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Abstract We present the Feynman rules for leading-twist
gauge-invariant quark and gluon operators with an arbitrary
number of total derivatives and applicable to any order in
perturbation theory. This generalizes previous results and
constitutes a necessary ingredient in the computation of the
matrix elements of the corresponding operators. The results
are written in a form appropriate for implementation in a
computer algebra system. To illustrate the latter we provide
implementations in Mathematica and FORM , which are
made available at https://github.com/vtsam/NKLO.

1 Introduction

Composite operators play an important role in the study of
the strong interaction and hadronic structure. For example,
the hadronic matrix elements of such operators give rise to
various types of parton distribution functions. In inclusive
processes such as deep-inelastic scattering, one can probe the
forward operator matrix elements (OMEs), which define the
forward parton distributions like the standard PDFs. Exclu-
sive processes on the other hand are sensitive to the non-
forward OMEs, meaning there is a non-zero momentum flow
through the operator vertex. Such matrix elements then define
the non-forward parton distributions. Standard examples of
the latter are the generalized parton distribution functions [1–
6], which can be accessed experimentally from e.g. deeply-
virtual Compton scattering. Their study will be a major goal
of a future electron-ion collider [7,8].

Besides knowledge about the distributions themselves,
phenomenological studies also require information about
their scale dependence. The latter is set by the anomalous
dimension of the operator defining the distribution and can be
computed perturbatively in the strong coupling αs by renor-
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malizing the partonic matrix elements of the operator. Of
course, in order to perform such computations the Feynman
rules of the appropriate operator vertices are necessary. In
forward kinematics, i.e. when there is no momentum flow-
ing through the operator vertex, the computation and renor-
malization of the necessary matrix elements is, at least in
principle, straightforward for the flavor-non-singlet sector.
The analysis of the flavor-singlet one is more complicated
however due to the necessity of taking into account non-
gauge-invariant (alien) operators, see e.g. [9–14]. The Feyn-
man rules for the necessary operator vertices are known to
order g4

s with αs = g2
s /(4π), allowing for the computa-

tion of the matrix elements up to the four-loop level, see
e.g. [12,13,15–32] (and references therein). However in the
case of non-forward kinematics, which is relevant in the study
of exclusive processes, the momentum flowing through the
operator vertex is non-zero. This implies that, during the
renormalization procedure, one has to take into account mix-
ing with total-derivative operators. Some direct computations
of the non-forward matrix elements of the local operators, and
their corresponding renormalization, were performed e.g. in
[33–36]. However, the Feynman rules associated to total-
derivative operators were not explicitly given. This will be the
subject of the current article. In particular, we will determine
expressions for the Feynman rules for the operator vertices
with an arbitrary number of total derivatives and an arbitrary
number of gluons. The latter implies that our expressions
are applicable to any order in perturbation theory. We focus
our attention on the determination of the Feynman rules for
quark and gluon operators in the leading-twist approxima-
tion, which corresponds to keeping only the leading term in
an expansion in inverse powers of some hard scale of the
scattering process. While subleading-twist corrections are
becoming increasingly important, see e.g. [37–41], we do
not consider them in this work.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-13071-3&domain=pdf
http://orcid.org/0000-0001-6760-611X
https://github.com/vtsam/NKLO
mailto:sam.van.thurenhout@wigner.hun-ren.hu


  740 Page 2 of 13 Eur. Phys. J. C           (2024) 84:740 

The paper is organized as follows. In the Sect. 2 we set up
the notation and summarize our conventions. The next sec-
tion then steps through the derivation of the Feynman rules.
Instead of immediately jumping to the result with an arbi-
trary number of total derivatives and gluons, we first explain
the derivation of some simpler operator vertices. The final
result is relatively straightforward to implement in a com-
puter algebra language. As illustration, we provide both a
Mathematica and aFORM [42,43] implementation, which
are made available at https://github.com/vtsam/NKLO. The
use of these codes is briefly explained in Sect. 4. Conclusions
and an outlook are provided in Sect. 5.

2 Setup and conventions

We consider the leading-twist spin-N quark operators in
QCD which are generically of the following form1

Ok,0,N−k−1 = S∂μ1 . . . ∂μk [ψ�Dρ1 . . . DρN−k−1ψ] (2.1)

which is a special case of the more general

Op,q,r = S∂μ1 . . . ∂μp [(Dν1 . . . Dνqψ)�(Dρ1 . . . Dρr ψ)].
(2.2)

Here ψ represents the quark field, Dμ is the QCD covari-
ant derivative and � denotes a generic Dirac gamma matrix.
For phenomenological studies, the following choices for the
latter are relevant:

• � = γρ for the description of unpolarized scattering,
• � = γ5γρ for the description of polarized scattering and
• � = σμρ ≡ 1

2 [γμ, γρ] for the study of transverse
hadronic structure.

In the leading-twist approximation, the Lorentz indices are
symmetrized and traces are subtracted, which is denoted by
S. In practice, this operation is implemented by contract-
ing the operator and its matrix elements with N copies of
an arbitrary lightlike vector, �2 = 0. This implies that the
unpolarized and polarized matrix elements are now Lorentz
scalars. However, the transverse matrix elements have one
free Lorentz index left as only the ρ index of σμρ is con-
tracted with a �. The remaining Lorentz index μ can be
removed, if desired, by the introduction of another auxiliary
vector.

1 This definition is appropriate for flavor-singlet operators. The flavor-
non-singlet ones have an extra factor of λα , representing the generators
of the flavor group. In the following we omit this factor. Furthermore,
we will also not explicitly write the fundamental indices of the quark
fields.

In principle the Feynman rules for the operators in
Eq. (2.1) are derived from the path integral formulation of
QCD. However, in practice it turns out that this is not nec-
essary. Instead, one can simply expand the covariant deriva-
tives and replace any field hit by an ordinary derivative by
the momentum flowing through this field. Formally this of
course corresponds to performing the Fourier transform to
momentum space. In this procedure one has to take care of
possible sign conventions. Generically, there are two possible
origins for extra signs:

1. Conventions for the sign of the strong coupling in the
covariant derivative. One either has

Dμψ = ∂μψ − igs Aμψ (2.3)

Dμψ = ∂μψ + igs Aμψ (2.4)

or

Dμψ = ∂μψ + igs Aμψ (2.5)

Dμψ = ∂μψ − igs Aμψ. (2.6)

Here Aμ = tc Aμ,c with tc the generators of the color
group.

2. Conventions for the momentum routing. When the
quark field is hit by a derivative, its momentum assign-
ment is

∂μψ(p) → −i pμψ (2.7)

∂μψ(p) → +i pμψ. (2.8)

This, however, assumes the momentum and particle flow
to point in the same direction, i.e.2

If instead the momentum flows in the opposite direction
to the particle flow, there is a sign flip, i.e.

2 All Feynman diagrams in this work are drawn using FeynGame [44,
45].
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Generically now, the operator vertices to be considered
have the following form 3

meaning our notation is as follows

• The momenta of the fermionic fields in the operator are
assigned as ψ(P2) and ψ(P1) respectively.

• When computing the matrix elements of the operators
at the L-loop level, one needs to consider operator ver-
tices with up to L gluons attached, which follows from the
expansion of the covariant derivatives in Eq. (2.1). Gener-
ically we will denote the number of gluons of the operator
vertex by K . The gluon field with index g ∈ [1, K ] then
has momentum pg , Lorentz index μg and a color index
cg . All gluon momenta will always be taken to be incom-
ing.

• The number of total derivatives in the operator is denoted
by k which, for some spin-N operator, lives in the range
k ∈ [0, N − K − 1].

For the purpose of this work we will use dynamical con-
ventions for easy adaptability to one’s own preferences. In
particular we set

Dμψ = ∂μψ − δD(igs Aμψ), (2.9)

Dμψ = ∂μψ + δD(igs Aμψ), (2.10)

∂μψ(P1) → δ2(i P1μ), (2.11)

∂μψ(P2) → δ1(i P2μ) (2.12)

with δD, δ1, δ2 = ±1. The values of δ1,2 are related to
the choice of momentum routing. One popular choice is to
take all momenta to be flowing into the operator vertex, in
which case δ1 = δ2 = −1. Another often-used option is
the so-called physical momentum routing, in which case the
momenta and particle flows are chosen to be parallel, setting
δ1 = −1, δ2 = +1.

An important cross-check for the Feynman rules of total-
derivative operators is that they should vanish in the forward
limit, i.e. when the momentum flowing through the oper-
ator vertex is zero. For the choices of momentum routing

3 Here and in the following, we do not draw the momentum arrows
explicitly as we determine the Feynman rules for arbitrary momentum
flows.

described above, this limit corresponds to setting

⎧
⎪⎪⎨

⎪⎪⎩

P1 + P2 +
K∑

i=1
pi = 0 [all momenta incoming] or

P2 = P1 +
K∑

i=1
pi [physical momentum routing].

(2.13)

Finally, when one arrives at an expression for the operator
vertex, one can perform several cross-checks to ensure the
correctness of the result:

• The overall momentum scaling should be pN−K−1.
• For fixed values of N and k, the result should be a poly-

nomial in the momenta.
• Total-derivative operators do not contribute in the for-

ward limit. As such, the Feynman rule associated to
Ok,0,N−k−1 with k > 0 is expected to vanish in this
limit.

• Finally, several expressions for the operator vertices are
already known, especially for k = 0. Hence one should
also cross-check against such previous results. The Feyn-
man rules for operators with up to four gluons can be
found e.g. in [12,13,15–32] and references therein. To
be specific, we will compare our results against the rules
presented in [13,21]. Both works present the quark oper-
ator rules with up to three additional gluons. However,
[13] assumes all momenta to be incoming while [21] uses
the physical momentum routing. Hence cross-checking
our results against both provides a strong check of our
computations. However, one needs to be careful to take
into account different conventions used in defining the
operators. In particular, to compare against [13] we need
to divide their rules by a factor of i N−1/2 (cf. e.g. their
Eq. (2.9)) while the rules in [21] need to be divided by
i N−1 (cf. their Eqs. (2.86)–(2.87)).

3 Derivation of the Feynman rule

In this section we provide the derivation of the operator ver-
tices for an arbitrary number of derivatives. Without loss
of generality we will focus on the operators Ok,0,N−k−1

for which the covariant derivatives only act on the ψ field,
cf. Eq. (2.1). The Feynman rules for operators with covariant
derivatives only acting on ψ can be obtained from these by
exchanging δ1P1 and δ2P2 and setting δD → −δD . Finally,
operators with covariant derivatives acting on both ψ and ψ

can be written in terms of the other types using

Op,q,r = Op−1,q+1,r + Op−1,q,r+1. (3.1)

123
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Before presenting the fully generic case, for which also
an arbitrary number of gluons are attached to the operator
vertex, we discuss the cases with zero, one and two gluons
in order to clarify the procedure.

3.1 LO Feynman rule

At leading order, all covariant derivatives in the quark oper-
ator are simply replaced by partial ones,

OLO
k,0,N−k−1 = ∂k[ψ�̃∂N−k−1ψ]. (3.2)

To lighten the notation we introduced

�μ∂μ → ∂, �μD
μ → D, �μA

μ → A,

�μ�μ → �̃ (3.3)

with � an arbitrary lightlike vector to select the leading-twist
contributions. For the operators introduced below Eq. (2.2), �̃
corresponds to /�, 1

2 [γμ, /�] or γ5 /� respectively. The deriva-
tives in Eq. (3.2) can be distributed using

∂k(φ1∂
mφ2) =

k∑

i=0

(
k

i

)

(∂k−iφ1)(∂
m+iφ2) (3.4)

which leads to

OLO
k,0,N−k−1 =

k∑

i=0

(
k

i

)

(∂k−iψ)�̃(∂N−k−1+iψ). (3.5)

The Feynman rule for the LO operator vertex can now be
found by Fourier transforming to momentum space. Using
the rules in Eqs. (2.11) and (2.12) we find

From this expression it is easy to see that the overall
momentum scaling is pN−1, as expected. The operators with-
out total derivatives obey

OLO
0,0,N−1 = i N−1(� · �)δN−1

1 (�·1)N−1. (3.6)

Assuming all momenta to be incoming, δ1 = δ2 = −1, the
latter agrees with Eq. (A.2) of [13]. If instead we choose the
physical momentum routing, δ1 = −1, δ2 = +1, we find
find agreement with the LO rule in Fig. (21) of [21]. Finally,
it is easy to see that in both kinematic regimes the forward
limit vanishes when k > 0, as expected.

3.2 NLO Feynman rule

At next-to-leading order, one of the covariant derivatives is
replaced by a gluon field. As such, one has to be careful to
count all possible orderings of the derivatives and the gluon.
To derive the Feynman rule, one can immediately start from
Ok,0,N−k−1. Alternatively, using Eq. (3.1) we can write

Ok,0,N−k−1 =
k∑

i=0

(
k

i

)

O0,k−i,N−k−1+i (3.7)

and instead derive the Feynman rule for the operator on the
right-hand side. Of course, the two methods have to lead to
the same result. As illustration, we will now derive the NLO
Feynman rule using the second approach. As the gluon field
can either come from the covariant derivatives acting on ψ

or ψ we have

ONLO
0,k,N−k−1

= −i gsδD

[ k−1∑

i=0

i∑

j=0

(
i

j

)

(∂ i− j A)(∂k−1−i+ jψ)�̃(∂N−k−1ψ)

− (∂kψ)�̃

N−k−2∑

i=0

i∑

j=0

(
i

j

)

(∂ i− j A)(∂N−k−2−i+ jψ)

]

. (3.8)

Next we apply Eq. (3.4) and transform to momentum
space. Substituting into Eq. (3.7) and evaluating the sums
then leads to
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All the checks discussed at the end of Sect. 2 were explic-
itly performed. In particular, it is clear from the expression
that the overall momentum scaling corresponds to pN−2 as
expected. Furthermore, for k > 0 the operator vertex van-
ishes in the forward limit while for k = 0, assuming all
incoming momenta and choosing δD = +1, our Feynman
rule agrees with Eq. (A.3) in [13]. For physical momentum
routing our rule agrees with the NLO rule of Fig. (21) in
[21]. The LO and NLO Feynman rules (both for � = γρ and
� = σμρ) have been compared with a private code, kindly
provided to one of the authors by J. Gracey, which imple-
mented the rules for the N = 3 operators with k = 0, 1, 2.
This code was then used in [33] for the computation and
renormalization of the corresponding operator matrix ele-
ments. Complete agreement was found between our results
and the expressions in that code. Finally, the LO and NLO
Feynman rules for Wilson operators with an arbitrary num-
ber of total derivatives were presented in [46,47], and we also
agree with their results.

3.3 NNLO Feynman rule

Beyond NLO, multiple gluons are attached to the operator
vertex. As such, one has to take into account all possible rela-
tive orderings. Of course in practice, one can simply compute
the rule for one particular ordering of the gluon fields and then
add all permutations of the color indices and momenta. This
will be our approach here and in the following sections. We
derive the rule starting directly with the operators with an
arbitrary number of total derivatives

Ok,0,N−k−1 = ∂k[ψ�̃DN−k−1ψ]. (3.9)

Replacing one of the covariant derivatives with a gluon field
yields

Ok,0,N−k−1 →− i gsδD

N−k−2∑

i=0

∂k[ψ�̃Di (A DN−k−2−iψ)].

(3.10)

Next we select the second gluon. Note that we have a choice
here: either it comes from the first i covariant derivatives
or it comes from the last N − k − 2 − i ones. Of course,
the Feynman rule obtained from these two options has to be
exactly the same, assuming that the left-most gluon field is
identified as Aμ1,c1

1 (p1) and the right-most one as Aμ2,c2
2 (p2).

Choosing the second gluon to come from the first i covariant
derivatives for explicitness, we have

ONNLO
k,0,N−k−1 = −g2

s δ
2
D

N−k−2∑

i=0

×
i−1∑

j=0

∂k[ψ�̃∂ j (A1∂
i− j−1(A2∂

N−k−2−iψ))]. (3.11)

After the iterative application of Eq. (3.4) this becomes

ONNLO
k,0,N−k−1 = −g2

s δ2
D

N−k−2∑

i=0

i−1∑

j=0

k∑

l=0

j+l∑

m=0

×
i− j+m−1∑

n=0

(
k

l

)(
j + l

m

)(
i − j + m − 1

n

)

× (∂k−lψ)�̃(∂N−k−2−i+nψ)(∂ j+l−m A1)(∂ i− j+m−n−1A2).

(3.12)

Transforming to momentum space and evaluating the sums
we then find the following Feynman rule for the NNLO oper-
ator vertex
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If we had chosen the second gluon in Eq. (3.10) to come
from the last N − k − 2 − i covariant derivatives instead,
Eq. (3.12) would be replaced by

ONNLO
k,0,N−k−1 = −g2

s δ
2
D

N−k−2∑

i=0

N−k−3−i∑

j=0

k∑

l=0

i+l∑

m=0

×
j+m∑

n=0

(
k

l

)(
i + l

m

)(
j + m

n

)

δk−l
1 δ

N−k−3−i− j+n
2

× (∂k−lψ)�̃(∂N−k−3−i− j+nψ)(∂ i+l−m A1)(∂
j+m−n A2).

(3.13)

It is straightforward to check that the corresponding Feyn-
man rule is equivalent to the one presented above. Further-
more, we have explicitly implemented all the checks listed
at the end of Sect. 2. In particular the operator vertex van-
ishes in the forward limit if k > 0 while for k = 0 it agrees
with Eq. (A.4) in [13] for all momenta incoming and with
the NNLO rule of Fig. (21) in [21] for physical momentum
routing. By setting � = γ5γρ our rules for k = 0 also agree
with those for the polarized operators, see e.g. [17].

3.4 NKLO Feynman rule

We now generalize the above results to operator vertices with
an arbitrary number of total derivatives k and an arbitrary
number of gluons K . As mentioned before, such vertices
become relevant for K -loop computations. The first step is
to determine all possible orderings of the K gluons and the
N − k − K − 1 derivatives. We find

ONK LO
k,0,N−k−1 = (−i gsδD)K

N−k−2∑

i1=0

K−1∏

j=1

i j−1
∑

i j+1=0

× ∂k[ψ�̃∂ iK (A j∂
i j−i j+1−1(AK ∂N−k−i1−2ψ))]. (3.14)

Next we need to distribute all total derivatives. This can be
done by iteratively applying Eq. (3.4), leading to

ONK LO
k,0,N−k−1 = (−i gsδD)K

k∑

l=0

(
k

l

)

(∂k−lψ)�̃

K−1∏

j=0

×
i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (∂ i j−i j+1+m j−m j+1−1A j+1)(∂
N−k−i1+mK−2ψ). (3.15)

Here we introduced the auxiliary symbols i0 and m0 defined
as

i0 − 1 = N − k − 2 (3.16)

and

i0 − i1 + m0 − 1 = iK + l. (3.17)

Note that in practice, the product over the sums is to be inter-
preted as

∏

j

∑

i j+1

∑

m j+1

∼
⎛

⎝
∏

j

∑

i j+1

⎞

⎠

⎛

⎝
∏

r

∑

mr+1

⎞

⎠ , (3.18)

i.e. the product of i-sums needs to be expanded before the
one over m-sums. The reason for this is that the upper index
of the first m-sum actually involves iK , cf. Equation (3.17).
From Eq. (3.15), it now follows that the NKLO Feynman rule
is given by
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Here “+ permutations” denotes the fact that all permutations
of the gluons have to be added to obtain the full rule. The
generic rule reproduces the LO, NLO and NNLO results pre-
sented above for K = 0, K = 1 and K = 2 respectively. Fur-
thermore, for the operators without total derivatives, k = 0,
we find agreement with the rules available in the literature
up to N3LO, cf. e.g. Equations (A.2)–(A.5) in [13] for all
momenta coming into the vertex and Fig. (21) in [21] for
physical momentum routing. We also agree with the N4LO
vertex presented in [25], cf. their Eq. (A.6).4 Our results are
also consistent with [48], in which the corresponding Feyn-
man rule is presented in x-space. Finally, for fixed values
of N , K and k > 0, it is straightforward to check that the
forward limit of the operator vertex vanishes, as expected.

3.5 Extension to gluon operators

The general form of the all-order Feynman rule for the gauge-
invariant quark operator, and its corresponding operator form
in Eq. (3.15), can be used as a starting point in the derivation
of the Feynman rules of other types of operators. As illus-
tration, we present in this section the Feynman rule for the
gauge-invariant leading-twist gluon operator

OG
k,0,N−k−2 = S∂μ1 . . . ∂μk [Fνρ1 Dρ2 . . . DρN−k−3 FρN−k−2

ν].
(3.19)

We use a similar convention for the covariant derivative in
the adjoint representation as before, i.e.

DμF
a
ρσ = ∂μF

a
ρσ − δD(igsT

a
bc A

b
μF

c
ρσ ). (3.20)

Using T a
bc = i f abc, with f abc the standard structure con-

stants of SU (Nc), this becomes

DμF
a
ρσ = ∂μF

a
ρσ + δD(gs f

abc Ab
μF

c
ρσ ). (3.21)

4 Note however that the rules in [25] are missing some powers of i .

With these conventions the gluon field strength takes the fol-
lowing form

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + δD(gs f

abc Ab
μA

c
ν). (3.22)

As we did above, we implement the leading-twist approxima-
tion by contracting the operator with N copies of a lightlike
vector �

OG
k,0,N−k−2 = ∂k[Fν�DN−k−2F�

ν] (3.23)

in which we defined

Fμ� ≡ Fμλ�
λ. (3.24)

We mimic the notation introduced above and write the oper-
ator vertex associated to Eq. (3.23) as

i.e. two of the gluons are denoted with Aa
μK+1

(P1) and

Ab
μK+2

(P2) while each extra gluon at higher orders is denoted
by Aci

μi (pi ) with i ∈ [1, K ]. To derive the corresponding
Feynman rule, we now follow the same reasoning as for the
derivation of the quark operator rule. In fact, we can recycle
the expression presented in Eq. (3.15) for the gluon operator
with some simple replacements

• N → N − 1, to take into account that the gluon operator
has one less covariant derivative than the quark one,

• �̃ → 1,
• (−i gs�D)K → (gs�D)K , cf. Eq. (3.21),
• ∂k−lψ → ∂k−l Fν�,
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• ∂N−k−i1+mK−2ψ → ∂N−k−i1+mK−3F�
ν .

This implies that the K -th order gluon operator is written as

OG,NK LO
k,0,N−k−2 = (gsδD)K

k∑

l=0

(
k

l

)

(∂k−l Fν�)

×
K−1∏

j=0

i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (∂ i j−i j+1+m j−m j+1−1A j+1)(∂
N−k−i1+mK−3F�

ν)

(3.25)

where, as in Eq. (3.15), we have stripped off the overall color
factor Cabc1...cK . Because of the structure of the gluon oper-
ator, this color factor can be written as

Cabc1...cK =
K−1∏

j=0

f x j c j+1x j+1 (3.26)

with x0 ≡ a and xK ≡ b.
Note however that, since the field strength depends on the

coupling, cf. Eq. (3.22), the terms in Eq. (3.25) have to be
reorganized to select those that are O(gKs ). To do so, we need
to take into account three contributions

• double Abelian (Ab-Ab): the product of the Abelian parts
of the field strengths, substituted in the K -th order vertex,

• Abelian-non-Abelian (Ab-nAb): the product of an Abelian
term with a non-Abelian one, substituted in the (K −1)-st
order vertex and

• double-non-Abelian (nAb-nAb): the product of the two
non-Abelian parts of the field strengths, substituted in the
(K − 2)-nd order vertex.

Accordingly we write

OG,NK LO
k,0,N−k−2 = OAb-Ab,NK LO

k,0,N−k−2 + OAb-nAb,NK LO
k,0,N−k−2 + OnAb-nAb,NK LO

k,0,N−k−2

(3.27)

in which each term is now O(gKs ). As illustration, let us
consider the first contribution which corresponds to replac-
ing the field strengths by their Abelian parts. Because of the
structure of the operator in Eq. (3.25), we concentrate on a
product of field strengths of the form ∂N (Fa

ν�)∂M (Fb
�ν) for

arbitrary values of N and M . We have

∂N (Fa
ν�)∂M (Fb

�ν) = (∂ν∂
N Aa − ∂N+1Aa

ν )(∂
M+1Ab

ν − ∂ν∂
M Ab)

≡ Oab
μν(N , M) (3.28)

such that the corresponding Feynman rule becomes

At higher orders more gluons are attached to this vertex
coming from the expansion of the covariant derivatives in
the operator. Following the notation introduced above, this
gives an additional factor that, symbolically, is of the form
∏K

j=1 �μ j (� · p j )
f ( j). Finally we need to substitute every-

thing into the K -th order vertex, cf. Eq. (3.25), replacing N ,
M and f ( j) by the appropriate functions. Furthermore the
δab should be replaced by Cabc1...cK for the (K + 2)-gluon
vertex, cf. Eq. (3.26). We find

OAb-Ab,NK LO
k,0,N−k−2 = (gsδD)K

(
K∏

r=1

�μr

)

Cabc1...cK

× L(1)
μK+1μK+2

k∑

l=0

(
k

l

)

(−i � · P1)
k−l

×
K−1∏

j=0

i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (−i � · p j+1)
i j−i j+1+m j−m j+1−1

× (−i � · P2)
N−k−i1+mK−3 + permutations (3.29)

with

L(1)
μK+1μK+2

= −P1μK+2�μK+1(� · P2) + (P1 · P2)�μK+1

× �μK+2 + (� · P1)(� · P2)gμK+1μK+2

− P2μK+1�μK+2(� · P1) (3.30)

and

i0 − 1 = N − k − 3, (3.31)

i0 − i1 + m0 − 1 = iK + l. (3.32)

The ‘+ permutations’ in this rule denotes the fact that all per-
mutations of the gluon fields have to be added. As the number
of gluons in the K -th order vertex is (K +2), the correspond-
ing Feynman rule needs to have all (K + 2)! permutations .5

The treatment of the remaining two terms in Eq. (3.27) works

5 Note however that not all of these terms are independent as e.g. f abc =
− f acb.
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in a similar way and we find

OAb-nAb,NK LO
k,0,N−k−2 = (gsδD)K

(
K∏

r=1

�μr

)

Cabc1...cK

× L(2)
μK+1μK+2

k∑

l=0

(
k

l

)

(−i � · P1 − i � · p1)
k−l

×
K−2∏

j=0

i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (−i � · p j+2)
i j−i j+1+m j−m j+1−1

× (−i � · P2)
N−k−i1+mK−1−3 + permutations (3.33)

with

L(2)
μK+1μK+2

= −2i
[
gμK+1μK+2(� · P2) − P2μK+1�μK+2

]
,

(3.34)

i0 − 1 = N − k − 3, (3.35)

i0 − i1 + m0 − 1 = iK−1 + l (3.36)

and

OnAb-nAb,NK LO
k,0,N−k−2 = (gsδD)K

⎛

⎝
K∏

r=1

�μr

⎞

⎠ Cabc1...cK

L(3)
μK+1μK+2

k∑

l=0

(
k

l

)

(−i � · P1 − i � · p1)k−l

×
K−3∏

j=0

i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (−i � · p j+2)i j−i j+1+m j−m j+1−1

× (−i � · P2 − i � · pK )N−k−i1+mK−2−3 + permutations
(3.37)

with

L(3)
μK+1μK+2

= gμK+1μK+2 , (3.38)

i0 − 1 = N − k − 3, (3.39)

i0 − i1 + m0 − 1 = iK−2 + l. (3.40)

Hence the full K -th order gluon Feynman rule is now given by
Eq. (3.27) with the three terms in the decomposition given
by Eqs. (3.29), (3.33) and (3.37). We have performed the
following checks on our result:

• from the functional form of the operator, the overall
momentum scaling of the Feynman rule is expected to
be pN−K , which our rule indeed obeys;

• the expression vanishes in the forward limit when k > 0;

• we have checked that the results up to N3LO match the
literature, explicitly Eqs. (A.6)–(A.9) in [13].6

Finally, note that the above discussion is easily generalized
to the polarized gluon operator, defined as

ÕG
k,0,N−k−2 = S∂μ1 . . . ∂μk [F̃νρ1 Dρ2 . . . DρN−k−3 FρN−k−2

ν]
(3.41)

with

F̃μν = 1

2
εμνρσ F

ρσ (3.42)

the gluon dual field strength and εμνρσ the standard com-
pletely anti-symmetric Levi-Civita symbol. Performing the
same steps as for the unpolarized operator we find that the
Feynman rule is of the form

ÕG,NK LO
k,0,N−k−2 = ÕAb-Ab,NK LO

k,0,N−k−2 + ÕAb-nAb,NK LO
k,0,N−k−2 + ÕnAb-nAb,NK LO

k,0,N−k−2

(3.43)

with the three contributions defined as follows

(1)

ÕAb-Ab,NK LO
k,0,N−k−2 = (gsδD)K

(
K∏

r=1

�μr

)

Cabc1...cK

× L̃(1)
μK+1μK+2

k∑

l=0

(
k

l

)

(−i � · P1)
k−l

×
K−1∏

j=0

i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (−i � · p j+1)
i j−i j+1+m j−m j+1−1

× (−i � · P2)
N−k−i1+mK−3 + permutations (3.44)

with

L̃(1)
μK+1μK+2

= (� · P2)εμK+2 � P1 μK+1

− �μK+2εP2 � P1 μK+1 , (3.45)

i0 − 1 = N − k − 3, (3.46)

i0 − i1 + m0 − 1 = iK + l, (3.47)

(2)

ÕAb-nAb,NK LO
k,0,N−k−2 = (gsδD)K

(
K−1∏

r=1

�μr

)

Cabc1...cK

6 To take into account different conventions in the operator definitions,
the rules in [13] should be divided by (−i)N−2/2 when comparing to
our expressions, cf. their Eq. (2.9).
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× L̃(2a)
μKμK+1μK+2

k∑

l=0

(
k

l

)

(−i � · P2 − i � · pK )k−l

×
K−2∏

j=0

i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (−i � · pK− j−1)
i j−i j+1+m j−m j+1−1

× (−i � · P1)
N−k−i1+mK−1−3

+ (gsδD)K

(
K∏

r=1

�μr

)

Cabc1...cK

× L̃(2b)
μK+1μK+2

k∑

l=0

(
k

l

)

(−i � · P2)
k−l

×
K−2∏

j=0

i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (−i � · pK− j )
i j−i j+1+m j−m j+1−1

× (−i � · P1 − i p1)
N−k−i1+mK−1−3 + permutations

(3.48)

with

L̃(2a)
μKμK+1μK+2

= (−1)K
i

2

(
εμK+1 � μK+2 μK (� · P1)

−εP1 � μK+2 μK �μK+1

)
, (3.49)

L̃(2b)
μK+1μK+2

= (−1)K i εμK+1 � P2 μK+2 , (3.50)

i0 − 1 = N − k − 3, (3.51)

i0 − i1 + m0 − 1 = iK−1 + l (3.52)

(3)

ÕnAb-nAb,NK LO
k,0,N−k−2 = (gsδD)K

(
K∏

r=2

�μr

)

Cabc1...cK

× L̃(3)
μ1μK+1μK+2

k∑

l=0

(
k

l

)

(−i � · P1 − i � · p1)
k−l

×
K−3∏

j=0

i j−1
∑

i j+1=0

i j−i j+1+m j−1
∑

m j+1=0

(
i j − i j+1 + m j − 1

m j+1

)

× (−i � · p j+2)
i j−i j+1+m j−m j+1−1

× (−i � · P2 − i � · pK )N−k−i1+mK−2−3 + permutations
(3.53)

with

L̃(3)
μ1μK+1μK+2

= − (−1)K

2
εμK+2 � μK+1 μ1 , (3.54)

i0 − 1 = N − k − 3, (3.55)

i0 − i1 + m0 − 1 = iK−2 + l. (3.56)

We have explicitly checked that, for k = 0, our LO and NLO
results agree with the rules presented in [17].7 Note however
that the comparison is not direct, as one needs to use the
Schouten identity which reads

V τ εμνρσ +Vμενρστ +V νερστμ+V ρεστμν +V σ ετμνρ = 0

(3.57)

for some arbitrary vector V . The NNLO result in [17] is
incorrect, as pointed out already in [49]. In the latter paper
the authors present a corrected version, cf. their Eq. (144).
However, it turns out that also this expression is incorrect.
One way to see this is that it is not permutation invariant.
Interestingly, it seems that one should combine different parts
of the expressions in [17,49]. Both agree for the double-
non-Abelian part, corresponding to the terms without any
sums. Then however one should take the double-Abelian part,
corresponding to the terms with the double sums, from [17]
while from [49] we need to take the Abelian-non-Abelian
piece, i.e. the terms containing the single sums. Our rule then
correctly reproduces the resulting expression. The expression
for the five-gluon vertex is also known, cf. Eqs. (A.1)–(A.3)
in [50]. Dividing out an overall factor of −i/(2i N−2), coming
from differing operator definitions, we agree with their rule
up to a factor of 1/2 in the double-non-Abelian part (i.e. the
terms with only single sums). Finally, we explicitly checked
that the operator vertex vanishes in the forward limit when
k > 0 and that it vanishes when N is even. 8

4 Implementation of the NKLO Feynman rules

The expressions above for the quark and gluon Feynman
rules are written in a form appropriate for implementation in
computer algebra systems. As illustration, we provide imple-
mentations both in Mathematica and in FORM , which
are available at https://github.com/vtsam/NKLO. Below we
briefly summarize how these codes can be used.

Mathematica The NKLO.wl file contains two functions,
called NKLO and NKLOg, which take the arguments N, k and
K (in that order). The NKLO function encodes the Feynman
rule for the quark operators and accepts the following options:

• kinematics: choose the momentum routing, which
corresponds to setting δ1 and δ2 above to specific values.
The default value is “generic”, which keeps δ1 and δ2

symbolic. Other allowed values are “incoming”, which

7 Because of differences in the operator definitions, the rules in [17]
should be divided by i N+1 when comparing to our expressions.
8 To show this, one needs to take into account all the gluon permutations
and use the Schouten identity, cf. Eq. (3.57).

123

https://github.com/vtsam/NKLO


Eur. Phys. J. C           (2024) 84:740 Page 11 of 13   740 

sets δ1 = δ2 = −1 and “physical” for which δ1 =
−1, δ2 = +1.

• covD: specifies the convention used for the covariant
derivative, which corresponds to setting a value for δD
above. The default option is “generic”, which keeps
δD symbolic. Alternatively one can set “covD” → 1 or
“covD” → -1.

• perms: include all permutations of the gluons. When
set to True, all K ! permutations are included. When set
to False, the rule only keeps one particular ordering,
corresponding to tc1 . . . tcK . The default value is True.

Furthermore, the output of the NKLO function is such that
the momenta are written in the same way as in the text, i.e.
the quark momenta are P[1] and P[2] while the momenta
of the additional gluons are denoted by p[i]. The scalar
product of the lightlike � with some momentum r is denoted
as Delta[r]. Note that the input parameters need not all be
numeric. In particular, one can produce all-N expressions by
keeping the first argument of the NKLO function symbolic.
For example, the function call

In[1]:= NKLO[N,0,1,"perms" →
False,"kinematics" → "incoming"]

will reproduce the NLO Feynman rule. Such symbolic
expression are useful when one wants to perform the all-
N reductions generically. This can for example be achieved
by resumming the operator insertions into linear propaga-
tors, see e.g. [51,52]. The code can also produce the rules
for symbolic k and symbolic (N , k). The number of gluons
however always needs to be specified explicitly (i.e. K ≥ 0).
For example, the Feynman rule for the NNLO vertex can be
generated with the function call9

In[1]:= NKLO[N,k,2,"perms" → False]

The second provided function, NKLOg, encodes the Feyn-
man rule for the gluon operators. Here the following options
are available:

• polarization: choose whether to generate the rules
for the polarized or unpolarized gluon operators. The
default value is False.

• Abelian: choose whether to work in an Abelian or a
non-Abelian theory. When set toTrue, only the first term
in Eq. (3.27), which corresponds to taking into account

9 For the generation of symbolic Feynman rules, we suggest to use the
option “perms” → False to speed up the computation.

only the Abelian part of the field strength, is kept10. The
default value is False, meaning the generated rule is
valid for a non-Abelian model like QCD.

• covD: specifies the convention used for the covariant
derivative, which corresponds to setting a value for δD in
Eq. (3.21) above. The default option is generic, which
keeps δD symbolic. Alternatively one can set “covD” →
1 or “covD” → -1.

• perms: include all permutations of the gluons. When
set to True, all (K +2)! permutations are included. Fur-
thermore, the anti-symmetry properties of the structure
constants are implemented to obtain a minimal set of
color structures in the output. When set to False, the
rule only keeps one particular ordering corresponding to
Cabc1...cK , cf. Eq. (3.26). The default value is True.

FORM We also provide a FORM code to generate the operator
Feynman rules. This can be used by running the NKLO.sh
script. When run, the user will be prompted to input the
operator type, operator spin, the number of total deriva-
tives and the number of additional gluons. Contrary to the
Mathematica implementation, the last three values need
to be numeric. Valid input options for the operator type are
q for the quark operators, g for the unpolarized gluon oper-
ators and gp for the polarized ones. Furthermore, the user
is asked whether or not to include permutations. When the
latter is set to 0, the part of the Feynman rule corresponding
to the color-ordering tc1 . . . tcK is generated for the quark
operators and f ac1x1 f x1c1x2 . . . f xK−1cK b for the gluon oper-
ators. All other permutations are omitted. If the value for the
permutations is different from 0, all permutations of the glu-
onic fields are generated. The rule is written to the output
file output_...op_N..._k..._K....h (e.g. the rule for the N = 6
quark operator with k = 1 and K = 2 is written to the file
output_qop_N6_k1_K2.h).

5 Conclusions and outlook

In this article, we derived the Feynman rules for leading-twist
gauge invariant operators with an arbitrary number of total
derivatives and an arbitrary number of gluons. The knowl-
edge of such Feynman rules is important for the study of hard
QCD scattering processes, as the scale dependence of parton
distributions is determined by the anomalous dimensions of
the operators that define these distributions. The anomalous
dimensions can be computed perturbatively by renormalizing
the partonic matrix elements of the operators, which requires
the Feynman rules of the operator insertions. Furthermore,

10 When setting this option to True one needs to be careful with the
interpretation of the prefactors, which are written for QCD. This respon-
sibility is put on the user.
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for exclusive processes the operator matrix elements are non-
forward and mixing with total-derivative operators has to
be taken into account, such that also the Feynman rules for
total-derivative operator insertions are generically needed.
We present our results in a form appropriate for implemen-
tation in a computer algebra system, and we provide sample
implementations in Mathematica and FORM which are
available at https://github.com/vtsam/NKLO.
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