to 50 atoms with an even smaller open-shell

limit of about 30–35 atoms.26

At this size range, it starts to be beneficial to take advantage of the rapid decay of elec-

tron correlation with the distance via local correlation approaches.27–29 Current methods

still build on fundamental techniques pioneered by Pulay and Saebø,30,31 such as the ap-

proximation of the energy contribution of distant localized molecular orbital (LMO) pairs

(pair approximation), and the restriction of the correlating orbital spaces to a spatially com-

pact lists surrounding the strongly interacting LMOs (domain approximation). One group

of methods then approximates or neglects the distant pair interactions leading to a number

of decoupled subsystem MP2 or CC equations to be solved, but here, it remains challeng-

ing to deal with the significant overlap of the subsystems.27,28,32,33 Advanced representatives

of this strategy also developed up to the CC level include the cluster-in-molecule (CIM)

approach of Li, Li, Piecuch, Guo, and their co-workers,34–36 the divide-expand-consolidate

(DEC) approach of Jørgensen, Kristensen, and their co-workers,37,38 the divide-and-conquer

(DC) method of Li and Li39 and Kobayashi and Nakai,40,41 the incremental method proposed

by Stoll42 and further employed in the local correlation context by Friedrich and Dolg.43–45

One can also take advantage of the wave function sparsity not only in real space but also

via NO-based data compression approaches.46–53 Among these, the LMO pair specific pair

natural orbitals (PNOs) are employed in the domain based local PNO (DLPNO) method of

Neese, Valeev and co-workers,47,48,54–56 but PNO-based approaches were also developed up

to the CCSD(T) level by Werner and Ma,49,50,57 as well as by Hättig and Tew.51 Compared

to those, our local natural orbital (LNO) family of methods employs an LMO-specific NO

set compressing both the occupied and virtual orbital spaces.13,52,53,58–62

Due to the considerable challenges associated with open-shell systems and unrestricted

CC formalisms, fewer local CCSD(T) methods are available for systems other than those
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of a closed-shell singlet electronic structure. The incremental scheme was extended to both

unrestricted Hartree–Fock (UHF)63 as well as restricted open-shell HF (ROHF)64 references.

Additionally, the high-spin open-shell variants of the PNO-L methods by Werner and Ma,50,57

as well as the DLPNO method by Neese, Valeev, Hansen, Saitow, Guo, Kumar, and co-

workers47,48,55,56 were also introduced recently, while here, we present the high-spin open-shell

extension of our LNO-CCSD(T) approach.

To that end, here, we combine the attractive properties of two lines of recent devel-

opments within our restricted LNO-CCSD(T)52,53,62 as well as our open-shell local MP2

(LMP2)65 schemes. The outstanding efficiency of these approaches originates from the

Laplace-transform based, redundancy-free evaluation of the amplitudes both at the LMP2

and the (T) level.62,65 Moreover, the CCSD contribution is also obtained in the compact

LNO space, which was further accelerated via our highly-optimized CCSD implementation

designed also for the unconventional ratio of the occupied and virtual orbital dimensions

occurring in the LNO basis.13 The resulting LMP2 and LNO-CCSD(T) algorithms are fully

ab initio, i.e., free from empirical or distance based cutoff parameters, manual fragment defi-

nitions, bond cutting and capping, etc. usually associated with local correlation approaches.

In fact, the LNO approximations are defined completely automatically and adopt to the com-

plexity of the wave function of the systems. Exploiting this property, we designed an LNO

approximation hierarchy of threshold combinations (e.g., Normal, Tight, . . . ), which form a

systematically convergent series usually also suitable for extrapolation toward conventional

CCSD(T) and for providing a conservative LNO error estimate.53 Further unique features

of our LMP2 and LNO-CCSD(T) methods include the exceptionally small memory and disk

use, checkpointing, utilization of point group symmetry (even non-Abelian) and treatment of

near-linear dependent AO basis sets.52,53,66 These capabilities were all required in our largest

local CCSD(T) computation so far performed for extended supramolecular complexes67 as

well as for a protein of 1023 atoms with almost 45,000 AOs in a quadruple-ζ basis set.53

Even larger systems can be targeted via various embedding approaches combining LNO-CC
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based chemically active regions embedded into lower-level LNO-CC, LMP2, DFT and/or

molecular mechanics (MM) environments.68,69

An important goal in the generalization of the above spin-restricted local correlation

methods to open-shell systems is to retain as much as possible the computational efficiency

of the closed-shell scheme. Therefore, in our open-shell LMP2 method65 as well as here

for the LNO-CCSD(T) case, we employ a restricted open-shell (RO) reference determinant,

RO LMO set, and RO intermediate basis sets used for the costly integral transformation

steps. Interestingly, this strategy is implemented in three completely different manners

in the two PNO-based and our approach. The DLPNO method employs an n-electron

valence state perturbation theory Ansatz,47 the PNO-L methods utilize a spin-adapted MP2

formulation,57 while we employ a spin-restricted integral transformation combined with a

simpler ROHF-based but unrestricted MP2 Ansatz.70,71 Building on that, here we construct a

restricted LNO basis. However, due to the properties of the perturbative triples corrections,

in the end, both the PNO and LNO methods have to use unrestricted formulae for the

CCSD(T) part.

To enable the cost of the unrestricted CCSD(T) calculations of the LNO scheme to

approach that of the closed-shell method, at least in the asymptotic limit, we utilize an

additional approximation that we developed for our open-shell LMP2 approach.65 Briefly,

we can exploit that the long-range spin-polarization effects of localized singly occupied MOs

(SOMOs) can be taken into account at the mean-field and approximated MP2 level.65 Then,

the efficient closed-shell formulae and algorithms can be utilized for the LMP2 and LNO-

CCSD(T) correlation energy contributions of the LMOs that are not interacting strongly

with any SOMOs. Interestingly, here, we also find that for large systems of about 200 atoms

or more, up to 50–90% of the LMO correlation energy contributions can be safely evaluated

with this approach at practically the cost of the closed-shell counterpart.

The capabilities of the resulting open-shell LNO-CCSD(T) code are illustrated on three-

dimensional transition metal complexes of up to 179 atoms, as well as on protein models of
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565 and 601 atoms. The protein models involve about twice as many (cca. 11,000) AOs as

the largest open-shell local CCSD(T) computations in the literature so far.48,56 In addition to

the more complicated electronic structure of the studied metal-complexes, the largest protein

model also exhibits a highly delocalized SOMO posing a challenge to any local correlation

approach. Nevertheless, these LNO-CCSD(T) computations were still feasible within wall

times of about 2–4 days using a single CPU with 20 physical cores and mostly a few tens to

at most 100 GBs of memory and comparable disk use.

It is even more important to retain the accuracy of restricted LNO-CCSD(T) for the

more challenging open-shell applications. The closed-shell LNO-CCSD(T) method was ex-

tensively benchmarked by us52,53,67,72–75 as well as independently76–83 revealing highly com-

petitive accuracy and efficiency compared to other local CCSD(T) approaches, e.g., for

organic thermochemistry,53,78 non-covalent complexes,67,74,81 conformational and isomeriza-

tion energies,82,83 ionic interactions73,80,84,85 as well as for organometallic-77,79 and extended

π-systems67,76 exhibiting even moderate non-dynamic correlation. Here, we extend these

benchmarks to radical stabilization energies, ionization potentials, and spin-state energies

of small- to medium-sized systems and up to triple-ζ basis sets. On the average, at the

range where we can compare against the canonical CCSD(T) reference (that is, ca. 20–30

atoms), we find the open-shell LNO-CCSD(T) correlation energies 99.9–99.95% accurate,

which translates into a few tenth of a kcal/mol average energy difference deviations for the

investigated systems. This is in accord with the accuracy of the closed-shell method, where,

however, one should point out that the local errors somewhat grow with increasing system

size and wave function complexity.52,53,67,72 In practice, the LNO error can be estimated and

systematically converged close to the local approximation free limit at an affordable cost as

previously demonstrated in various applications.52,53,67,72–75

The discussion of the corresponding details is organized as follows. Sections 2 and 3

collect the theoretical and algorithmic details of the new LNO-CCSD(T) approach focusing

on the technicalities emerging specifically for the open-shell case. The computational details
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and the benchmark molecules are introduced in Section 4. The accuracy of the individual

and combined local approximations is assessed in Sections 5 and 6. Finally, large-scale

applications for systems of 175–601 atoms and the corresponding computational requirements

are discussed in Section 7.

2 Theoretical background

Throughout the presented derivations, restricted open-shell (RO) reference determinants are

assumed, consisting of singly and doubly occupied molecular orbitals (SOMOs and DOMOs,

respectively). Since the LNO method makes use of multiple orbital types, the notation of

these is summarized in Table 1. The conventional and the LNO correlation energy expressions

also employ unrestricted, semi-canonical (also known as pseudo-canonical) MOs. The lower

(upper) case indices label orbitals with spin up (down) occupation, while i, j, k . . . , I, J,K, . . .

and a, b, c, . . . , A,B,C, . . . indices are used for the occupied and virtual subsets, respectively.

Local approximations are introduced in the basis of localized molecular orbitals (LMOs)

obtained from a restricted open-shell reference, which will be denoted in general by indices

I,J ,K, . . ., while these LMOs will be labeled as i′, j′, k′, . . . (I ′, J ′, K ′, . . .), respectively,

when occupied by spin up (spin down) electrons.

Table 1: Summary of index notations for orbital sets employed in Sections 2 and 3.

i, j, k, . . . (I, J,K, . . .) spin up (spin down) (semi-)canonical occupied orbitals
a, b, c, . . . (A,B,C, . . .) spin up (spin down) (semi-)canonical virtual orbitals

i′, j′, k′, . . . (I ′, J ′,K ′, . . .) spin up (spin down) localized restricted occupied orbitals
I,J ,K, . . . localized restricted occupied orbitals (spatial)

î, . . . , â, . . . restricted orbitals in the extended domain

ĩ, . . . , ã, . . . (Ĩ , . . . , Ã, . . .) spin up (spin down) (semi-)canonical orbitals in primary/extended domains
ī, . . . , ā, . . . restricted orbitals in the local interacting subspace

i, . . . , a, . . . (I, . . . , A, . . .) spin up (spin down) (semi-)canonical orbitals in the local interacting subspace
µ, ν, λ . . . atomic orbitals
X,Y, . . . auxiliary functions for the DF approximation
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2.1 Open-Shell LNO-CCSD(T) Ansatz

Following the relevant approaches introduced for the previous members of the LNO family

of methods,52,53,58,59,61,62,65,66 especially the open-shell LMP265 and the closed-shell LNO-

CCSD(T),13,52,53,62 here, we introduce the open-shell LNO-CCSD(T) Ansatz built on re-

stricted open-shell references. First, conventional unrestricted CCSD and (T) energy ex-

pressions8,86 are written in terms of semicanonical orbitals suitable for transformations to

the (restricted open-shell) LMO basis due to their invariance to unitary orbital rotations.

To introduce the orbital-specific correlation energy contributions of the LNO approach,

first the open-shell CCSD correlation energy expression is rewritten as a sum of contributions

from the occupied spin up and spin down orbitals, δECCSD
i and δECCSD

I :

ECCSD =
∑

i

δECCSD
i +

∑

I

δECCSD
I

=
∑

i

(∑

a

tai f
a
i +

1

4

∑

abj

τabij ⟨ab∥ij⟩ +
1

2

∑

aBJ

τ̃aBiJ ⟨aB|iJ⟩
)

+
∑

I

(∑

A

tAI f
A
I +

1

4

∑

ABJ

τAB
IJ ⟨AB∥IJ⟩ +

1

2

∑

Abj

τ̃Ab
Ij ⟨Ab|Ij⟩

)
,

(1)

where τabij = tabij + tai t
b
j − tbit

a
j , τ̃

aB
iJ = taBiJ + tai t

B
J , and t denotes the CCSD singles and dou-

bles cluster amplitudes. Additionally, ⟨ab∥ij⟩ stands for antisymmetrized electron repulsion

integrals (ERIs), constructed as ⟨ab∥ij⟩ = ⟨ab|ij⟩ − ⟨ab|ji⟩ using the Dirac notation.

Analogously, the energy formula for the open-shell perturbative triples correction of

CCSD(T) can be written as

E(T) =
∑

i

δE
(T)
i +

∑

I

δE
(T )
I

=
∑

i

(
1

36

∑

abcjk

tabcijkW
abc
ijk +

1

8

∑

aBCJK

taBC
iJK W aBC

iJK +
1

8

∑

abCjK

tabCijKW
abC
ijK

)

+
∑

I

(
1

36

∑

ABCJK

tABC
IJK WABC

IJK +
1

8

∑

Abcjk

tAbc
IjkW

Abc
Ijk +

1

8

∑

ABcJk

tABc
IJk W

ABc
IJk

)
,

(2)
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where tabcijk denotes the triple excitation amplitude of the (T) method, and W abc
ijk can be written

as tabcijkD
abc
ijk , that is, the triple excitation amplitude multiplied by the canonical orbital energy

differences collected into the denominator Dabc
ijk .7,8 Combining eq 1 and eq 2, the full CCSD(T)

correlation energy can also be written as a sum of orbital contributions:

ECCSD(T) =
∑

i

δE
CCSD(T)
i +

∑

I

δE
CCSD(T)
I

=
∑

i

(
δECCSD

i + δE
(T)
i

)
+
∑

I

(
δECCSD

I + δE
(T)
I

)
.

(3)

To introduce the local CCSD(T) Ansatz, let us transform the separated occupied indices

of eq 3 to the restricted open-shell LMO basis:

ECCSD(T) =
∑

i′

δE
CCSD(T)
i′ +

∑

I′

δE
CCSD(T)
I′ =

∑

I

δE
CCSD(T)
I , (4)

where in the last term, I denotes a spatial orbital occupied by either one or two electrons in

the RO LMO basis, while i′ (I ′) refers to orbitals with the same spatial component as LMO

I, but occupied by at most one spin up (spin down) electron. The explicit expressions used

for the LNO method will be introduced in Sect. 3.7.

The scaling of CCSD(T) can be made asymptotically linear with respect to the system

size if only a domain of asymptotically constant number of orbitals is required to evaluate

the correlation energy contribution of a given orbital I, that is, δE
CCSD(T)
I . To construct

the domain around each LMO, which is then called the central LMO of its own domain,

first, those LMOs are collected that strongly interact with the central LMO. The selection

of strongly interacting LMO pairs is based on multipole approximated MP2 pair energies

[see the δEMP2
IJ (PIJ ) term of eq 6] evaluated in LMO pair specific domains (PD, PIJ ).

LMO pairs with very small δEMP2
IJ (PIJ ) pair correlation energy estimates are considered

distant and, unlike to the strong pairs, they do not enter to the higher-level computations.

Next, the virtual space of the domain of LMO I is constructed from local projected atomic
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orbitals (PAOs) surrounding the central LMO and its strongly interacting LMO pairs. The

domain obtained in this way is referred to as the extended domain (ED, EI) of LMO I,

which is sufficiently compact to efficiently perform MP2 computations exploiting our open-

shell LMP2 implementation.65 The resulting local MP2 correlation energy contribution of

the ED [δEMP2
I (EI)] is utilized as part of the correction employed to decrease the effect

of the remaining approximations in the ED at the CCSD(T) level (see eq 6). To further

compress the orbital spaces of the ED, LNOs are constructed using the density built from

the first-order Møller–Plesset (MP1) amplitudes of the ED, yielding the local interacting

subspace (LIS, LI) of LMO I. Consequently, the LNO-CCSD(T) correlation energy reads

as

ELNO−CCSD(T) =
∑

I

[
δE

CCSD(T)
I (LI) + ∆EMP2

I

]
, (5)

where the energy correction ∆EMP2
I is calculated at the MP2 level of theory as

∆EMP2
I = δEMP2

I (EI) − δEMP2
I (LI) +

1

2

distant∑

J

δEMP2
IJ (PIJ ) . (6)

Therefore, correlation energy terms are included in the final LNO-CCSD(T) expression for

all orbital pairs of the entire molecule. The largest and most important component, which

corresponds to the correlation of the strong pairs, is included at the complete CCSD(T) level

in the LISs. The contribution of the frozen LNOs and the correlation energy contribution

of distant LMO pairs are included at the MP2 level in the extended and pair domains,

respectively.

3 Algorithm

The algorithm of the restricted open-shell LNO-CCSD(T) method is summarized in Figure

1 and described in this section step by step in detail.
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• obtain ROHF/ROKS/QRO reference & MOs

• localization → occupied local MOs (LMOs)

• virtual MOs: projected AOs (PAOs)

Orbitals of the entire molecule

• compact pair domains (PDs) for all LMO pairs

• multipole approximated pair energies in PDs

• cathegorize strong/distant LMO pairs

Orbital pair energies

• LMO-centered extended domains (EDs):
strong pair LMOs and nearby PAOs

• transform ERIs to the ED’s MO basis

• MP2 energy of ED via Laplace-transform

MP2 calculations in ED

• LNOs from MP2 density of ED → LIS

• integral-direct integral transformation to LNO basis

• efficient domain CCSD(T) energy:
hand-coded algorithm, (T) via Laplace-transform

CCSD(T) energy contribution of LMOs

ELNO−CCSD(T) =
∑

E
CCSD(T)
LIS +

∑
EMP2

ED +
∑

EMP2
PD

Figure 1: Major algorithmic steps of the presented restricted open-shell LNO-CCSD(T)
method.
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3.1 Self-Consistent Field and Orbital Localization

The considerations regarding the reference selection are analogous to those of our local RO

MP2 scheme.65 The restricted open-shell Hartree-Fock (HF) or Kohn-Sham (KS) reference

determinant can be obtained via a restricted open-shell self-consistent field (SCF) calculation

(ROHF/ROKS), or via unrestricted (UHF/UKS) computations followed by constructing

quasi-restricted orbitals (QROs).65,87

The computational cost of (RO/U)HF can become high above the few hundred atom

range even with density-fitting (DF) approaches. To reduce the scaling of conventional DF-

SCF calculations, for example, the local DF approach can be utilized, which restricts the

lists of auxiliary functions and, for very large systems, also that of AOs at the exchange

matrix evaluation to include functions that are spatially close to an LMO.66,88–90 In the

present study, local DF is employed only for the ROHF and UHF computations in the 500-

to 600-atom range.

The occupied orbitals of the reference determinant are localized with the algorithm pro-

posed by Boys,91 but Pipek–Mezey,92 intrinsic bond orbital,93 and generalized Boys methods

with higher orbital variance power94 are also implemented. The localization is carried out in

a spin restricted manner, and the doubly occupied and open-shell MOs are not mixed result-

ing in doubly and singly occupied LMOs. The clear advantage of the restricted formalism is

that the correlation energy contribution of the spin up and down electrons of a doubly occu-

pied LMO can be obtained in a single domain corresponding to a RO LMO. The alternative

way of computing δE
CCSD(T)
i′ and δE

CCSD(T)
I′ of eq 4 in separate, spin case dependent domains

would be approximately twice as costly. The potential drawback of keeping the LMO space

restricted is that in systems with only one or a few SOMOs (or when the mixing of the

SOMOs is prohibited, e.g., due to symmetry), it may not be possible to (sufficiently) localize

the SOMO(s), leading to singly occupied orbitals in the LMO basis that are (potentially)

still delocalized (see below an example in Fig. 7).
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3.2 PAO construction and pair energy calculation

The PAO construction and pair energy calculation algorithms follow closely those of the open-

shell LMP2 scheme65 with minor extensions needed for the LNO-CC methods discussed here

in more detail. To identify the strongly interacting LMO pairs, their approximate MP2 pair

correlation energies are computed in LMO pair specific domains (PDs). The PDs contain

the corresponding occupied LMO pair and PAOs as virtual functions that are centered on

atoms surrounding the two LMOs.

To assemble the virtual space, first, the PAOs of the entire molecule are constructed by

projecting out the restricted LMOs (both DOMOs and SOMOs) from all AOs of the molecule

(|µ⟩):

|aµ⟩ =

(
1 −

DO∪ SO∑

I

|I⟩⟨I|
)
|µ⟩ . (7)

The AO |µ⟩ and the corresponding atom can be considered as the center of the resulting

PAO |aµ⟩. The PAOs of eq 7 are restricted and span the virtual subspace of the spin up

electrons. To span the virtual subspace of the spin down electrons, we use the union of all

SOMOs and PAOs.

The pair domain of a given LMO pair is constructed as the union of the primary domains

of the two LMOs. To define the primary domains, a set of atoms is assigned to each LMO

and PAO using a modified52,66 Boughton–Pulay (BP) algorithm.95 The BP atom list of an

LMO or PAO is compiled such that the projection of the LMO/PAO onto the AOs of its BP

atom list has an overlap value of at least T with the original, unprojected LMO/PAO. Thus,

1−T gives an upper bound for the truncation error of the projection onto the BP atom lists.

For the primary domain construction, BP atom lists are assembled using TPDo = 0.999 for

LMOs and TPDv = 0.98 for PAOs. The occupied subspace of the primary domain contains

a single LMO, while its virtual subspace includes those PAOs that are centered on any of

the atoms in the LMO’s BP atom list. Additionally, if a BP list of a SOMO constructed

with completeness criterion TPDv overlaps with the BP set of the LMO, the SOMO is also
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included in the spin down virtual subspace of the primary domain. Then, the atom list of the

PD contains the union of the BP atom lists of all orbitals in the primary domain. Finally,

the orbitals of the primary domain are projected onto the AOs of the primary domain, the

projected orbitals are orthogonalized, and the spin up and spin down orbitals are separately

canonicalized.

The multipole approximated MP2 pair energy of an LMO pair is then evaluated in the

primary domains’ bases of the LMO pair:

δEMP2
IJ (PIJ ) = δEMP2

i′j′ (PIJ ) + δEMP2
I′J ′ (PIJ ) + δEMP2

i′J ′ (PIJ ) + δEMP2
I′j′ (PIJ ) =

−
∑

ãI b̃J

[(ãIi
′|b̃J j′)[4]]2

εãI + εb̃J − Fi′i′ − Fj′j′
−
∑

ÃI B̃J

[(ÃII
′|B̃JJ

′)[4]]2

εÃI
+ εB̃J

− FI′I′ − FJ ′J ′

−
∑

ãI B̃J

[(ãIi
′|B̃JJ

′)[4]]2

εãI + εB̃J
− Fi′i′ − FJ ′J ′

−
∑

ÃI b̃J

[(ÃII
′|b̃J j′)[4]]2

εÃI
+ εb̃J − FI′I′ − Fj′j′

.

(8)

Here, the pseudocanonical orbital energy of the virtual orbitals is denoted by ε, while Fi′i′

(FI′I′) indicates a diagonal element of the spin up (spin down) Fock matrix. The LMO

subscript of the virtual orbitals indices indicates that the corresponding summations in-

clude virtual orbitals only from the primary domain of the given LMO. The ERIs, denoted

here in Mulliken notation by (ãIi
′|b̃J j′)[4] are calculated using a multipole expansion up

to fourth order, including dipole–dipole, dipole–quadrupole, quadrupole–quadrupole, and

dipole–octupole moment terms as discussed in Ref. 66.

Utilizing the δEMP2
IJ (PIJ ) pair energies, the IJ LMO pair can be classified as a strongly

interacting pair if δEMP2
IJ (PIJ ) > fwεw, where εw is the strong pair energy threshold, and

fw is a factor of 1, 1
2

or 1
4

for DO–DO, DO–SO and SO–SO LMO pairs, respectively. The

fw scaling factor is introduced so that pairs between LMOs of different occupations are

handled on an equal footing since SO LMOs have half as many pair energy terms in eq 8

as DO LMOs. A more detailed discussion and numerical benchmarks regarding the benefits

of using the fw factor are provided in our RO LMP2 study.65 Note that the approximated
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pair energy of those pairs which are not classified as strong is added to the MP2 correlation

energy corrections as the last term of eq 6.

The pair energies of eq 8 have been extensively tested on a large number of (mainly

organic) molecules,52,53,65,66 with consistently satisfactory performance. However, the open-

shell LNO-CCSD(T) approach is expected to be applied more frequently also for transition

metal complexes (see, e.g., Sections 5 and 7), exhibiting electronic structures potentially more

complex than that of a typical organic molecule. In a few complicated cases, we have found

that the multipole approximated MP2 pair energies can underestimate the approximation-

free MP2 pair energies leading to LMO pairs classified as distant instead of strong on the

border of the two categories. To remedy this issue, an additional mechanism is introduced

here to extend the strong pair list. In the present approach, we investigate more closely the

orbital pairs characterized originally as distant that are on the border of the distant and

strong categories. More precisely, the orbital pairs with fwεw
gw

< δEMP2
IJ (PIJ ) < fwεw are

considered with parameter gw defining the range of pair energies where potentially important

LMO pairs may still appear. For these pairs, an additional measure is computed:

MIJ =

√√√√
atoms∑

A

(
onA∑

µν

CA
µIS

A
µνC

A
νI ·

onA∑

µν

CA
µJS

A
µνC

A
νJ

)2

, (9)

where, CA
µI is an orbital coefficient of truncated LMO I for AOs on atom A, and SA

µν is

the overlap matrix of these AOs. The
onA∑
µν

CA
µIS

A
µνC

A
νI part is thus the Mulliken charge of

(the truncated) LMO I on atom A. Therefore, measure MIJ sums the products of LMO

I and LMO J Mulliken charges for all atoms, hence it can be interpreted as a discretized

measure of the overlap of the two LMOs. Orbital pairs for which MIJ is large are more

likely to be localized on the same or nearby atoms, and consequently may strongly interact.

The strong pair list is therefore extended with those pairs which exhibit a considerable MIJ

measure. In practice, it is preferable to include the pairs which are indicated to be more

strongly interacting compared to their pair correlation energy. The selection of the additional
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strong pairs is thus controlled by the hw parameter as MIJ /δE
MP2
IJ > hw relative to the pair

correlation energies. In practice, we found that gw = 5 and hw = 50 E−1
h are reasonable

choices also for particularly challenging cases, while the strong pair list extension introduce

(practically) no changes to our previous strong pair list definition for organic molecules.

3.3 Local MP2 energy in the extended domains

The MP2 correlation energy contribution of each LMO is evaluated in its ED analogously to

our RO LMP2 method,65 so we focus on the steps required in the EDs for LNO-CC compu-

tations. The occupied subspace of the ED consists of its central LMO and the strong LMO

pairs of the central LMO. The atoms of the ED are defined to be the union of the extensive

BP atom lists of all LMOs in the ED. These large BP atom lists are constructed with a com-

pleteness criterion of TEDo = 0.9999 by default. Then, each LMO is projected onto the AOs

of its respective BP atom list, ensuring at most 1− TEDo (that is, here below 0.01%) projec-

tion error for accurate computations with these projected LMOs in the ED. The projected

LMOs are reorthogonalized by a specific combination of the Gram–Schmidt and Löwdin

symmetric (GSL) orthogonalization algorithms.96,97 In the Gram–Schmidt step, the central

LMO and all SOMOs are projected out from the DOMOs of the ED to ensure that they are

not changed until the LNO construction step (see Section 3.4). Subsequently, the projected

DOMOs are Löwdin orthogonalized and all occupied orbitals are semi-canonicalized. For the

latter, the spin up and spin down Fock matrix blocks of the ED are diagonalized separately

in the spin up and spin down occupied orbital bases. Next, the virtual subspace of the ED

is constructed from the restricted PAOs centered on the atoms of the PAO center domain

(PCD) of the ED. The PCD of an ED is defined as the union of the compact BP atom lists

of the LMOs in the ED, constructed with To = 0.985. The selected PAOs are subsequently

projected onto the AO basis of the ED. To span the spin down virtual subspace of the ED,

the SO LMOs of the ED are appended to the spin down PAO list of the ED. Finally, the

occupied subspace is projected out from the virtual space of the ED, the virtual orbitals are
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Löwdin canonical orthogonalized among themselves, and are semi-canonicalized in a spin

unrestricted manner.

The ERIs of the ED are transformed to the MO bases of the ED using the DF ap-

proximation98,99 and highly-optimized AO integral100 and local integral-transformation al-

gorithms.65,66 As demonstrated previously,66 the set of auxiliary basis functions of the DF

approximation can also be restricted to include those residing on atoms of the PCD. The

three-center DF integrals (µ̃ν̃|X) are therefore computed only for a significantly restricted

AO list (µ̃) of the ED and for auxiliary functions (X) in the PCD. The transformation to

the MO bases of the ED is started with an intermediate transformation step to the restricted

occupied LMO basis of the ED. Since this first step is the most demanding, the overall cost

of the open-shell DF integral transformation is kept comparable to that of our closed-shell

LMP2 algorithm.65

The four-center antisymmetrized ERIs are then only assembled for the single central

LMO, e.g., a single i′ index value, retaining the formally at most fourth-power-scaling oper-

ational complexity in the ED in terms of the dimensions of the ED bases:

⟨ãb̃∥i′j̃⟩ = (ãi′|b̃j̃) − (ãj̃|b̃i′) = Kãi′,b̃j̃ −Kãj̃,b̃i′ , (10)

where the K tensors are computed from the DF integrals according to

K = IV−1IT = JIT . (11)

In the above equation, I contains three-center DF integrals transformed to the ED MO basis

[(ãj̃|X) = Iãj̃,X ], while Jãi′,Y =
∑

X Iãi′,XV
−1
XY , and VXY = (X|Y ) is the two-center auxiliary

integral, whose inverse is computed using Cholesky-decomposition: V−1 =
(
LLT

)−1
=

(L−1)
T
L−1.

Similar to the four-center ERIs, the assembly of the MP1 amplitudes is only required

for the fixed i′ or I ′ values, therefore, it is advantageous to compute them using either
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Cholesky-decomposition or Laplace-transform. This way, the amplitudes can be written in

closed form also in the non-canonical basis used here to avoid the redundant computation for

other occupied index values.65,66 Accordingly, the MP1 amplitudes of the ED are computed

as

t
ãB̃[1]

i′J̃
=
∑

ω

∑

X

Īωãi′,X J̄
ω
B̃J̃,X

, (12)

where the index ω runs over the Cholesky-vectors or the integration quadrature of the

Laplace-transform. The bar over integrals I and J denotes that these have been multi-

plied with the factor corresponding to the factorized energy denominator. For example,

J̄ω
B̃J̃,X

= JB̃J̃,Xc
ω
B̃J̃

, where cω
B̃J̃

is either a Cholesky-vector element or if Laplace-transform is

used,

cω
B̃J̃

=
√
wω exp (− (εB̃ − εJ̃) tω) (13)

with tω and wω as a quadrature point and the corresponding weight, respectively. It is

important to note that, for example, the Laplace-quadrature is also determined in a spin

independent manner65 enabling the assembly also of the mixed spin MP1 amplitudes, such

as in eq 12. Building the four-center integrals and MP1 amplitudes for all required spin cases

leads to the ED MP2 energy contribution of the central LMO as

δEMP2
I (EI) = δEMP2

i′ (EI) + δEMP2
I′ (EI) =

∑

ã

t
ã[1]
i′ f ã

i′ +
1

2

∑

ã<b̃,j̃

t
ãb̃[1]

i′j̃
⟨ãb̃∥i′j̃⟩ +

1

2

∑

ãB̃J̃

t
ãB̃[1]

i′J̃
⟨ãB̃|i′J̃⟩+

∑

Ã

t
Ã[1]
I′ f Ã

I′ +
1

2

∑

Ã<B̃,J̃

t
ÃB̃[1]

I′J̃
⟨ÃB̃∥I ′J̃⟩ +

1

2

∑

Ãb̃,j̃

t
Ãb̃[1]

I′j̃
⟨Ãb̃|I ′j̃⟩ .

(14)

Here, it is important to note how the contributions from single excitations to the ED MP2

energy originate from two sources. First, as we employ the restricted open-shell determinant,

the unrestricted Fock matrices are not self-consistent and thus have off-diagonal elements

even in the unrestricted canonical MO basis of the entire molecule. Second, as a consequence

of truncating the occupied and virtual MOs of the ED, a small portion of the exact virtual
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space is mixed into the occupied ED MOs and vice versa. The latter contribution to the

singles MP1 amplitudes and hence to the MP2 energy of the ED is discarded in our closed-

shell LMP2 variant, which, however, would undesirably discard the first contribution as well

in the open-shell case. Since the first contribution originates from the off-diagonal block

of the MO Fock matrix, while the second one appears mostly in the diagonal part of the

MO Fock, the two parts can be separated.65 For that purpose, we also need to separate the

off-diagonal Fock matrix blocks in the AO basis as

FOD = F−CϵCT , (15)

where FOD and F are the off-diagonal and the full Fock matrices in the AO basis, respectively,

while C is the matrix of the unrestricted MO coefficients, and ϵ is a diagonal matrix with

the corresponding orbital energies. Then, we use FOD to evaluate off-diagonal Fock matrix

elements in the MP2 energy of the ED in eq 14. This FOD matrix vanishes if the reference

orbitals of the molecules are exact eigenfunctions of the full Fock matrix, such as in the case

of our closed-shell methods where self-consistent HF reference is employed.

Finally, we also note that the complete local MP2 energy can be constructed as a side

product of an LNO-CC computation as

ELMP2 =
∑

I

δEMP2
I (EI) +

distant∑

I<J

δEMP2
IJ (PIJ ) . (16)

This is beneficial as this local MP2 energy can be used, for example, for various composite

energy expressions, such as local MP2 level basis set corrections.

3.4 Local natural orbitals

Due to the extensive cost of CCSD(T), the orbital spaces of the EDs should be further

decreased after the MP2 part of the ED computation is completed. To that end, local natural
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orbitals (LNOs) are constructed as the eigenvectors of the second-order density matrix blocks

of the ED built from the MP1 amplitudes of eq 12. The so obtained LNO list is truncated by

retaining the most important occupied and virtual LNOs for the domain correlation energy

contribution with occupation numbers above a threshold.

For this purpose, first, the occupied-occupied density matrix block contribution of central

LMO I is obtained in the semi-canonical ED basis for both spin cases as

DI
j̃k̃

=
∑

ã<b̃

t
ãb̃[1]

i′j̃
t
ãb̃[1]

i′k̃
+
∑

Ãb̃

t
Ãb̃[1]

I′j̃
t
Ãb̃[1]

I′k̃
,

DI
J̃K̃

=
∑

Ã<B̃

t
ÃB̃[1]

I′J̃
t
ÃB̃[1]

I′K̃
+
∑

ãB̃

t
ãB̃[1]

i′J̃
t
ãB̃[1]

i′K̃
.

(17)

In order to reduce the computational cost of the integral transformation step (see Section

3.5), it is beneficial to first construct an intermediate spin-restricted orbital set also for the

LNOs. To obtain spin-restricted LNOs, we transform the spin up and spin down density

matrix blocks of eq 17 to the restricted occupied basis of the ED and add together the

resulting terms:

DI
l̂m̂

=
∑

j̃k̃

Cl̂j̃D
I
j̃k̃
Cm̂k̃ +

∑

J̃K̃

Cl̂J̃D
I
J̃K̃

Cm̂K̃ . (18)

Here, Cl̂j̃ (Cl̂J̃) contains the spin up (spin down) semi-canonical to restricted LMO transfor-

mation coefficients of the ED.

Note that the restricted occupied basis contains both the central LMO and the SOMOs

without mixing them with the rest of the truncated LMOs of the ED. This is the intentional

result of using the GSL orthogonalization as described in Section 3.3 since the central LMO

has to be kept exactly in the LIS, and we also want to keep the DO and SO subspaces sep-

arated after the truncation of the LNO basis. Therefore, before diagonalizing the restricted

density matrix, its DI
Im̂ and DI

l̂I elements are replaced with zeros to avoid mixing the central

LMO with the rest of the occupied ED orbitals upon diagonalization. If the ED contains

any SOMOs, the SOMO-DOMO blocks of the density matrix are also overwritten with zeros
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in order to obtain a single set of restricted occupied LNOs by compressing only the DO sub-

space of the ED. After diagonalizing this modified density matrix, the (restricted) occupied

basis of the LIS ({̄i}) consists of the central LMO, all SOMOs, and those doubly occupied

LNOs that exhibit occupation numbers higher than the occupied LNO threshold, εo. Then,

the retained orbitals are semi-canonicalized using the spin up and spin down Fock matrices,

yielding the final, unrestricted semi-canonical occupied LNO basis ({i}, {I}) in which the

CCSD(T) contribution of the LIS is evaluated.

Notice that in domains where the central LMO is singly occupied, all MP1 amplitudes

with an occupied index of I ′ are zero because there is no spin down electron on such orbitals.

Thus, for SO central LMOs, two of the four terms of eq 17 also vanish, which approximately

halves the number of non-zero density matrix terms compared to the case of DO central

LMOs. To treat the LNO construction with both SO and DO central LMOs on the same

footing, we scale the density matrix corresponding to SO central LMOs by a factor of two.

With this setting, we have found that the same εo occupied LNO threshold provides balanced

accuracy for both domain types.

Having the occupied LNO space at hand, we recommended to take advantage of the

fact that the virtual LNOs only need to describe the correlation energy contribution of the

retained occupied LNOs.52 To achieve this, the occupied indices of the MP1 amplitudes

in the ED are transformed to the retained LNO basis before the virtual density matrix

construction. This decreases the number of terms contributing to the virtual-virtual density

matrix elements and thus leads to a smaller number of virtual LNO occupation numbers

being above the corresponding threshold, εv.52

It is worth noting a difference in the definition of the density matrix contribution of

the central LMO to its occupied (eq 17) and virtual (eq 19 below) blocks. Namely, for

the occupied-occupied block only a single occupied index can be selected to be the central

LMO as the other two indices (j̃ and k̃ of eq 17) are the indices of the density matrix

block. In contrast to that, virtual indices (ã and b̃ of eq 19 below) label the elements of the
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virtual-virtual density matrix block, thus there is some freedom of choice regarding which

occupied index is set to be the central LMO and at what point of the derivation should one

introduce the restriction for the central LMO index. This leads to three different local virtual

density matrix fragment variants, for which we provide derivations and further analysis in

the Appendix. Out of the three choices the definition with the most balanced contribution

for all spin cases was selected:

DI
ãb̃

=
1

2


∑

c̃j

t
ãc̃[1]
i′j t

b̃c̃[1]
i′j +

∑

C̃J

t
ãC̃[1]
i′J t

b̃C̃[1]
i′J +

∑

C̃j

t
ãC̃[1]
I′j t

b̃C̃[1]
I′j


 ,

DI
ÃB̃

=
1

2


∑

C̃J

t
ÃC̃[1]
I′J t

B̃C̃[1]
I′J +

∑

c̃j

t
Ãc̃[1]
I′j t

B̃c̃[1]
I′j +

∑

c̃J

t
Ãc̃[1]
i′J t

B̃c̃[1]
i′J


 .

(19)

Let us note that for closed-shell systems this virtual density matrix expression does not

completely match the density matrix in our closed-shell LNO-CC method52,53,58,59 as our

previous definition reduces to one of the other two expressions derived in the Appendix.

Therefore the virtual density matrix expression of the closed-shell algorithm is updated to

match the open-shell form defined here in the limit of applying the open-shell code to closed-

shell molecules. This introduces a very small change to the closed-shell LNO-CCSD(T)

energies much below the uncertainties corresponding to the LNO approximations.

In order to define an intermediate restricted LNO basis, the virtual density matrices of

eq 19 built in the canonical ED basis are transformed to the restricted PAO basis of the

ED. Then, the spin up and spin down components are added together analogously to the

occupied case in eq 18. Similar to the occupied density matrix fragment, half of the terms

of eq 19 vanish in domains with a SO central LMO. Therefore, in these domains the virtual

density matrix fragment is also scaled by a factor of two. If SOMOs are present in the ED, the

SOMO-unoccupied block of the restricted density matrix is replaced with zeros, enabling the

computation of spin-restricted virtual LNOs upon the diagonalization of the density matrix

modified in this way. The restricted virtual basis of the LIS ({ā}) then consists of the SOMOs
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and the retained virtual LNOs with occupation numbers larger than the threshold εv. The

resulting restricted virtual LNO basis is then semi-canonicalized separately with the spin up

and spin down Fock matrices to obtain the unrestricted, semi-canonical virtual LNO basis

of the LIS ({a}, {A}).

3.5 Two-external integral transformations

For the CCSD(T) computations in the LNO basis of the LIS, the integral lists (̄ij̄|X), (ā̄i|X),

and (āb̄|X) are required. By utilizing intermediate restricted LNO bases, this demanding

step can be performed at a cost very close to the that of our closed-shell LNO-CC method.

The (āb̄|X) two-external integral list poses a larger computational challenge due to the fact

that a typical LIS contains about 4–5 times as many or more virtual LNOs as occupied

ones. To overcome a potential bottleneck for large systems corresponding to naive AO (→

ED PAO) → LNO transformation algorithms, for our closed-shell LNO-CC approaches, we

implemented a significantly more efficient solution introducing approximate intermediate

basis sets denoted as PAO’ and LNO’.52 That approach is generalized here to the open-shell

case focusing on the algorithmic details, while we refer to our original discussion regarding

the theoretical introduction and justification of the PAO’ and LNO’ functions.52

Briefly, an intermediate PAO’ basis is introduced in each ED designed to provide a much

more compact expansion of the virtual LNOs than the AO basis of the ED. For that purpose,

we project out the restricted DOMOs and SOMOs of the ED from the AOs of its PCD (µPCD):

|µ′⟩ =


1 −

ED∑

ĵ

|ĵ⟩⟨ĵ|


 |µPCD⟩ = |µPCD⟩ −

ED∑

ĵ

OĵµPCD |ĵ⟩ , (20)

where OĵµPCD denotes the overlap integral ⟨ĵ|µPCD⟩. The resulting PAO’ orbitals are not

identical to the PAOs of the ED but the difference is small for our purposes and well controlled

by the strong pair energy threshold (εw) and the ED occupied BP completeness criterion

(TEDo) as discussed in detail for the closed-shell case.52 Therefore, the compact expansion
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in the PAO’ basis instead of the AO basis of the ED can also be written for approximated

virtual LNOs as

|ā′⟩ =
∑

µ′

Aµ′ā′|µ′⟩ =
PCD∑

µPCD

AµPCDā′ |µPCD⟩ −
ED∑

ĵ

Bĵā′|ĵ⟩ . (21)

Here, A collects the orbital coefficients of the LNO’ functions in the PAO’ basis, while

B = OA. Then, the corresponding two-external integrals can be written in the LNO’ basis

as

(ā′b̄′|X) =
PCD∑

µ,ν

Aµā′Aνb̄′(µν|X) −
PCD,ED∑

ν,ĵ

Bĵā′Aνb̄′(ĵν|X)

−
PCD,ED∑

µ,k̂

Aµā′Bk̂b̄′(µk̂|X) +
ED∑

ĵ,k̂

Bĵā′Bk̂b̄′(ĵk̂|X) .

(22)

The main benefit is that the summations over the AOs in the above equation run over the

PCD, which is usually about 2-3 times smaller than the (complete) AO basis of the ED

spanning the original virtual LNOs. We showed previously that this approach can lead to

about a factor of 8-9 speedup for large systems with saturated ED sizes with negligible

difference compared to the use of the original LNO basis.

Compared to the two-external integrals, the (̄ij̄|X) and (̄ib̄′|X) integrals are obtained

with relatively low computational costs by transforming, e.g., the half-transformed integrals

in the ED LMO basis [(Iµ̄|X)] to the LIS LNOs. To complete the two-external integral

lists, one additionally needs to evaluate the SOMO-virtual and SOMO-SOMO blocks of

(ā′b̄′|X), which will contribute to the two-external integrals in the spin down unrestricted

basis. However, since we so far worked in a restricted basis, where the SOMOs play the dual

role of occupied spin up and virtual spin down orbitals, the required blocks are equivalent to

the SOMO-virtual and the SOMO-SOMO block of the spin up (̄ib̄′|X) and (̄ij̄|X) integrals,

respectively. The complete set of restricted two-external integrals of the LIS can therefore

be efficiently compiled from the three sets of integrals obtained so far. As the last step of
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the two-external integral transformations, the restricted (ā′b̄′|X) integrals are transformed

to the semi-canonical spin up and spin down bases of the LIS, which represents a negligible

additional cost compared to the closed-shell algorithm. For the sake of simplifying the

notation, the prime distinction of the virtual LNOs will be omitted in the remaining sections.

3.6 Natural auxiliary functions

Before utilizing the above three-center integrals to assemble the four-center ERIs of the

LIS, their auxiliary function index is compressed using the natural auxiliary function (NAF)

technique.20,101 NAFs are constructed to find the best low-rank approximation of the Jpq,X

and JPQ,X three-center integrals of the LIS. For efficiency considerations, instead of preform-

ing the singular value decomposition of the three-center integral tensors, we can build the

following W intermediates:

W ↑
XY =

∑

p≤q

(
pq|X

) (
pq|Y

)
, W ↓

XY =
∑

P≤Q

(
PQ|X

) (
PQ|Y

)
. (23)

It is important to note that for the assembly of four-center ERIs with mixed spin, the aux-

iliary basis should be the same for both the spin up and spin down DF integrals. Therefore,

we diagonalize the spin averaged W = (W↑ + W↓)/2 matrix20,101 and retain its eigenvectors

as NAFs with eigenvalues above εNAF. We also note that the NAFs obtained in this manner

are equivalent to those of the closed-shell LNO-CCSD(T) algorithm in the closed-shell limit

due to the factor of 1
2

in the definition of W.

3.7 Correlation energy calculation in the LIS

Having the DF integrals transformed to the LNO and NAF bases of the LIS, one can proceed

with writing the CCSD and (T) correlation energy contributions of eqs 1 and 2 specifically

for the LNO approximations in the LIS.
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First, the CCSD correlation energy contribution is evaluated in the LIS as

δECCSD
I =

∑

a

tai′f
a
i′ +

1

4

∑

abj

τabi′j⟨ab∥i′j⟩ +
1

2

∑

aBJ

τ̃aBi′J ⟨aB|i′J⟩

+
∑

A

tAI′f
A
I′ +

1

4

∑

ABJ

τAB
I′J ⟨AB∥I ′J⟩ +

1

2

∑

Abj

τ̃Ab
I′j ⟨Ab|I ′j⟩ .

(24)

The CCSD amplitudes are obtained by solving the CCSD equations in the basis of the LIS,

relying on our hand-coded, highly-optimized, and semi-integral direct unrestricted CCSD(T)

implementation in Mrcc.102,103 The computational cost of a CCSD iteration scales in total

as the sixth power of the occupied (no) and virtual (nv) LIS basis dimension [e.g., O(n2
on

4
v)],

which may take a significant portion of the total wall time of a LNO-CCSD(T) computation.

In comparison with the closed-shell alternative, the computational cost of the LIS CCSD

part is roughly three times higher, stemming from the three times as many terms in the

open-shell CCSD equations.

Regarding the (T) correction of the LIS, its naive implementation would scale with the

seventh power of the LIS dimensions [i.e., O(n3
on

4
v)]. This can be reduced to sixth-power

scaling in the LIS if we recognize that we only need the triples amplitudes for a fixed central

LMO index to evaluate the δE
(T)
I correlation energy contribution since the perturbative (T)

triples amplitudes are not coupled, at least in a semi-canonical basis. For that purpose, we

utilize an orbital invariant form of the (T) expressions using the Laplace-transform in our

LNO methods.62 In this way, the triples energy denominators in the LIS, Dabc
ijk , are factorized

as

1

Dabc
ijk

=

∫ ∞

0

e
−D

abc
ijk sds ≈

nq∑

q

ωqe
−D

abc
ijk sq , (25)

utilizing nq pieces of quadrature points sq, with quadrature weights ωq. Writing the expo-

nential of the energy denominators as products of exponentials of single orbital energies,

they can be absorbed in the intermediates contributing to the triple excitation amplitudes.

Then, the latter can be directly computed in a basis that contains the central LMO, enabling
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an algorithm with a much more favorable scaling in the LIS [i.e., O(nqn
2
on

4
v)].

Utilizing this Laplace-transform approach, introduced in detail in Ref. 62, the (T) con-

tribution of central LMO I is given as

δE
(T)
I =

1

3

∑

q

( ∑

a<b<c
j<k

t̄abci′jk,qW̄
abc
i′jk,q +

∑

aB<C
J<K

t̄aBC
i′JK,qW̄

aBC
i′JK,q +

∑

a<bC
jK

t̄abCi′jK,qW̄
abC
i′jK,q

+
∑

A<B<C
J<K

t̄ABC
I′JK,qW̄

ABC
I′JK,q +

∑

Ab<c
j<k

t̄Abc
I′jk,qW̄

Abc
I′jk,q +

∑

A<B c
Jk

t̄ABc
I′Jk,qW̄

ABc
I′Jk,q

)
.

(26)

Here, the overbar of t̄ and W̄ indicates that these quantities contain the Laplace energy

denominator factors absorbed as defined in Ref. 62. The formal scaling of evaluating eq 26

is similar to that of its closed-shell analogue,62 with a larger prefactor of about 3 due to

the increased number of spin cases. The number of quadrature points is determined system

specifically and, matching our closed-shell experience,62 the resulting 3(–4) points provide

sufficiently high accuracy for the (T) contribution.

3.8 Comparison with the closed-shell LNO-CCSD(T) method

Here, we compare the computational requirements of the most important steps of the re-

stricted open-shell LNO-CCSD(T) algorithm to their closed-shell counterparts. The com-

putationally demanding part of the MP2 pair energy evaluation is the transformation and

contraction of the multipole approximated integrals, of which there are four times as many

in the open-shell case. However, even for the largest systems of 500–600 atoms considered

here, the pair energy evaluation takes only a few percent of the total run time. The next

important algorithmic step is the three-center integral transformation in the ED basis. Even

though there are twice as many integrals to transform as in the closed-shell case, all transfor-

mation steps of considerable demand are kept at the same cost as in the closed-shell case by

utilizing the intermediate restricted ED basis. Next, the MP1 amplitudes, the MP2 energy,

and the density matrices in the ED are computed from the available ERIs of the ED. As these
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steps have to be carried out in the unrestricted semi-canonical basis, their operation count

requirement is roughly 2–3 times as large as that of the closed-shell analogue. As the next

step, the ERIs necessary for the LIS CCSD(T) calculations are transformed to the LNO and

NAF bases. Again, all transformation steps in the LIS with considerable cost are performed

in the intermediate restricted virtual LNO basis to keep the operation count close to that of

the closed-shell case. Finally, the correlation energy contribution of the central LMO is com-

puted in the LIS using an unrestricted CCSD(T) formalism requiring about three times as

many operations as closed-shell CCSD(T). Since the LIS CCSD(T) part usually takes about

half of the total LNO-CCSD(T) wall time, and our unrestricted CCSD(T) implementation

is less well parallelized than the restricted one,13 one can expect at least twice as high costs

for the open-shell LNO-CCSD(T) compared to its closed-shell counterpart for molecules of

similar wave function complexity.

3.9 Approximate long-range spin polarization

While for small to medium-sized systems, the additional expense of using unrestricted

CCSD(T) formalism is affordable with the present as well as other local CCSD(T) meth-

ods,48,50 the same might not be the case for demanding, large-scale local CCSD(T) compu-

tations. Recently, we introduced the idea of approximating the long-range spin polarization

at a lower level of theory, such as our distant pair MP2 model, which turned out to be very

effective in our local MP2 implementation.65

To introduce this approach also at the LNO-CCSD(T) level, let us consider an extended

system with a limited amount of SOMOs, which are often located around a well-defined,

narrow region of the molecule. We activate this long-range spin polarization approximation

domain specifically when the central LMO of a given domain does not couple strongly to

any SOMOs, i.e., when there are only DOMOs and no SOMO within the ED (and LIS).

Thus, when this approach is activated, the small, spin-polarized correlation effects between

the distant LMO-SOMO pairs are taken into account in the final LNO-CCSD(T) correlation
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energy via the multipole approximated MP2 pair energies. In other words, if there are no

SOMOs in the EDs of the LMOs that form distant pairs with all SOMOs, then the only

spin-polarization effect to take into account in those EDs comes from the spin-dependence of

the domain Fock matrices. This manifests in the slight splitting of the spin-up and spin-down

LMOs and PAOs of the ED due to their semi-canonicalization with the corresponding spin-

dependent Fock matrices. However, since the central LMO of such EDs forms distant pairs

with all SOMOs, the AOs around the SOMOs are mostly not part of the ED. Then, one can

expect that the blocks of the spin-dependent Fock matrices corresponding to AOs far away

from the SOMOs are moderately spin-polarized and that the magnitude of this secondary

spin-polarization effect in the ED energy contribution is small. Therefore, if we approximate

this spin polarization effect by replacing the spin dependent ED Fock matrix blocks with their

spin-averaged counterpart, then all orbital sets of the ED and LIS become spin independent.

Then, we can utilize the restricted local MP2 and LNO-CCSD(T) algorithms to evaluate

the ED and LIS correlation energy contributions for the domains far away from the SOMOs.

As a consequence, in large systems where the SOMOs are well localized to a single region

of the molecule, we can take advantage of the more efficient restricted formalism and thus

approach the computational effectiveness of a completely closed-shell calculation.65

3.10 Scaling of the algorithm

The presented open-shell LNO-CCSD(T) method, just as its closed-shell analogue, achieves

asymptotically linear scaling with the system size for its rate determining steps. Since the

size of the EDs saturates for sufficiently large systems, all computations performed in these

domains exhibit asymptotically linear scaling.65 On the other hand, computations performed

on the whole system, such as the occupied orbital localization, the PAO construction, and

the pair energy computation, scale as the third, third, and second power of the system

size, respectively. However, the cumulative run time of these computations is negligible

compared to the total run time, even for the largest systems considered here. Moreover,
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especially for molecules of several hundreds of atoms, the SCF computation can potentially

take a considerable portion of the run time. The implementation for the HF exchange term

in Mrcc is in principle also asymptotically linear scaling66,89 (alongside an efficient cubic-

scaling DF-based Coulomb term). However, the HF exchange computations reach the linear

scaling system size range for much larger molecules than our local correlation methods, which

is typically above a few thousand atoms for three dimensional structures. Below that size

range, about cubic-scaling can be expected, as the local DF capability of our HF exchange

implementation can effectively reduce the scaling already above a few hundred atoms.

In terms of memory requirements, the open-shell LNO-CCSD(T) algorithm requires the

storage of six matrices with dimensions equal to the total number of AOs of the entire

molecule, while the preceding SCF procedure needs eight such matrices. These quadratic-

scaling arrays are only relevant above tens of thousands of AOs. Furthermore, the remain-

ing arrays allocated within the EDs are asymptotically constant in size, and their memory

requirement is also highly optimized following the ideas exploited in our restricted LNO-

CCSD(T) code.52,53 The shared-memory parallelization model used within a single node

also contributes to the highly memory economic nature of our implementation.

4 Computational details and test systems

4.1 Technical details

The open-shell LNO-CCSD(T) method as presented here is implemented in the development

version of the Mrcc quantum chemical program suite102,103 and will be made available in a

forthcoming release of the Mrcc package. The default or Normal truncation thresholds of

the local approximations and their corresponding keywords are collected in Table 2. These

default values are equivalent to those utilized in the most recent closed-shell formulation of

LNO-CCSD(T).52,53

In all HF and reference canonical CCSD(T) calculations the DF approximation was
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employed using the Mrcc program. To accelerate the HF calculations for the largest systems

(containing more than 500 atoms), the HF exchange contribution was evaluated in local

fitting domains, as described in Section 3.1. The core electrons (including the subvalence

electrons of the iron and cobalt atoms) were kept frozen in all correlated computations. The

remaining occupied orbitals were localized with the algorithm of Boys104 separately for the

DO and SO subspace.

The calculations presented make use of the triple-ζ valence basis set including polarization

functions (def2-TZVP) developed by Weigend and Ahlrichs105 and Dunning’s (augmented)

correlation-consistent polarized valence basis sets [(aug-)cc-pVXZ, X = D, T and Q],106

with the revised aug-cc-pV(X+d)Z basis sets used for second-row atoms.107 Additionally,

the triple-ζ, weighted core-valence basis of Balabanov and Peterson (cc-pwCVTZ) was uti-

lized for the iron atom of the Fe(III) complex investigated in Section 5.1, following the

work of Radoń.108 The appropriate auxiliary basis sets of Weigend et al. were used for all

AO bases.109 The extrapolations of the HF110 and the correlation energies111 towards the

complete basis set (CBS) limit were performed according to the standard expressions.

The relative energy deviations with respect to some reference energy (Eref) are obtained

as (100%) ·(ELNO−CCSD(T)−Eref)/Eref . To characterize the achieved accuracy on various test

sets the following statistical measures were utilized: the maximum absolute error (MAX),

the mean absolute error (MAE), and, to measure the consistency of errors, the standard

deviation of the absolute errors (STD). The presented timing measurements were performed

using 2.5 GHz Intel Xeon Gold 6148 processors with 20 physical cores and at most 192 GB

of total memory in dual-socket nodes.

4.2 Benchmark sets and test systems

The accuracy of the open-shell LNO-CCSD(T) correlation energies and energy differences

are benchmarked on three test sets containing small to medium sized molecules. The first

test set contains the radical stabilization energies (RSEs) of 30 small organic molecules
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Table 2: Default threshold values used in this study.

Symbol Keyworda Value
εo lnoepso 10−5

εv lnoepsv 10−6

εw [Eh] wpairtol 10−5

TEDo bpedo 0.9999
εNAF [Eh] naf cor 10−2

TLT laptol 10−2

gw epairscale 5
hw [E−1

h ] epairestfact 50
a Name of the corresponding keyword in the Mrcc program package.102,103

(RSE30).112 These structures were selected from the RSE43 compilation113 and reoptimized

in ref 57. Next, a test set of adiabatic ionization potentials for 21 organic molecules (IP21)

is considered as defined in ref 57 (with structures reoptimized in ref 65). Lastly, singlet–

triplet energy gaps of aryl carbenes (AC) are also investigated invoking the AC12 test set as

compiled in ref 114.

To investigate the convergence of the local approximations as a function of the corre-

sponding thresholds, six larger open-shell systems containing 23–80 atoms are also selected.

The structures of vitamin E succinate, trityl radical, and artemisinin are obtained from ref

47, testosterone is taken from ref 57, whereas diphenylcarbene comes from the AC12 test

set of ref 114. Lastly, the 4’ Fe(III) complex of ref 108 is also investigated, constructed by

replacing the methyl groups of [Fe(acac2trien)]+ with hydrogens (where H2acac2trien is the

Schiff base obtained from the 1:2 condensation of triethylenetetramine with acetylacetone).

The structures of these medium-sized systems are depicted in Figure 2.

To demonstrate the performance of the open-shell LNO-CCSD(T) method, large-scale

calculations were also carried out on four systems of 175–601 atoms (see Figure 3). Among

these is the 175-atom Fe(II) complex taken from ref 115, both in its triplet and quintet

spin state. Moreover, the CobIIalamin (Cbl) radical containing 179 atoms, a product of the

homolytic bond breaking of the coenzyme B12 (5’-deoxyadenosylcobalamin, dAdoCbl), was

also considered.116 The largest systems investigated are the models of photosystem II (PSII)
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Figure 2: Structures of the six systems of intermediate size used to investigate the conver-
gence of the local approximations. Top row: trytil radical and triplet artemisinin; middle
row: diphenylcarbene in its triplet state and testosterone cation; bottom row: vitamin E
succinate radical and the 4’ Fe(III) complex of Radoń108 considered both with doublet and
sextet multiplicities.

34



bicarbonate47 containing 565 atoms and of the d-amino-acid oxidase (DAAO)117 made up of

601 atoms. The singlet and triplet spin states of PSII bicarbonate were calculated utilizing

the def2-TZVP basis set and QRO reference determinants. The particular complexities and

technicalities of this reference computation are discussed in ref 65. In the case of DAAO, two

steps along the oxidative half-reaction of d-alanine oxidation are taken from Kiss et al.,117

where the reduced flavin adenine dinucleotide (FAD) moiety of DAAO is oxidized by O−
2

to produce the oxidized form of FAD and H2O2. The corresponding reactant and product

structures labeled by O1T and O3CSS in ref 117 are also depicted in Figure 5 of ref 65.

5 Convergence of the local approximations

In this section, the effect of the local approximations of the open-shell LNO-CCSD(T)

method on its accuracy is investigated individually. To this end, the thresholds associated

with such approximations are systematically varied, and the resulting energy deviations from

approximation-free DF-CCSD(T) or other reference methods are observed. Almost all of the

employed approximations were extensively benchmarked in our related open-shell LMP2 and

closed-shell LNO-CCSD(T) studies.52,53,60,65,66 Consequently, the presented tests focus on the

parameters with the largest impact on accuracy: the strong pair energy threshold εw and

the LNO occupation limits εo and εv. Additionally, approximations that were previously

not employed in the context of either any open-shell local CCSD(T) implementation or our

open-shell LMP2 method, such as the distant spin polarization approximation discussed in

Section 3.8 and the NAFs introduced in Section 3.6, are also investigated. For the remaining

truncation thresholds, affecting closed and open-shell systems similarly, such as the BP pa-

rameters of the LMO atom list definition, the previously benchmarked values are adapted,

which will be tested in combination with all approximations in Section 6.
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Figure 3: The structure of the four largest systems considered. Top row: the 5’-
deoxyadenosylcobalamin (209 atoms, out of which the CobIIalamin (Cbl) radical part has
179 atoms) and the 175-atom iron(II) complex FeC72N2H100. Bottom row: a 565-atom model
of photosystem II bicarbonate and the O1T structure of d-amino-acid oxidase containing 601
atoms.
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5.1 LNO selection

First, the errors introduced by the truncation of the LNO basis of the LISs are illustrated

on three systems. The system sizes were chosen to be as large as possible so that the LNO

truncation is already active in all domains (with up to 50% of the occupied and 85% of

virtual LNOs discarded), while still keeping the possibility of using DF-CCSD(T) energies

as reference. The one-particle basis set of cc-pVTZ is chosen for the description of the

hydrogen addition of the triphenylmethyl radical, while cc-pVQZ is used for the calculation

of the singlet-triplet gap of diphenylcarbene. A composite basis set composed of cc-pwCVTZ

for the iron atom, cc-pVTZ for the atoms connected to the iron atom, and cc-pVDZ for all

other atoms is chosen to investigate the doublet-sextet gap of the Fe(III) complex, following

Radoń.108 Since our previous studies found that setting the ratio of the virtual and occupied

LNO selection thresholds (εo/εv) to 10 gives satisfactory results,52,53,58,59 this ratio was kept

in this work.

As can be seen from the left panel of Figure 4, the correlation energy errors decrease

monotonically and converge to zero when the LNO selection thresholds are tightened (the

approximations other than the LNO truncation are turned off in these tests). Moreover, the

99.9% accuracy approached already with the default setting of εo = 10−5 and εv = 10−6

is highly satisfactory for such non-trivial systems. Considering the right panel of the same

figure, the three energy differences of the associated chemical processes also exhibit good

convergence. The singlet-triplet energy gap of diphenylcarbene with almost perfect error

cancellation already with the loosest thresholds is probably an exception, representative

only for very local properties, like spin state differences, localized mostly on a few atoms.

Nonetheless, the deviations introduced by the LNO truncation for this system remain below

0.3 kcal/mol for all investigated εo values, and the trityl RSE and the doublet-sextet gap

of the Fe(III) complex also drop below the satisfactory 0.5 kcal/mol value after εo = 10−5.

Thus, the default LNO threshold values of εo = 10−5 and εv = 10−6 are selected, which

are recommended also based on our closed-shell LNO-CCSD(T) benchmarks52,53 as both the

37



correlation energy and energy difference deviations are sufficiently converged (with at most

0.14% and 0.53 kcal/mol deviations, respectively, for the examples of this section). We note

in passing that this value is not directly comparable to the frozen NO20,21 or pair NO48

threshold settings as only the strong pair LMOs are included in our orbital specific LNO

density matrices (Sect. 3.4), while the summation is not restricted for the frozen NO and

even more restricted for the orbital pair specific pair NO density matrices.
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Figure 4: Deviations of the LNO-CCSD(T) energies from reference DF-CCSD(T) values as a
function of the LNO selection thresholds. Left panel: relative correlation energy differences,
right panel: deviations in energy differences (s. s. = spin state). The ratio of the occupied
and virtual LNO selection thresholds were kept constant, εo/εv = 10. For a description of
the systems and basis sets utilized, see Section 5.1.

5.2 Strong pair classification

The convergence of the LNO-CCSD(T) energies with the tightening of the pair energy thresh-

old (εw) is also investigated. The restriction of the strong pair LMO list, controlled by this

threshold, only starts to take effect for somewhat larger systems, preventing one from uti-

lizing canonical DF-CCSD(T) calculations as reference. To overcome this difficulty, first, we

recall that this approximation is the main source of error in the LMP2 correlation energy,

which we benchmarked against DF-MP2 for a number of larger open-shell molecules con-

taining 42–81 atoms. Namely, the singlet-triplet gap of artemisinin, the vertical ionization

energy of testosterone, and the hydrogen addition to vitamin E succinate were investigated
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using the aug-cc-pVTZ basis set.65 There, we found that the energy differences converged

already at the default εw = 10−5 Eh LMP2 setting with at most 0.03% relative correlation

energy and 0.05 kcal/mol energy difference deviations.

To also assess the accuracy of LNO-CCSD(T) against an affordable reference on the

same systems, we set all thresholds to their default value except for the εw parameter, which

we scan (see Figure 5). Therefore, as reference, the converged calculation with the very

tight εw = 10−6 Eh can be taken. With that, we find the relative correlation energy and

absolute energy difference deviations to converge quickly to zero also for LNO-CCSD(T) as

the pair energy threshold is tightened. Note that the absolute energy difference considered for

vitamin E succinate is about four (two) times larger than that for artemisinin (testosterone),

meaning that the slightly larger energy difference deviations observed for vitamin E succinate

correspond to similarly high quality relative deviations for all systems. The value of εw =

10−5 Eh, yielding highly satisfactory LNO-CCSD(T) results of less than 0.04% correlation

energy deviations and highest energy difference deviations of just above 0.1 kcal/mol, can

be again safely chosen as default. Our strong pair threshold can be compared to the settings

of other local approaches, and for example, matches the value employed in the TightPNO

settings of the DLPNO methods.48 This value matches our closed-shell setting as well, where

the restriction of the strong pair LMO list was successfully benchmarked for even larger

molecules of 92–260 atoms against DF-MP2 references.66

5.3 Approximate long-range spin polarization

The accuracy of the distant spin polarization approximation introduced in Section 3.8 is

evaluated on both local correlation energies and energy differences. Here, the reference

energies are obtained from default LNO-CCSD(T) calculations without activating the distant

spin polarization approximation. Since the approximation is only active in the EDs that do

not contain SOMOs, reasonably large systems should be chosen to activate and test this

approach. Results for three medium to large test systems of 81–179 atoms are collected in
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Figure 5: Relative LNO-CCSD(T) correlation energy (left) and absolute energy difference
(right) deviations. A converged LNO-CCSD(T) calculation with εw = 10−6 was used as
reference. See Section 5.2 for a description of the utilized systems and basis sets.

Table 3. As shown in the last column of Table 3, already at this relatively moderate system

size, one half to two thirds of the EDs without SOMOs can be treated with the more efficient

closed-shell formalism. At the same time, all relative correlation energy errors are well below

10-4 %, indicating only a marginal loss of accuracy. The absolute and relative errors in

the computed energy differences of about 0.1–0.4 cal/mol or up to 5.4·10-4 % are similarly

negligible. It is also worthwhile noting that here, the RSE and bond breaking processes in

the first and third lines involve also large closed-shell species, where this approximation does

not have an analogue eliminating the possibility of error cancellation. In conclusion, the

errors introduced by the distant spin polarization approximation are substantially smaller

than those brought in by the other local approximations employed. These results are in line

with the performance of the analogous approximation in our open-shell LMP2 approach,

where we have also performed such tests up to 500-600 atoms.65 Notably, in that size range,

80–90% of the EDs are free of SOMOs and can be treated with the more efficient restricted

algorithms.
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Table 3: Accuracy of the long-range spin polarization approximation compared to reference
LNO-CCSD(T) correlation energies and energy differences obtained without this approxi-
mation.

atoms LMOs
ELNO−CCSD(T)

error [%]

error in energy difference EDs without
SOMOs [%][cal/mol] [%]

vitamin E succinate 81 89 1.2 · 10−5 0.44 1.1 · 10−4 54

FeC72N2H100

5A
175

205 3.3 · 10−5

0.22 5.4 · 10−4 54
3A 204 3.5 · 10−5 54

Cbl radical 179 250 2.0 · 10−6 0.087 1.6 · 10−4 68

5.4 Natural auxiliary functions

In this section, the effect of the NAF truncation is investigated on three systems of up to 81

atoms with various basis sets. These include the vertical ionization energy of testosterone

(cc-pVTZ), the hydrogen addition process of vitamin E succinate (aug-cc-pVTZ), and the

singlet-triplet gap of diphenylcarbene (cc-pVQZ). Since the NAF approximation was found

very effective in the analogous closed-shell context,52,53 and the only difference compared to

the latter is that here, both spin up and spin down integrals have to be expanded in the

same NAF basis, we expect very similar accuracy.

To evaluate the performance of NAFs, LNO-CCSD(T) calculations with default settings

except for the scanned εNAF parameter are compared against the reference obtained with

εNAF = 0. Figure 6 shows the convergence of the correlation energy (left) and energy

difference (right) deviations. The correlation energy deviations converge almost completely

already with εNAF = 10−2 Eh, while energy difference deviations approach the reference also

almost completely monotonically. Since the largest energy difference deviation is already

below 0.01 kcal/mol with εNAF = 10−2 Eh, this value is chosen as the default, again matching

the default setting of closed-shell LNO-CCSD(T).

6 Benchmarks for small and medium sized systems

In this section, the cumulative effect of all local truncation thresholds employed at their de-

fault values is benchmarked against canonical DF-CCSD(T) references. Statistical measures
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Figure 6: Errors of LNO-CCSD(T) energies and energy differences computed with various
NAF truncation thresholds. The reference energies are obtained from LNO-CCSD(T) cal-
culations with εNAF = 0. Left panel: relative correlation energy differences, right panel:
absolute deviations in energy differences.

for the correlation energy and energy difference deviations are presented for three test sets

containing radical stabilization energies, ionization potentials, and spin-state energies. The

reference data utilized in this section is available in the Supporting Information.

6.1 Accuracy of local correlation energies

Here, the accuracy of the open-shell LNO-CCSD(T) correlation energies is evaluated against

reference DF-CCSD(T) values. The investigated systems include 30 radicals (from the RSE30

test set), 21 cations from IP21, and the 12 aryl carbenes in their triplet state of the AC12

test set.

The statistical measures of the correlation energy deviations of the three test sets are

collected in the third columns of Tables 4–6. For all test sets, the MAEs of the relative cor-

relation energy deviations with the triple-ζ quality basis sets are below 0.05%, with all errors

not exceeding 0.11%. The highest triple-ζ deviation of 0.11% is observed for the oxalic acid

cation, where a large (0.35) single excitation amplitude of the reference DF-CCSD(T) solu-

tion suggests some multireference character. Apart from this challenging system lying at the

boundary of single reference CC’s applicability, all triple-ζ local correlation energy deviations
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are below 0.1%, which is highly satisfactory already with the default LNO-CCSD(T) set-

tings. When moving to the quadruple-ζ and triple-ζ–quadruple-ζ extrapolated [CBS(T,Q)]

results of the RSE30 test set, one observes a slight increase in the MAE and MAX local

correlation energy deviations. It is worth noting that the largest relative error is observed

in both cases for the methyl radical. Due to its small size, the reference correlation energy

values for this system are tiny, greatly increasing the relative correlation energy deviations

even for the smallest of absolute errors. Compared to the high quality of MAEs for the

correlation energies, it is important to point out that their STD is always as good as or, in a

number of cases, 2–3 times smaller than the MAE for all three test sets. This indicates that

one can expect excellent cancellation between the correlation energy errors upon computing

various energy differences, as found in the next section.

Table 4: Relative correlation energy deviations and absolute errors of the LNO-CCSD(T)
reaction energies for radical stabilization energies of the RSE30 test set using the default
thresholds.

basis error measure error in ELNO−CCSD(T) [%] error in RSE [kcal/mol]

aug-cc-pV(T+d)Z
MAX 0.081 0.111
MAE 0.029 0.042
STD 0.034 0.041

aug-cc-pV(Q+d)Z
MAX 0.195 0.136
MAE 0.099 0.037
STD 0.050 0.050

CBS(T,Q)
MAX 0.292 0.173
MAE 0.173 0.050
STD 0.063 0.069

Table 5: Relative correlation energy deviations and absolute errors of the LNO-CCSD(T)
vertical ionization energies of the IP21 test set using the default thresholds.

basis error measure error in ELNO−CCSD(T) error in IP
[%] [eV] [kcal/mol]

aug-cc-pV(T+d)Z
MAX 0.109 0.027 0.62
MAE 0.047 0.007 0.16
STD 0.058 0.009 0.21
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Table 6: Relative correlation energy deviations and absolute errors of the LNO-CCSD(T)
singlet-triplet energy gaps of the AC12 test set using the default thresholds.

basis error measure error in ELNO−CCSD(T) [%] error in S–T gap [kcal/mol]

cc-pVDZ
MAX 0.073 0.337
MAE 0.041 0.106
STD 0.017 0.118

cc-pVTZ
MAX 0.084 0.452
MAE 0.043 0.244
STD 0.021 0.159

6.2 Radical stabilization energies

The RSE30 test set contains radical stabilization reactions of the form:

R−H + CH3 · −→ R · + CH4 , (27)

where R ·, stands for the different radicals containing C, N, O, F, P, and S atoms.57 The devi-

ations of LNO-CCSD(T) radical stabilization energies from reference DF-CCSD(T) ones are

collected in the last column of Table 4. With MAEs of at most 0.05 kcal/mol and MAX errors

below 0.2 kcal/mol, even for the CBS extrapolated energy differences, the results are highly

satisfactory. Here, the 0.050 % and 0.063% STDs of the quadruple-ζ and CBS(T,Q) correla-

tion energies, respectively, are important indicators to explain that the triple-ζ, quadruple-ζ,

and CBS(T,Q) RSE values are of the same high quality. One might also compare the results

obtained with the aug-cc-pV(T+d)Z basis to those of the PNO-UCCSD(T)-F1250 method,

calculated for the same RSE30 test set. Naturally, the PNO-UCCSD(T)-F12 and the LNO-

CCSD(T) are not directly comparable as the former contains additional explicitly correlated

terms. Nonetheless, the LNO-CCSD(T) results appear to be comparable to or slightly better

than the PNO-UCCSD(T)-F12 results with defaults settings providing 0.076 kcal/mol RMS,

0.064 kcal/mol MAE, and 0.192 kcal/mol MAX errors with the aug-cc-pVTZ basis set.50 It

is always important to keep in mind at such comparisons that both the PNO-UCCSD(T)-

and the LNO-CC-type methods can be converged to the same local approximation free limit,
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and here, we compare only the results obtained with the default settings of each method

determined according to considerations that are not identical for the two methods.

6.3 Vertical ionization potentials

The statistical measures of the vertical ionization potentials of the IP21 test set are shown

in Table 5. Considering the fact that the IPs represent quite large energy differences in the

range of 8–14 eV (184–323 kcal/mol), the mean average error of 0.007 eV (0.16 kcal/mol)

is excellent. The MAX IP deviation of 0.027 eV can be attributed to the benzoquinone

cation, the reference DF-CCSD(T) solution of which exhibits a moderately large maximum

singles amplitude of 0.15. Removing this outlier, the MAX IP error drops to below 0.02 eV

(0.04 kcal/mol), and the standard deviation also decreases to 0.007 eV (0.16 kcal/mol). The

PNO-UCCSD(T)-F12 method achieves comparable or slightly more accurate results for this

test set with its default settings and the aug-cc-pVTZ basis set (0.17 kcal/mol RMS, 0.11

kcal/mol MAE, and 0.50 kcal/mol MAX).50

6.4 Singlet–triplet energy gaps

Finally, the singlet–triplet spin state energy gaps of the aryl carbenes are benchmarked, and

the results are collected in the last column of Table 6. The MAE of 0.24 kcal/mol for the

cc-pVTZ basis is somewhat larger than those for the other two test sets but is still only a

fraction of a kcal/mol marking chemical accuracy. The slightly increased errors are at least

partly explained by the fact that the system sizes of this test set are larger than that of the

other two, with the average AC12 system containing more than twice as many heavy atoms

as either RSE30 or IP21. To put the results in perspective, let us consider that the basis

set incompleteness error of canonical CCSD(T) for the AC12 test set found to be 2.74 and

0.98 kcal/mol, respectively, for the cc-pVDZ and cc-pVTZ bases,114 which are significantly

larger than the MAX local errors reported here.
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7 Performance and computational requirements for larger

systems

The current capabilities of the open-shell LNO-CCSD(T) method are illustrated on large-

scale calculations on four three-dimensional systems containing 175–601 atoms (see Table 7).

Of these systems, the Cbl radical and the FeC72N2H100 complex represent the higher end of

the typical size range, e.g., in homogeneous catalysis applications (cca. 175 atoms), while

the bicarbonate or DAAO models of 565–601 atoms are in the typical size range of quantum

systems in biochemical applications, for example, when modeling proteins with active centers

in a quantum mechanics/molecular mechanics (QM/MM) framework. The Cbl radical and

the FeC72N2H100 complex pose a formidable challenge for local correlation methods due to

the spin polarized transition metal atoms near their centers. This leads not only to high

strong pair ratios of 22–26% but also to LISs that are somewhat more extended than those

of the two protein models. It is therefore not completely surprising to see that the wall clock

run times of the domain CCSD(T) calculations for the transition metal complexes somewhat

exceed even those for PSII bicarbonate or the singlet DAAO species. Another reason for the

unusually long CCSD(T) run time for the FeC72N2H100 system is its moderate multireference

character,115 which hinders the convergence of the CCSD iterations, resulting in up to 27

iterations performed in particular domains, compared to the usual 9–11 iterations.

Regarding the other contributions to the run time, it is reassuring that the formally cubic

scaling orbital localization and the quadratically scaling pair energy evaluation take negligible

time, even for the largest systems. However, the cubic-scaling local DF-HF computations can

take time comparable to the LNO-CCSD(T) correlation energy computation for the large

protein models, in accord with our experience with even larger proteins of 1000–2000 atoms

and our restricted LNO-CCSD(T) implementation.52,53 Moreover, as observed on the singlet

and triplet DAAO models, the time required for the integral transformation to the LNO basis

increases by only up to 30% compared to the closed-shell algorithm, which increase is mainly
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Table 7: Average (maximum) domain sizes, orbital space dimensions, DF-HF and correlation
energies (in Eh), wall-clock times (in hours)a , and memory requirements (in GB) for LNO-
CCSD(T) computations of large molecules.

molecule FeC72N2H100 Cbl radical bicarbonate DAAO
atoms 175 179 565 601
LMOs 205 250 788 837 838
SOMOs 4 1 2 0 2
AO basis def2-TZVP def2-TZVP def2-TZVP def2-TZVP
basis functions 2939 3369 10 560 11 006
auxiliary functions 7306 8379 26 064 27 071
strong pairs [%] 26 22 6.8 5.9 5.9
atoms in ED 116 (171) 116 (169) 132 (294) 124 (268) 137 (353)
AOs in ED 2129 (2915) 2346 (3278) 2634 (5953) 2453 (5408) 2700 (6943)
LMOs in ED 54 (111) 55 (115) 55 (112) 50 (113) 51 (184)
PAOs in ED 1045 (1949) 1023 (1829) 975 (2037) 866 (1884) 905 (2932)
Occupied LNOs 32 (64) 31 (74) 29 (58) 26 (65) 27 (100)
Virtual LNOs 131 (268) 125 (272) 121 (250) 112 (269) 113 (449)
type of reference ROHF ROHF QRO (UHF) RHF ROHF
DF-HF energy -4156.159945 -5878.796625 -15197.85043c -14740.93979 -14740.90403
LNO-CCSD(T) energy -13.3715 -17.6478 -56.0763 -59.1499 -59.1421
HF (1 iteration) 0.50 0.72 3.1b 2.5b 2.6b

orbital localization < 0.01 < 0.01 0.12 0.06 0.05
pair energies 0.03 0.04 0.17 0.09 0.19
LMP2 in EDs 0.74 0.97 1.1 0.67 1.93
integral trf. to LNOs 3.0 4.0 11 10 13
CCSD(T) in LISs 75 55 29 10 76
total LNO-CCSD(T) 85 67 57 33 106
memory req. 12 18 17 7.1 88

a Using two 20-core, 2.4 GHz Intel Xeon Gold 6148 CPUs
b Using the default local fitting domain size. The final iteration with larger fitting domains took about
3.5–4.8 times longer.
c DF-HF energies calculated with semi-canonical QRO orbitals.

attributed to the larger domain sizes within the triplet system. As discussed in Section 3.8, an

unrestricted implementation of the open-shell integral transformation would have twice the

computational cost of the closed-shell analogue. However, due to the restricted intermediate

basis and the distant spin polarization approximation, the computational costs of the most

expensive integral transformation steps approach those of the closed-shell algorithm. This

small overhead of the open-shell integral transformations means that, while this step is one

of the rate determining parts of the closed-shell algorithm (30% of the singlet DAAO run

time), its significance is much reduced in the open-shell case (12% of the triplet DAAO run

time).

Looking at the average (maximum) ED sizes of 116–137 (169–353) atoms, at least for
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the large protein models, the individual domain sizes are saturated, and we are getting close

to the linear scaling regime of the ED and LIS computation parts of the LNO-CCSD(T)

method. It is also clear that performing hundreds of MP2 energy computations for these

domains is well beyond the capabilities of any conventional MP2 implementation. These ED

MP2 computations are only feasible with a thoroughly optimized, Cholesky-decomposition-

or Laplace-transform-based algorithm and extensive utilization of local approximations.65,66

In these (necessarily) large EDs, we can exploit the locality of the LMOs, use local AO

and DF domains, and redundancy free MP1 amplitude expressions. As a result of these

enhancements, the MP2 energy computation in the largest ED with over 180 LMOs and

almost 3000 PAOs takes less than an hour. Turning to the average LIS sizes, the necessity

and efficiency of the LNO compression is evident. The LISs contain somewhat over half as

many occupied and around 6–8 times fewer virtual orbitals after the truncation of the ED

basis dimensions. Without this compression of the correlated subspaces, the evaluation of

hundreds of domain CCSD(T) energies would clearly be unfeasible.

It is interesting to inspect the DAAO systems more closely due to the availability of

very similar closed-shell and open-shell computations. Here, one immediately notices the

surprisingly large maximum domain size of the triplet DAAO model in the last column

of Table 7. Containing over 350 atoms, 100 occupied, and 449 virtual LNOs, the size of

this domain is unprecedented in LNO-CCSD(T) calculations performed with the default

threshold values. The central LMO of this domain is one of the SO LMOs of the system,

depicted on the left panel of Figure 7. This orbital spreads across the entire FAD moiety

and, to a small extent, even spills onto the peroxide molecule. The large spatial extent of

this orbital means that it forms an unusually large number of strong pairs with other LMOs.

This in turn leads to a large number of ED atoms and finally, to large LIS orbital dimensions.

Beyond the inherently delocalized electronic structure of the reduced FAD, another reason

for the extreme spatial extent of this SO LMO is to be found in the restricted nature of

the employed orbital localization scheme. During localization, the SOMOs are mixed only
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Figure 7: d-amino-acid oxidase model with its two singly occupied molecular orbitals de-
picted with blue and yellow surfaces. The left panel shows the highly delocalized orbital
spreading over the entire flavin adenine dinucleotide, while the other singly occupied orbital
localized almost exclusively on the peroxide radical can be seen on the right.

among themselves, in order to avoid the splitting of the spin up and spin down occupied

orbitals. The triplet state of the DAAO model contains merely two SOMOs, but at the same

time the singly occupied subspace spreads across the entire FAD moiety and the peroxide

molecule. Due to the large spatial extent of the SO subspace and the small number of

orbitals spanning it, it is not possible to localize the SO LMOs better in a restricted scheme.

A (partial) remedy could be to employ a spin unrestricted localization scheme, where the

two SOMOs would be allowed to mix with all other spin up orbitals. This could probably

lead to orbitals more localized than the highly delocalized SOMO in question at the cost of

introducing spin splitting to the LMOs, doubling the number of domains in all computations.

Despite the complex electronic structure and extreme domain size, the LNO-CCSD(T) energy

contribution of this delocalized central LMO can still be evaluated on a single CPU. This

would not be possible without efficient local approximations, such as the compact NAF and

LNO orbital spaces, the highly optimized CCSD(T) code featuring integral direct evaluation

of four-center more-than-two-external ERIs, and the redundancy free Laplace-transform (T)

formulation of LNO-CCSD(T). The broader significance of the present triplet DAAO LNO-
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CCSD(T) computation is that it represents (i) the largest CCSD(T) computation in the

literature with over 600 atoms and more than twice as many orbitals as in the def2-SVP

level DLPNO-based PSII bicarbonate computation of Kumar et al.,56 (ii) probably the most

complicated system studied so far concerning the issues with delocalized SOMOs, illustrating

that such problematic situations can also be handled with highly-optimized implementations.

It is also encouraging to see the comfortably manageable minimal memory requirements

in the last line of Table 7, despite the complexity of the investigated systems and the em-

ployed triple-ζ quality basis set. Less than 20 GB of minimal memory is required for most

systems in Table 7, while with about 90 GB, LNO-CCSD(T) was feasible even for the most

challenging triplet DAAO system. Such low memory requirements are the result of the

highly optimized integral evaluation and transformation routines and the tiled computation

of the most memory intensive CCSD(T) terms, which removes the need to store any four-

center ERI arrays with more than two external indices in the memory. Additionally to the

small minimal memory requirements, the wall-clock run times of 1.5–4.5 days also indicate

that LNO-CCSD(T) calculations for open-shell systems containing several hundred atoms,

at least with reasonable triple-ζ quality basis sets and the default settings, have become

routine tasks even on a single many-core CPU with easily accessible amount of memory.

Lastly, the reaction energies and energy differences obtained with the LNO-CCSD(T)

method for the above discussed four large examples are collected in Table 8. Comparing the

estimates of the energy differences obtained at the LMP2 and LNO-CCSD(T) levels of theory,

one observes significant differences for all applications. The deviation of the relative energy

estimates between these two methods is smallest for the DAAO oxidation and dAdoCbl

formation processes, however, with 2.1–2.4 kcal/mol, this deviation is still clearly outside

of the range of chemical accuracy typically defined to be 1 kcal/mol. Moreover, for the

quintet–triplet energy differences of the two iron complexes, the disagreement between the

two methods increases to 6.6–6.8 kcal/mol. These results are in accord with the observations

emerging more and more often in the literature, enabled by large-scale CCSD(T) benchmarks,
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namely that second order perturbation theory can often be insufficient to accurately describe

such challenging extended systems and processes. This also verifies the need for higher order

and more reliable methods.

Table 8: Contributions to reaction energies and spin-state gaps in kcal/mol for the
four largest examples evaluated with the def2-TZVP basis. ∆EHF – DF-HF, ∆ELMP2 –
LMP2 correlation contribution, ∆ELNO−CCSD(T) – LNO-CCSD(T) correlation contribution,

∆E
LNO−CCSD(T)
total – total LNO-CCSD(T).

∆EHF ∆ELMP2 ∆ELNO−CCSD(T) ∆E
LNO−CCSD(T)
total

FeC72N2H100
5A – 3A 57.56 -10.57 -17.39 40.17

bicarbonate 5A – 3A 52.67 -12.07 -18.70 33.97
Cbl + Ado → dAdoCbl 50.41 -102.47 -104.82 -54.41
DAAO oxidation 22.44 7.01 4.88 27.32

8 Summary and conclusions

A high-spin open-shell extension of the asymptotically linear-scaling local natural orbital

(LNO) based CCSD(T) method is presented. The efficiency of the open-shell algorithm

approaches that of our closed-shell LNO-CCSD(T) method52 for large molecules due to

the utilization of restricted open-shell Hartree–Fock (ROHF) or Kohn–Sham (ROKS) ref-

erence determinants, the use of restricted open-shell intermediate basis sets, and a novel

approximation of long-range spin-polarization effects at the CCSD(T) level. For compact

molecules, where the domain CCSD(T) computations are rate-determining, the open-shell

LNO-CCSD(T) method requires at least 2–3 times more operations and data than the closed-

shell variant, just as for alternative local CCSD(T) approaches. The presented method is

identical to its closed-shell counterpart when closed-shell systems are considered, enabling

the combined use of these algorithms to efficiently compute consistent energy differences

between open- and closed-shell species.

The proposed approach efficiently extends and generalizes the optimized algorithms devel-

oped for our other local correlation methods to the open-shell LNO-CCSD(T) case,52,53,62,65,66
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for example, the algorithms for domain constructions, auxiliary basis compression, integral

transformation, and LNO construction. Its implementation is integral-direct, memory- and

disk use economic, and OpenMP-parallel, although the scaling of the current version above

10–20 cores should be improved. The local approximations are defined without relying on

empirical parameters, such as real-space cutoffs of fragment definition, and adapt to the

complexity of the wave function by construction. Additionally, a highly accurate open-shell

local MP2 correlation energy is also obtained for free as part of the LNO-CCSD(T) calcula-

tion. The open-shell LNO-CCSD(T) code will be made available open-access for academic

use in a forthcoming release of the Mrcc program suite.102,103

The effect of the local approximations and the corresponding thresholds are profiled on

both energy differences and correlation energies. Systematically tightening these thresholds,

satisfactory convergence towards the exact CCSD(T) energies is observed. The errors caused

by the local approximations using the default threshold values are benchmarked on diverse

test sets of radical stabilization energies, vertical ionization potentials, and singlet–triplet

energy gaps. For systems where the exact CCSD(T) reference is accessible, mean absolute

errors are found to be below 0.25 kcal/mol, while maximum errors do not exceed 0.7 kcal/mol

and are below 0.5 kcal/mol for all but the most challenging systems.

The performance of the open-shell LNO-CCSD(T) algorithm is demonstrated on systems

of 175–601 atoms using triple-ζ quality basis sets. Among these, a triplet state of the O2

reduction process via a d-amino acid oxidase model of 601 atoms is especially challenging,

not only due to its unprecedented size with over 11,000 basis functions, but also because of a

singly-occupied molecular orbital delocalized over about 20 atoms. The complicated triplet

electronic structure of the 565-atom model of the bicarbonate protein in photosystem II is also

investigated using about twice as many basis functions as in a previous local CCSD study.47

Each of these calculations is feasible using less than 100 GB of memory, on a single node of 20–

40 cores within cca. 2.5–4.5 days of wall clock run time. These results demonstrate that the

presented LNO-CCSD(T) algorithm extends the applicability range of open-shell CCSD(T)
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calculations up to biochemical systems of 500-600 atoms using reasonable triple-ζ basis

sets and commodity hardware. Having the ROHF/ROKS/QRO reference at hand, which

can become relatively costly in this size range the open-shell LNO-CCSD(T) method should

scale to even larger systems/basis sets, which approaches the capabilities of closed-shell LNO-

CCSD(T), currently standing at about 1000-2000 atoms and 45,000 basis functions.52,53

Appendix: Derivation of virtual density matrix frag-

ments

In this Appendix, the orbital notation of the main text is simplified using i,j,k. . . and

a,b,c. . . indices for the occupied and virtual (semi-)canonical orbitals, respectively. Again,

lowercase letters stand for spin up, uppercase letters label spin down orbitals, while MP1

amplitudes are denoted by t. Moreover, expressions only for the spin up density matrix

fragments are shown since their spin down counterparts can be obtained by mirroring all

spins of the expressions.

The spin up virtual second-order density matrix reads as

Dab =
1

2

(∑

cij

tacij t
bc
ij +

∑

CiJ

taCiJ tbCiJ +
∑

CIj

taCIj t
bC
Ij

)
. (28)

After transforming one of the occupied orbitals, say the i and I indices, to the LMO basis,

one has three different choices to continue the derivation. If we first restrict the summations

to the central LMO index, we arrive at the virtual density matrix expression used in the

presented open-shell LNO-CCSD(T) algorithm (eq 19). The other two forms can be obtained

by recognizing that the last two terms of eq 28 can be combined together in two ways. One

can either switch the order of the occupied indices of the last term of eq 28 and rename them
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to I → J , j → i, yielding:

Dab =
1

2

(∑

cij

tacij t
bc
ij +

∑

CiJ

taCiJ tbCiJ +
∑

CIj

taCIj t
bC
Ij

)
=

1

2

(∑

cij

tacij t
bc
ij +

∑

CiJ

taCiJ tbCiJ +
∑

CiJ

taCiJ tbCiJ

)
=

1

2

∑

cij

tacij t
bc
ij +

∑

CiJ

taCiJ tbCiJ .

(29)

Here, we exploited that exchanging the occupied indices of the antisymmetric MP1 ampli-

tudes introduces two sign changes that cancel each other (taCIj = −taCjI ). Transforming the

i index to the LMO basis and restricting its summation to the central LMO, one obtains a

virtual density matrix expression different from the first one:

DI
ab =

1

2

∑

cj

taci′jt
bc
i′j +

∑

CJ

taCi′J t
bC
i′J . (30)

However, in this form the central LMO with spin down occupation does not contribute to

the spin up virtual density matrix fragment at all. For the last form, one can perform the

exchanging and renaming of the occupied indices on the second term of eq 28, yielding:

Dab =
1

2

(∑

cij

tacij t
bc
ij +

∑

CiJ

taCiJ tbCiJ +
∑

CIj

taCIj t
bC
Ij

)
=

1

2

(∑

cij

tacij t
bc
ij +

∑

CIj

taCIj t
bC
Ij +

∑

CIj

taCIj t
bC
Ij

)
=

1

2

∑

cij

tacij t
bc
ij +

∑

CIj

taCIj t
bC
Ij .

(31)

If this form were to be used after restricting the summations to the central LMO index, both

the central LMO with spin up and spin down occupation would contribute to the spin up

density matrix. However, the contribution of the spin down central LMO would be weighted

twice as high as that of the spin up central LMO.
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Supporting Information Available

See the Supporting Information for reference DF-CCSD(T) energies of the RSE30, IP21, and

AC12 test sets.
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(20) Gyevi-Nagy, L.; Kállay, M.; Nagy, P. R. Accurate reduced-cost CCSD(T) energies:

parallel implementation, benchmarks, and large-scale applications. J. Chem. Theory

Comput. 2021, 17, 860.
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(52) Nagy, P. R.; Samu, G.; Kállay, M. Optimization of the linear-scaling local natural

orbital CCSD(T) method: Improved algorithm and benchmark applications. J. Chem.

Theory Comput. 2018, 14, 4193.
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CCSD(T) non-covalent interaction energies for medium-sized complexes: case study

on the S66 compilation. Mol. Phys. 2023, 121, e2109526.
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