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Summary 
 
In this paper, new rock physical models describing the pressure dependence of acoustic wave velocities 

and quality factors are presented. They are based on the consideration that the cause of changing 

velocities/quality factors under varying pressure is due to the changes in pore volume. After determining 

the model parameters by jointly inverting P and S wave velocity/quality factor data, they can be 

calculated for any pressure. Based on these results the pressure-dependent Lamé parameters and loss 

angles can be derived as well. To prove the applicability of the methods, literature data (velocities and 

quality factors) measured on coal samples were inverted. The results show that the misfits between 

measured and calculated data are small, and the model can be applied well in practice. 
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New rock physical models describing the pressure dependence of seismic/acoustic dispersion 

characteristics 

 

Introduction 

 

The knowledge of pressure dependence of acoustic wave velocities and elastic properties has great 

significance in seismic practice. It is observed that pressure has more influence on velocities in the 

beginning phase of loading, later it lessens and the velocities tend to have a limit value. After Birch’s 

(1960) consideration the reason for the velocity increase is the decreasing pore volume with increasing 

pressure. A nonlinear relationship between velocity and pressure was proved by several empirical 

equations, however, they do not provide a physical explanation of the process. 

 

Besides the P and S wave velocities, the pressure dependence of quality factors (Qα, Qβ) (or absorption 

coefficients) are often investigated. There are several models in the international literature to explain 

the attenuation of elastic waves, among others the nonlinear friction model, the Biot model, the 

viscoelastic model, and the elastic dispersion model. The theories for the pressure dependence of 

velocities are suitable for the description of the relationship between quality factor and pressure. 

Previous studies revealed that the quality factors behave similarly to the velocities, a rapid nonlinear 

increase occurs at the beginning of loading. As the pore volume decreases with the increasing pressure, 

the contacts between the grains become better thus the measurable absorption coefficient decreases, and 

the quality factor increases. 

 

The following rock physical models are formulated with the assumption of the constant (frequency-

independent) Q model, where the velocities and the quality factors are rock stress-dependent. Using 

laboratory-measured velocity and absorption coefficient data the material parameters of the models are 

processed in a joint inversion procedure. After determining these values the phase velocities and the Q 

factors can be calculated at any pressure, so the pressure-dependent Lamé parameters and loss angles 

are deduced. 

Modeling the pressure dependence of acoustic velocities 

The new rock physical model explaining the physical relationship between the applied stress and the 

acoustic P and S wave velocities are based on the idea of Birch (1960). The model law of the velocity 

model can be formulated by Eq. (1) 

 VddV V-  , (1) 

where dV is the change of the closable partial pore volume, dσ is the applied stress increase and λv is 

the proportionality factor, a new rock physical parameter. The negative sign indicates that the closable 

partial pore volume and stress are inversely proportional. We assume also a linear relationship between 

the infinitesimal change of the appropriate propagation wave velocity dv (substitutable with the 

longitudinal or shear wave velocities   or , respectively) and dV 

dVdv - , (2) 

where the κ proportionality factor is a new material characteristic. The negative sign represents that the 

velocity and pore volume are inversely proportional. Combining Eqs. (1-2) and solving the differential 

equations as well as applying the notation Δv0=κV0 one can obtain 

))exp(1(vvv V00  --  , (3) 

where v0 is the propagation velocity at a stress-free state, while the quantity Δv0 means the velocity drop 

caused by the presence of pores at a stress-free state (Ji et al. 2007) and can be considered as the 

difference between the velocities measured at maximum and zero stresses i.e. Δv0=vmax-v0. 

 

The physical meaning of the λv parameter was derived by Dobróka and Somogyi Molnár (2012). It can 

be formulated as the logarithmic stress sensitivity of the velocity-drop 
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By substituting the appropriate velocities the model equations describing the pressure dependence of 

longitudinal (α) and shear (β) wave velocities can be obtained in the forms of Eqs. (5) 

))exp(1( V00  -- ,      ))exp(1( V00  -- . (5) 

Note that λv is the same for both types of waves therefore if both P and S wave velocity data are available 

they can be processed in a joint inversion procedure. 

Modeling the pressure dependence of quality factors 

The base of the rock physical model describing the pressure dependence of quality factor is the same, 

the varying pore volume causes the changes in wave attenuation. As the effect of increasing stress the 

grain structure becomes more compact, e.g. the pore volume decreases, resulting increase in the 

measured quality factors. Assuming a linear relationship between the change of pore volume (dV) and 

the change of quality factors (ΔQα and ΔQβ) we introduce Eq. (6) as model laws 

dV-dQ   ,     dV-dQ   , (6) 

where the Qα and Qβ represent the quality factors for P and S waves respectively, χα and χβ are 

proportionality factors and the negative signs represent the inverse proportionality between pore volume 

and quality factor. Combining Eqs. (1) (with proportionality factor Q ) and (6) the following relations 

can be written 

 dVdQ QQ )-exp(0 ,       d)-exp(VdQ Q0Q .  (7) 

The quality factors at a stress-free state (Qα0 and Qβ0) can be measured, thus the integration constants 

can be calculated (similarly to the velocity models). Introducing the notations ΔQα0= χαV0 and ΔQβ0= 

χβV0, Eq. (7) take the forms 

))-exp(-1(QQQ Q00    ,      ))-exp(-1(QQQ Q00    , (8) 

where λQ is a common material-dependent rock physical parameter. The exponential characteristic of 

quality factor change with increasing pressure can be seen from Eq. (8). ΔQα0 and ΔQβ0 can be 

considered as quality factor drop – similarly to the velocity – since they mean the differences between 

the quality factors at the stress-free state and maximal stress (Qαmax, Qβmax). 

The effect of pressure on elastic moduli and loss angles  

In case of rapidly changing stresses, the rocks respond as perfectly elastic materials i.e. they suffer strain 

during loading but they perfectly recover their shapes after unloading. This is the assumption of the 

Hooke body, where the stresses are proportional to the deformations. The proportionality factors are 

called elastic moduli. One can distinguish static and dynamic moduli. Former ones are determined from 

stress-strain measurements letter ones can rather be derived from acoustic measurements. Here the 

dynamic elastic moduli and their pressure dependence are investigated. They can be deduced based on 

the previously introduced rock physical models. 

In the general form of the Hooke body the two constants, the Lamé coefficients describe the stress-

deformation relationship. They can be calculated from velocities as 

 2
,   

 22 
, (9) 

where ρ is the density of the medium. The pressure dependence of density is assumed negligible in 

comparison to the pressure-dependent velocity. Therefore, one requires accurate velocity measurements 

to obtain pressure-dependent elastic moduli. 

 

If measured data of quality factors besides velocities are also available, the pressure-dependent 

dissipative parameters (loss angles – ε and ε’) can be also deduced. With the assumption of the constant 

Q model the Lamé coefficients are complexes  

)i1(*   ,     )i1(*   , (10) 

where μ*, λ* are the real part of the Lamé coefficients, ε, ε’ are dissipative parameters, the so-called loss 

angles for which 
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For small dissipations tgδ≈δ. Solving the wave equations for body waves and rearranging the equations, 

the pressure-dependent loss angles can be expressed as 
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To prove the applicability of the presented models, laboratory-measured data were processed in a joint 

inversion procedure, then the pressure-dependent Lamé coefficients and loss angles were calculated. 

Application of the models on coal samples 

Longitudinal and transverse velocity and quality factor data measured on coal samples were published 

by Yu et al. (1993). Sample Nr. 16 was selected to present the applicability of the rock physical models. 

The Upper Permian black coal sample was homogeneous and micro-banded in the central locality. The 

pulse transmission and spectral ratio techniques were used to measure P and S wave velocities and 

quality factors. 

 

Data were inverted utilizing joint inversion processing. The calculated model parameters with their 

estimation errors can be seen in Table 1. With the estimated parameters the velocities and quality factors 

can be determined at any pressure using the developed model equations Eq. (5) and Eq. (8). Fig. 1 

represents the results (calculated Lamé coefficients and loss angles are produced by Eq. (9) and (12)). 

The calculated curves are in good accordance with the measured data, which is strengthened by the 

calculated low RMS values (Table 1). RMS and mean spread were calculated after Menke (1984). In 

the case of quality factors RMS values are higher than those at the velocities which can be explained 

by the difficulty of quality factor measurements. Even so, the noise in data space is small-scale, which 

confirms the accuracy of the inversion results and the feasibility of the suggested rock physical models 

for the explanation of the exponential relationship between the P and S wave velocities/quality factors 

and rock pressure. The moderate (S=0.48) mean spread value (mean correlation between the estimated 

model parameters) confirms also that the inversion results are reliable. 

 

Table 1 Model parameters (and their errors) estimated by joint inversion method. RMS values. 

Velocities Common 

parameter 

Quality factors Common 

parameter P wave S wave P wave S wave 

α0 

(km/s) 

Δα0 

(km/s) 

β0 

(km/s) 

Δβ0 

(km/s) 

λV 

(1/MPa) 

Qα0 

(-) 

ΔQα0 

(-) 

Qβ0 

(-) 

ΔQβ0 

(-) 

λQ 

(1/MPa) 

2.23 

(±0.02) 

0.35 

(±0.02) 

1.02 

(±0.01) 

0.17 

(±0.01) 

0.1494 

(±0.0123) 

10.92 

(±1.12) 

53.66 

(±4.31) 

14.09 

(±1.02) 

66.58 

(±4.50) 

0.0293 

(±0.0043) 

RMS = 0.54 % RMS = 7.18 % 

 

Conclusions 

 

This research aimed to develop rock physical models which provide a theoretical connection between 

acoustic wave velocities/quality factors and pressure. The models are based on the idea that the pore 

volume of the rock is decreasing with increasing pressure. After determining the model parameters by 

joint inversion these quantities can be calculated for any pressure. Furthermore, the pressure 

dependence of other parameters such as elastic moduli (Lamé coefficients) and dissipative parameters 

(loss angles) can be derived too. To prove the applicability of our models they were tested on a data set 

measured on a coal sample. The accuracy of the inversion estimates and the reliability of the suggested 

petrophysical model was proved. 
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Figure 1 Left: Velocities and quality factors of P and S waves vs. uniaxial pressure (solid line – 

calculated data produced by the developed models, symbols – measured data). Right: Lamé coefficients 

(μ, λ) and loss angles (ε, ε’) vs. uniaxial pressure. Measured data obtained by Yu et al. (1993). 
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