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Significance

Metabolic networks evolve 
through changes in enzyme 
content and activity states, but 
the latter aspect remains elusive. 
This is a major knowledge gap 
since differences in enzyme 
kinetic properties and regulation 
can lead to vastly different 
metabolic activities despite 
similar enzyme contents. Here, 
we profiled metabolite levels 
across several budding yeast 
species and populations to 
delineate the evolutionary 
dynamics of metabolic states  
at exceptional phylogenetic 
resolution. The approach allowed 
us to uncover a global signature 
of domestication that evolved 
convergently in independently 
domesticated groups of 
Saccharomyces cerevisiae and 
likely reflects adaptation to 
human-made niches. More 
broadly, our results show that 
studying metabolic evolution 
through metabolomics provides 
largely complementary 
information that cannot be 
obtained by studying enzyme 
content alone.
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Cellular metabolism evolves through changes in the structure and quantitative states 
of metabolic networks. Here, we explore the evolutionary dynamics of metabolic states 
by focusing on the collection of metabolite levels, the metabolome, which captures key 
aspects of cellular physiology. Using a phylogenetic framework, we profiled metabolites 
in 27 populations of nine budding yeast species, providing a graduated view of meta-
bolic variation across multiple evolutionary time scales. Metabolite levels evolve more 
rapidly and independently of changes in the metabolic network’s structure, providing 
complementary information to enzyme repertoire. Although metabolome variation accu-
mulates mainly gradually over time, it is profoundly affected by domestication. We 
found pervasive signatures of convergent evolution in the metabolomes of independently 
domesticated clades of Saccharomyces cerevisiae. Such recurring metabolite differences 
between wild and domesticated populations affect a substantial part of the metabolome, 
including rewiring of the TCA cycle and several amino acids that influence aroma 
production, likely reflecting adaptation to human niches. Overall, our work reveals 
previously unrecognized diversity in central metabolism and the pervasive influence of 
human-driven selection on metabolite levels in yeasts.

Saccharomyces cerevisiae | phylogenetic comparative methods | domestication |  
metabolomics | convergent evolution

Metabolic networks are central to life, as they provide building blocks and energy for all 
cellular processes. While their fundamental tasks are universal, metabolic networks display 
remarkable evolutionary diversity (1–3). Such variation exists at two levels: in the com-
position of biochemical reactions, i.e., network structure, and in the functional states of 
metabolic networks, i.e., intracellular metabolite concentrations and reaction rates (fluxes). 
Although important insights have been gained by comparing the structure and production 
capability of metabolic networks among species (4–9), evolutionary diversity at the level 
of functional states is much less studied. This represents an important gap in our knowl-
edge, as evolutionary changes in the kinetic properties and regulation of enzymes can yield 
wide variations in metabolic activities even between organisms with highly similar meta-
bolic network structures. For example, altered allosteric regulation of a catabolic enzyme, 
instead of modification of pathway structure, played a key role in adaptation to a subop-
timal nutrient source in E. coli during laboratory evolution (10).

The intracellular levels of metabolites are major determinants of metabolic fluxes (11). 
Consequently, the collection of metabolite levels, the metabolome, captures an important 
aspect of the functional state of metabolic networks (12). Recent advances in metabolomics 
techniques have allowed measurements of metabolite levels at scale (13, 14), opening the 
way to systematically characterize metabolome variation across evolutionary lineages. In 
fact, metabolome comparisons revealed substantial variation in metabolite levels between 
and within species (2, 3, 15–17). Such variation may directly contribute to important 
phenotypes, such as stress tolerance and flavor in yeasts (18, 19), agriculturally important 
traits in plants (15, 17) or longevity in mammals (2), and are likely shaped by adaptive 
evolution. In contrast, some variations in metabolite levels are likely non-functional (neu-
tral), as evidenced by mutations that strongly impact metabolite levels without measurably 
altering fitness (20, 21). Indeed, it has been recently proposed that much of the 
between-species variation in tissue metabolite levels in mammals are selectively neutral 
which are allowed, rather than favored by natural selection (22). However, the evolutionary 
driving forces of metabolite levels remain largely unresolved due to a shortage of compar-
ative studies, especially in microbes.

The unicellular budding yeast Saccharomyces cerevisiae is a widely used model organism 
for functional genomics and systems biology. Recently, it has also emerged as an important 
model for population genomics due to its worldwide distribution across a range of envi-
ronments, including human-associated and wild niches. Whole genome sequences for 
>1,000 S. cerevisiae strains revealed a high degree of genetic diversity and several genetically 
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distinct lineages (populations) in this species (23). Importantly, 
S. cerevisiae is the dominant species in the fermentation of various 
beverages and foods and has been domesticated on several inde-
pendent occasions (19, 24). Domestication had a large impact on 
the sexual life cycle, stress tolerance, and fermentative growth 
capacity of this species, raising the possibility that it also dramat-
ically altered the functional states of its metabolic network. 
However, the diversity of metabolite levels is poorly characterized 
in yeasts due to limited metabolite coverage and narrow representa-
tion of natural variation in earlier studies (3, 25). Thus, beyond a 
few specific metabolic traits (19, 26), it remains unknown how 
evolutionary adaptation to human-made environments (domes-
tication) influenced the yeast metabolome.

Here, we studied variation in metabolite levels within and 
among species by focusing on a diverse strain set representing nine 
species of the Saccharomycetaceae family and 17 genetically distinct 
populations of S. cerevisiae. We employed multiple complementary 
metabolomic platforms to obtain a global picture of variation in 
central metabolites. Analysis of the data in a phylogenetic context 
allowed us to address several open questions. First, we examined 
the relationship between two major aspects of metabolic evolution 
across multiple timescales: divergence in metabolite levels and 
divergence in the metabolic network’s capacity to produce metab-
olites. Second, we examined the impact of domestication on the 
metabolome and tested whether independent domestication 
events converged on a similar metabolome signature. We found 
that metabolite levels evolve much more rapidly and largely inde-
pendently of the network’s structural properties and display a 
global recurrent signature of adaptation to human-made niches.

Results

Metabolomics Reveals Substantial Metabolic Diversity in Budding 
Yeasts. To study the evolutionary divergence of metabolomes, 
we focused on 71 yeast strains representing 27 populations of 9 
budding yeast species and spanning ~90 My of evolution (Fig. 1 
and Dataset S6). The set of isolates cover 17 genetically isolated 
populations of S. cerevisiae, including both wild and domesticated 
ones, and capture well the genetic and phenotypic differentiation 
of this species. Importantly, we only analyzed non-mosaic (clean) 
S. cerevisiae isolates to allow within-species inference of evolutionary 
history. Multiple isolates per population were included for S. cerevisiae 
and Saccharomyces paradoxus, where population structure has been 
well characterized. Even though some domesticated S. cerevisiae 
populations contain wild isolates as well (e.g., Asian Fermentation), 
we took care to represent such populations with only isolates 
collected from human-associated environments. Overall, the strain 
set studied here provides a graduated view of metabolome variation 
across multiple evolutionary time scales. Phylogenomic analysis of 
the strain set resulted in a phylogenetic tree that agrees well with 
previous studies (23, 27–30) and supports the basal position of wild 
isolates collected in Taiwan and China within S. cerevisiae (Fig. 1A, 
see Methods for details of the phylogenetic reconstruction).

We first measured the levels of 19 amino acids across the ~70 
strains using a quantitative targeted metabolomics workflow. We 
primarily focused on amino acids as these are the building blocks 
of proteins and key intermediates of several biosynthetic pathways 
and therefore capture the activity of various metabolic processes 
(13). We collected metabolome data for all strains in the same 
defined growth environment and same growth phase (exponential) 
to minimize environmental variation and to reveal evolutionary 
differences in metabolite concentrations [i.e., common garden 
design (31)]. We used a synthetic minimal medium that is especially 

well suited to capture variation in biosynthetic metabolism (13) and 
a growth temperature (25 °C) that diminishes growth rate hetero-
geneity across strains (SI Appendix, Fig. S1). To exclude the possi-
bility that metabolome differences are dominated by remaining 
growth differences among genotypes, we measured optical density 
(OD) of each culture at the time of sampling and applied a nor-
malization strategy to remove potential OD-dependencies of metab-
olite levels (32, 33) (Dataset S1 and Methods).

We next characterized the extent of variation of amino acid levels 
across yeast species and populations by calculating the average 
values for each population (Fig. 1 B and C). We found substantial 
divergence in amino acid levels, with a 6.6-fold range among the 
different species when averaged across amino acids. As might be 
expected, the two phylogenetically most distantly related budding 
yeast species, Kazachstania saulgeensis and Saccharomyces castelli, 
show the largest deviations in several amino acids from the rest of 
the species (Fig. 1B). Statistical analysis confirmed that 18 out of 
19 amino acids show significant variation across the 27 populations 
studied (ANOVA tests, SI Appendix, Table S1). Importantly, a 
similar conclusion holds even when comparing distinct popula-
tions of the same species, S. cerevisiae (17 out of 19 amino acids 
vary significantly, ANOVA tests, see SI Appendix, Table S1).

The degree of between-species divergence varies significantly 
among different amino acids (Bartlett’s test of homogeneity of 
variances was applied to the fold change values, P < 2.2e-16, 
Fig. 1B). Furthermore, amino acids also differ in their degree of 
divergence when measured among S. cerevisiae populations 
(Bartlett’s test, P < 2.2e-16, Fig. 1C). Ranking of amino acids 
based on their evolutionary variability suggests that the levels of 
tyrosine, histidine, arginine, and lysine diverged more extensively 
than those of tryptophan, isoleucine, and threonine, which appear 
more conserved (Fig. 1 B and C). Notably, both the between-species 
and the within-S. cerevisiae comparisons reveal this trend, indi-
cating shared evolutionary forces shaping the metabolome across 
multiple phylogenetic time scales.

To estimate the phylogenetic diversity of metabolite levels beyond 
amino acids, we also measured 78 metabolites of primary metabo-
lism, excluding amino acids, using a non-targeted metabolomics 
platform (Dataset S2 and Methods). Consistent with the amino acid 
data, we find that the majority of detected metabolites show signifi-
cant variation between the 27 populations (74 out of 78, see 
Dataset S7). Together, these patterns reveal a previously hidden diver-
sity of metabolic activities associated with central metabolites.

Decoupled Evolution of Metabolite Levels and Metabolic 
Network Structure. We next interrogated the relationship 
between metabolic evolution occurring at two levels: metabolite 
concentrations and network structure. Alterations in the reaction 
content of a metabolic network may alter its capacity to produce 
metabolites, i.e., the maximum theoretical yield of metabolite 
biosynthesis. Therefore, we used metabolite production capacities, 
derived from computational models of genome-scale metabolic 
networks, as measures of how the structure of the entire metabolic 
network determines its metabolic potentials. Note that metabolite 
production capacities represent maximum possible biosynthetic 
yields and therefore can be calculated from the structure and reaction 
stoichiometries of the metabolic network, without requiring any 
regulatory or enzyme kinetic information. We leveraged genome-
scale metabolic network reconstructions available for 7 yeast species 
and 54 S. cerevisiae strains in our dataset. These networks have 
been reconstructed using similar methodology based on genomic 
information and contain on average ~1,100 genes and ~4,000 
associated reactions per strain (8, 34).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
93

.2
24

.9
6.

12
9 

on
 S

ep
te

m
be

r 
27

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
19

3.
22

4.
96

.1
29

.

http://www.pnas.org/lookup/doi/10.1073/pnas.2313354121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2313354121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2313354121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2313354121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2313354121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2313354121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2313354121#supplementary-materials


PNAS  2024  Vol. 121  No. 11  e2313354121� https://doi.org/10.1073/pnas.2313354121   3 of 11

A

Tryptophan
Isoleucine
Threonine

Glycine
Aspartic acid

Serine
Phenylalanine

Alanine
Asparagine

Glutamic acid
Methionine

Valine
Leucine
Proline

Glutamine
Lysine

Arginine
Histidine
Tyrosine

−3 −2 −1 0 1 2
Fold change (log2)

K. saulgeensis
S. arboricola
S. castelli
S. cerevisiae
S. eubayanus
S. jurei
S. kudriavzevii
S. mikatae
S. paradoxus

B

Serine
Valine

Tryptophan
Isoleucine
Threonine

Proline
Glutamic acid

Methionine
Glutamine

Alanine
Aspartic acid

Phenylalanine
Asparagine

Leucine
Glycine
Lysine

Arginine
Histidine
Tyrosine

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
Fold change (log2)

C

Fig. 1.   Phylogenetic diversity of amino acid levels in yeasts. (A) Maximum likelihood phylogenetic tree of yeast strains based on the alignment of 983 concatenated 
single-copy orthologs. Branch lengths represent the average number of substitutions per site. Species are indicated in bold, while strains and populations are 
indicated in italics. Green and orange dots denote wild and domesticated S. cerevisiae strains, respectively. Strains were considered as domesticated if the 
entire population is considered domesticated. (B) Metabolite fold change values for nine yeast species for each amino acid. Amino acids are ranked based on 
their between-species variance of fold change. Species-level fold change values were calculated by using species averages and using the median value of the 
species averages as a reference point. Colors represent species. (C) Distributions of metabolite fold change values across 17 S. cerevisiae populations, averaged 
by populations, for each amino acid. Amino acids are ranked based on their between-population variance of fold change. Population-level fold change values 
were calculated by using population averages and using the median value of the population averages as a reference point.

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 1
93

.2
24

.9
6.

12
9 

on
 S

ep
te

m
be

r 
27

, 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
19

3.
22

4.
96

.1
29

.



4 of 11   https://doi.org/10.1073/pnas.2313354121� pnas.org

To test whether evolutionary divergence in the overall amino acid 
synthesis capacity correlates with divergence in the amino acid 
metabolome, we calculated the profile similarity of computed max-
imum yields across the 19 amino acids for each pair of yeast species 
and each pair of S. cerevisiae populations (Methods). We found that 
the yield profile similarity follows a binomial distribution both 
within and between species, with several species pairs and the vast 
majority of population pairs exhibiting identical amino acid pro-
duction capacities (SI Appendix, Table S2 and Dataset S8). 
Remarkably, we found no significant difference in the overall diver-
gence of amino acid levels when comparing species pairs with iden-
tical versus dissimilar production capacities (Fig. 2A, P = 0.26, 
permutation test). In a similar vein, S. cerevisiae populations that 
differ in their amino acid production capacities are not more 
diverged in their amino acid levels than those with identical pro-
duction capacities (Fig. 2B, P = 0.081, permutation test).

In part, the lack of association between divergence in synthesis 
capacity and metabolite levels might be due to the faster evolution 
of metabolite levels than network structure. Indeed, the large 
majority of S. cerevisiae strain pairs show identical amino acid 
production capacities (1,278 out of 1,431 pairs among 54 strains). 
Remarkably, virtually all (98.6%) such strain pairs show a signif-
icant change in at least one amino acid, with a median of 9 
significantly altered amino acid levels (Fig. 2C and Dataset S9). 

Further support was provided by strain pairs of S. cerevisiae with 
identical reaction repertoires and, consequently, identical meta-
bolic network structures. Again, we found that such strain pairs 
have a median difference of 8 amino acid levels (SI Appendix, 
Fig. S2). Thus, even strains with identical metabolic network 
structures or metabolite production capacities differ substantially 
in their metabolite levels. Overall, these findings indicate that the 
evolution of metabolite levels is decoupled from the metabolic 
network’s structure and occurs at substantially faster rates. This 
is broadly consistent with the notion that network structure is 
highly constrained by natural selection, whereas metabolite levels 
are subject to less stringent selection and accumulate a consider-
able amount of neutral changes. If so, variation in metabolite 
levels should largely reflect phylogenetic history. Alternatively, 
divergence in metabolite levels might represent adaptive differ-
ences in metabolic regulation that are not caused by rewired net-
work structures. In the next section, we examine the influence of 
phylogenetic history and ecological origins on metabolome 
variation.

Metabolome Variation Is Driven by Both Population History and 
Domestication in S. cerevisiae. We next interrogated the temporal 
dynamics of metabolome divergence by focusing on S. cerevisiae, 
which is represented by 17 genetically differentiated populations in 
our dataset. Plotting the overall divergence of 19 amino acid levels 
as a function of phylogenetic distance between pairs of populations 
revealed no significant correlation between the two (SI Appendix, 
Fig. S3, r = 0.33, P = 0.33, phylogenetic Mantel test). This pattern 
may reflect population-specific changes in metabolism induced by 
major lifestyle differences among distinct S. cerevisiae populations.

Domestication has been identified as the most dramatic life 
history-changing event during the intra-species evolution of 
S. cerevisiae that profoundly influenced the biology of the 
domesticated populations (35, 36). We thus hypothesized that 
domestication also had a major impact on metabolome evolu-
tion, overriding the signatures of phylogenetic relatedness 
among populations. Two lines of evidence support this sce-
nario. First, we found that the overall metabolome profile dif-
fers substantially between wild and domesticated populations 
(Fig. 3 and SI Appendix, Fig. S4). Such a difference may indicate 
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Fig.  2.   Evolutionary divergence in metabolome profile versus metabolite 
production capacity profile. (A) Amino acid metabolome distance of pairs of 
yeast species. Species pairs are divided into two groups based on their similarity 
in amino acid production capacity. Pairs with identical (N = 9) or different  
(N = 12) production capacities are shown in blue and orange, respectively. The 
P-value was determined using a permutation test (Methods). (B) Amino acid 
metabolome distance of S. cerevisiae population pairs. Population pairs are 
divided into two groups based on their similarity in amino acid production 
capacity. Pairs with identical (N = 91) or different (N = 45) production capacities 
are shown in blue or orange, respectively. The P-value was determined using 
a permutation test. (C) Extent of metabolite variations between S. cerevisiae 
strain pairs with identical amino acid yields. Distribution of the number of 
significantly changed amino acid levels are shown for those S. cerevisiae strain 
pairs which have no difference in their amino acid yields.
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adaptation to human-made niches and is analyzed in more detail 
below. Second, we found that the overall metabolome divergence 
correlates with phylogenetic distance when wild and domesticated 
clades are analyzed separately. Specifically, consistent with earlier 
studies (23, 24), reconstructing the phylogenetic relationship 
between S. cerevisiae populations revealed two widely separated 
clades containing predominantly domesticated populations, sug-
gesting at least two independent domestication events (SI Appendix, 
Fig. S5). Removing these two domesticated clades revealed a 
strong correlation between metabolome divergence and phyloge-
netic distance among wild populations (r = 0.74, P = 0.013, phy-
logenetic Mantel test, Fig. 4A). Similarly, metabolome divergence 
correlates well with phylogenetic distance among pairs of domes-
ticated populations belonging to the same domesticated clades  
(r = 0.96, P = 0.006, phylogenetic Mantel test, Fig. 4B). Similar 
results are obtained when defining overall metabolome divergence 
based on the global metabolome profile excluding amino acids  
(r = 0.75, P = 0.03 for wild and r = 0.98, P = 8.5e-4 for domes-
ticated population pairs, phylogenetic Mantel test, SI Appendix, 
Fig. S6). Thus, metabolome variation largely follows the genetic 
history of populations in S. cerevisiae, with the exception of major 
metabolome rewiring associated with domestication events.

We next asked whether domesticated and wild populations 
differ in their tempo of metabolome diversification. To estimate 
the rates of metabolome evolution, we calculated phylogenetic 
distance-adjusted metabolome divergences between pairs of wild 
populations as well as between pairs of domestic populations that 

come from the same domesticated clades. Remarkably, the phy-
logenetic distance-adjusted metabolome divergence is ~2.6-fold 
and 5.7-fold higher among domesticated populations than among 
wild populations for amino acids and non-amino acid metabolites, 
respectively, indicating a faster overall tempo of metabolome evo-
lution in domesticated yeasts (Fig. 4C; for non-amino acid metab-
olites see and SI Appendix, Fig. S7). In general, evolutionary 
diversification is slower when measured over longer evolutionary 
time intervals (4, 37) and our dataset includes some highly 
diverged wild populations, potentially biasing the above compar-
ison. However, the inferred faster tempo of metabolome evolution 
in domesticated yeasts is not an artifact of comparing evolutionary 
rates over very different time scales. First, even without adjusting 
for phylogenetic distance, domesticated populations show larger 
metabolome differences than wild populations despite being 
genetically less diverged from each other (Fig. 4D). Second, after 
excluding wild population pairs that are phylogenetically more 
distant than any of the domesticated population pairs, we still 
observe a 2.2-fold higher phylogenetic distance-adjusted metab-
olome divergence among domesticated populations than among 
wild populations (SI Appendix, Fig. S8). The rapid metabolic 
diversification of domesticated yeasts is well illustrated by several 
differences in specific metabolite levels between populations com-
ing from the same domesticated clades (Dataset S10). For exam-
ple, on average, isolates from the African beer population display 
higher alanine and proline levels than isolates from the Wine 
population (SI Appendix, Fig. S9).

Finally, while analyzing the dynamics of metabolome evolution 
across species would require a larger species set, we note that 
metabolome differences appear to accumulate gradually with phy-
logenetic distance among species (SI Appendix, Fig. S10, r = 0.71 
and P = 0.011 for amino acids and r = 0.91 and P = 4.6e-4 for 
non-amino acid metabolites, phylogenetic Mantel tests). As this 
pattern resembles the intra-species variation patterns without 
domestication, we conclude that phylogenetic history may gen-
erally play an important role in metabolome divergence in bud-
ding yeasts.

The Metabolic Domestication Syndrome of S. cerevisiae. The 
substantial metabolome differences observed between wild and 
domesticated S. cerevisiae populations are consistent with at least 
two scenarios. First, evolution in human-made niches might result 
in a set of universal metabolomic changes, i.e., a metabolomic 
domestication syndrome, regardless of the genetic makeup of 
the ancestor and the specific details of the domestication niches. 
Alternatively, populations from the two major and widely separated 
domesticated clades might differ substantially both from wild 
yeasts and from each other in their metabolomes due to differences 
in the genetic makeup of their ancestors and/or selective forces. To 
distinguish between these scenarios, we systematically compared 
the levels of individual metabolites across domesticated and wild 
populations. Specifically, we performed a series of phylogenetic 
ANOVAs to test i) whether domesticated populations show 
recurrent metabolite changes compared to wild populations that 
cannot be explained by shared ancestry alone, and ii) whether 
populations from the two distinct domesticated clades differ from 
each other.

Our analysis revealed pervasive signatures of parallel evolution 
in the metabolomes of domesticated yeast (i.e., domestication 
signature). Specifically, 7 out of 19 amino acids and 27 out of 
78 non-amino acid metabolites display a significantly increased 
or decreased level in independently domesticated populations 
compared to wild populations (Fig. 5A, SI Appendix, Fig. S11, 
and Dataset S11). For example, histidine displays a particularly 
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strong signature: domesticated populations have, on average, 
twofold lower histidine levels than wild populations. As 
S. paradoxus populations exhibit similar histidine levels to wild 
S. cerevisiae populations, the low histidine levels of domesticated 
populations are likely to be derived states and have evolved con-
vergently (Fig. 5B).

Several specific amino acids have been implicated in the forma-
tion of various aroma compounds (39) and therefore their metab-
olism might have been shaped by domestication. Consistent with 
this scenario, four of the seven amino acids (leucine, isoleucine, 
phenylalanine, and threonine) with a domestication signature also 
impact aroma production according to a systematic study (39), 
which is a statistically significant overlap (P = 0.038, Fisher’s exact 
test, Dataset S11).

The set of metabolites displaying parallel changes in domesti-
cated populations covers ~35% of the compounds measured via 
non-targeted metabolomics and span several metabolic subsys-
tems, indicating a widespread metabolome signature associated 
with domestication (SI Appendix, Fig. S11). Notably, this sig-
nature also includes several metabolites of the TCA cycle. To 
confirm the domestication signature of the TCA cycle, we quan-
tified the levels of TCA intermediates using a well-established 
targeted metabolomics method (40) (Dataset S3 and Methods). 
Reassuringly, 5 out of the 8 measured TCA intermediates display 
a domestication signature, with metabolites in the early steps of 
the TCA cycle having increased, and succinate and malate 
decreased levels (Fig. 5 C and D). This pattern indicates that 
domestication rewired the TCA cycle, possibly as a consequence 

Isoleucine
Threonine
Asparagine
Leucine
Phenylalanine
Arginine
Histidine

C
H

N
I

C
H

N
II

C
H

N
III

C
H

N
V

Ec
ua

do
re

an
Fa

rE
as

tA
si

a
M

al
ay

si
an

M
ed

ite
rra

ne
an

oa
k

N
or

th
Am

er
ic

an
oa

k
Ta

iw
an

es
e

Af
ric

an
be

er
Af

ric
an

pa
lm

w
in

e
As

ia
n

fe
rm

en
ta

tio
n

Fr
en

ch
da

iry
M

ixe
d

or
ig

in
Sa

ke
W

in
e/

Eu
ro

pe
an

−1 0 1
Normalized intensity

A

S. par. (American)

S. par. (European)

S. par. (Asian)

S. cer. (Taiwanese)
S. cer. (CHNII)

S. cer. (CHNI)

S. cer. (Far East Asia)

S. cer. (CHNIII)

S. cer. (Asian fermentation)
S. cer. (Sake)

S. cer. (North American oak)

S. cer. (African palm wine)

S. cer. (Malaysian)

S. cer. (CHNV)

S. cer. (Ecuadorean)

S. cer. (French dairy)
S. cer. (African beer)

S. cer. (Mediterranean oak)

S. cer. (Mixed origin)

S. cer. (Wine/European)−0.4

0.0

0.4
M

et
ab

ol
ite

 le
ve

l

Domesticated cerevisiae Wild cerevisiae S. paradoxus

HistidineB

Cis−aconitate
Citrate
Malate
Pyruvate
Succinate

C
H

N
I

C
H

N
II

C
H

N
III

C
H

N
V

Ec
ua

do
re

an
Fa

rE
as

tA
si

a
M

al
ay

si
an

M
ed

ite
rra

ne
an

oa
k

N
or

th
Am

er
ic

an
oa

k
Ta

iw
an

es
e

Af
ric

an
be

er
Af

ric
an

pa
lm

w
in

e
As

ia
n

fe
rm

en
ta

tio
n

Fr
en

ch
da

iry
M

ixe
d

or
ig

in
Sa

ke
W

in
e/

Eu
ro

pe
an

−1 0 1
Normalized intensity

C D

Fig. 5.   The metabolomic domestication syndrome in S. cerevisiae populations. (A) Average levels of amino acids showing domestication signature in across 
S. cerevisiae populations. Wild and domesticated populations are marked as green and orange, respectively. Metabolite levels are studentized for each metabolite 
for visualization purposes. (B) Traitgram of histidine level changes on the S. cerevisiae phylogenetic tree. Note that branch lengths do not scale with phylogenetic 
distance for visual clarity. Domesticated, wild S. cerevisiae, and S. paradoxus populations are colored as orange, green, and blue, respectively. (C) Average levels 
of TCA cycle metabolites showing domestication signature across S. cerevisiae populations. Wild and domesticated populations are marked as green and orange, 
respectively. Metabolite levels are studentized for each metabolite for visualization purposes. (D) Schematic of the TCA cycle (based on ref. 38). Metabolites 
with increased or decreased levels in domesticated populations are marked as red or blue, respectively. Metabolites showing no domestication signature and 
unmeasured metabolites are denoted with filled gray and white labels, respectively.D
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of adaptation to better utilize carbon sources that support fermen-
tative growth (36).

In sharp contrast to the widespread metabolome rewiring between 
wild and domesticated yeasts, we found no significant metabolome 
differences among populations belonging to the two major phyloge-
netically separated domesticated clades (Dataset S12). Furthermore, 
despite a marked difference between the current environments of 
the French dairy strains and the Wine and Sake populations (i.e., 
Camembert cheese or raw milk versus alcoholic fermentation) the 
domestication signature is also present in the French dairy popula-
tion (Fig. 5 A–C). We note that the domestication signature is also 
evident when the Asian fermentation population is removed from 
the analysis (Dataset S11), which is a clade with a less clearly deter-
mined domestication status than the other populations (36). In 
addition, further statistical analysis confirmed that the domestica-
tion signature is not an artifact of potential growth state differences 
between strains at the time of sampling (Dataset S11). Overall, these 
results suggest that independent domestication events converged on 
a recurrent metabolome signature, supporting the existence of a 
universal metabolic domestication syndrome in S. cerevisiae.

Last, we asked whether other ecological factors beyond domes-
tication have shaped the yeast metabolome. The S. cerevisiae 
populations studied here originate from a range of geographical 
and climatic regions. However, we found no evidence that yeast 
strains isolated from the same climate zone or broad geographic 
area show increased metabolome similarities (SI Appendix, 
Tables S3 and S4).

Discussion

In this paper, we combined metabolomic measurements with phy-
logenetic comparative analyses to study the evolution of metabolic 
states in the unicellular model eukaryote budding yeast. By stud-
ying variation of central metabolites across a panel of natural iso-
lates representing the major clades of S. cerevisiae and several 
related species, we reached several general conclusions.

We found that although metabolite levels diverge mostly grad-
ually with evolutionary time, domestication has impacted them 
profoundly. Domestication had major effects on the genome, life 
history traits, and nutrient utilization capacity of S. cerevisiae 
(35, 36). These traits are shared between phylogenetically sepa-
rated and independently domesticated lineages, indicating con-
vergent evolution of domestication-associated traits and hence the 
existence of a yeast domestication syndrome. Our results demon-
strate that a substantial fraction of metabolite levels also evolved 
convergently in independently domesticated clades, revealing a 
recurrent metabolic domestication syndrome in yeast. The set of 
affected metabolites covers various central pathways from amino 
acid metabolism to pyruvate metabolism and the TCA cycle. For 
instance, several metabolites of the TCA cycle have altered levels 
in domesticated populations, possibly as a consequence of adap-
tation to fermentative growth (36). We also found evidence for 
the convergent evolution of several amino acid levels across distinct 
domesticated clades. Since the biosynthesis of several amino acids 
originates from the TCA cycle, one might expect an overlap 
between these amino acids and those with domestication signa-
tures. However, visual inspection revealed no clear link between 
the two sets (SI Appendix, Fig. S13). Consequently, parallel 
changes in amino acid levels and TCA cycle intermediates cannot 
simply be explained by their topological proximity in the network. 
A previous study reported that two of the domestication-associated 
amino acids (threonine and isoleucine) are better utilized as nitro-
gen sources by domesticated than wild yeasts (36). This indicates 
that domestication changed both the intracellular levels and 

consumption of these amino acids. Most notably, four out of seven 
domestication-associated amino acids (leucine, isoleucine, phe-
nylalanine, and threonine) impact aroma production (39), sug-
gesting that their evolution may have been driven by human 
selection on aroma profiles. Indeed, a previous study reported 
convergent evolution of a specific aroma compound across mul-
tiple domesticated lineages (19). Overall, our study expands such 
case studies and indicates pervasive rewiring of the metabolome 
upon adaptation to human-made niches. Thus, domestication 
reprogrammed not only the life cycle of yeast (36) but also its 
central metabolic pathway activities. This finding has far-reaching 
implications for our understanding of domestication in this prime 
model organism.

An important open question is whether analogous signatures 
of domestication are also apparent at the gene expression level 
and whether the metabolomic signature is primarily driven by 
gene regulatory changes. Previous studies of transcriptome diver-
sity across S. cerevisiae isolates have not explicitly sought to iden-
tify a recurrent signature of domestication, so there is room for 
alternative interpretations. On the one hand, it appears that most 
transcriptomic variation follows the phylogenetic history (41) 
and is dominated by population-specific transcriptional signa-
tures, including those that are unique to each domestication 
(42). However, these studies do not rule out the possibility of a 
common transcriptional signature of domestication that involves 
specific gene sets. Indeed, an earlier study reported recurrent 
gene expression changes in the TCA cycle and fermentation 
pathways between isolates from the Wine and Sake populations 
(25). More in-depth analyses are required to unravel the possible 
gene regulatory changes linked to the metabolic domestication 
syndrome.

Our findings have implications for the neutral theory of molec-
ular evolution. According to this theory, most variations in nucle-
otide and protein sequences within and between species are 
selectively neutral (43). Although the theory was specifically pro-
posed to explain sequence evolution, in principle, it could be also 
applied to molecular traits that are not perfectly correlated with 
organismal fitness (44). Indeed, gene expression levels appear to 
evolve largely neutrally in both yeasts and animals (41, 45, 46). 
However, it is largely unclear whether molecular traits that lie 
closer to fitness, such as metabolite levels, are mainly governed by 
adaptive or neutral evolution. We found that phylogenetic relat-
edness explains well the overall divergence of metabolite levels 
among S. cerevisiae populations after accounting for domestication 
(Fig. 4). This pattern is broadly consistent with a neutral scenario, 
where metabolome variations arise largely due to the steady accu-
mulation of neutral or nearly neutral mutations. Notably, similar 
results have been reported for variation in gene expression and 
several phenotypic traits in S. cerevisiae (41, 47). The neutral sce-
nario is further supported by our observation that, beyond domes-
tication, S. cerevisiae isolates originating from similar environments 
do not show increased similarity in their metabolomes. In addi-
tion, our finding that different amino acids diverge at different 
rates also fits into the neutral theory. Specifically, we found that 
metabolites whose levels vary more among species also tend to 
show larger variations across S. cerevisiae populations (Fig. 1 B 
and C). This pattern is consistent with the notion that some 
metabolites are subject to less stringent selective constraints and 
therefore can accumulate more neutral changes across multiple 
evolutionary timescales. Recent research into the evolution of 
metabolite levels in mammals found similar results. It has been 
shown that evolutionary conservation of metabolite levels varies 
greatly among metabolites and can be explained by a neutral 
model (22).D
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Despite such evidence supporting neutral evolution, a substan-
tial part of the metabolome (>30% of measured metabolites) 
shows signatures of convergent evolution across independently 
domesticated lineages, indicating that adaptive evolution has also 
substantially shaped the metabolome diversity of S. cerevisiae. 
Adaptive evolution has also been shown to be responsible for 
metabolite changes associated with wheat domestication (15). 
Clearly, the relative importance of neutral versus adaptive evolu-
tion of metabolite levels in yeasts remains to be formally quanti-
fied, for example, through quantitative genetic methods (15). In 
addition, further study is needed to test whether the faster rate of 
metabolome divergence among domesticated populations is 
driven by niche adaptations or enhanced drift owing to population 
bottlenecks.

We found that metabolite levels evolve faster than the metabolic 
network’s capacity to produce metabolites (i.e., yield). Notably, 
closely related yeast isolates often show identical or highly similar 
enzyme reaction repertoires, yet display substantial metabolome 
differences. More broadly, the evolution of metabolic states 
appears to be largely uncoupled from divergence in the structure 
of the network. Evolution at these two levels might differ for 
several reasons. First, the underlying mutational target sizes differ 
greatly. While the rewiring of metabolic pathway structure 
depends on highly specific gene gain and loss events, metabolite 
levels can be impacted by a broad range of mutations. For exam-
ple, individual amino acid levels are influenced by the activity 
of up to ~400 genes in yeast (13). Thus, mutations in many 
proteins that do not directly interact with a metabolite can also 
affect its level. Second, metabolic reaction repertoires are likely 
under strong purifying selection with limited room for selec-
tively neutral changes. Indeed, the vast majority of genes, includ-
ing enzyme-encoding ones, have a measurable fitness contribution 
under some environmental conditions (48, 49). Thus, phyloge-
netic variation in enzyme repertoire likely reflects environmental 
adaptation. In contrast, metabolite levels may readily vary without 
measurably affecting fitness (20, 21) and may therefore evolve 
more rapidly and independently of adaptive changes in the net-
work’s structure. Based on these considerations, we propose that 
studying metabolic evolution through metabolomics provides 
largely complementary information that cannot be obtained by 
studying enzyme content alone. This view extends recent findings 
that patterns of natural selection on metabolite levels are not easily 
predictable from selection acting on gene expression (50).

Our study has several limitations. First, the examined strain panel 
captures divergence between clean (i.e., non-mosaic) S. cerevisiae 
populations and hence is well suited for phylogenetic comparative 
analyses. However, our study was not designed to investigate 
within-population diversity or evolutionary changes in mosaic 
strains. Second, the metabolome measurements were performed in 
a single environment that is ideally suited for assessing variation in 
biosynthetic metabolism (13) and in which all strains exhibit stable 
growth. This corresponds to the common garden design in com-
parative metabolomics studies (51). However, in the real world, 
yeasts experience a plethora of environmental conditions and there-
fore our study likely underestimates the variety of metabolomic 
states displayed by different lineages. Importantly, the metabolomic 
signature of domestication is evident in all human-associated pop-
ulations regardless of ecological differences. It is therefore unlikely 
that the domestication signature is an artifact of measuring metab-
olomes in a single environment to which some domesticated clades 
are better adapted than others. Nevertheless, we note that measuring 
phylogenetically diverged species in the same environment can be 
especially challenging as they might display very different physiol-
ogy. Indeed, S. castelli displays the lowest growth rate among the 

examined species (Dataset S1), which may confound its perceived 
metabolome divergence. Finally, our study only included single 
strains of several species, which may limit the accurate estimation 
of metabolome differences between species. In light of the substan-
tial metabolic diversity observed even within wild S. cerevisiae, stud-
ying metabolome variation in other yeast species is an important 
open question.

In sum, our work uncovers substantial variations in central 
metabolite levels across budding yeasts and establishes a recurrent 
metabolomic signature of domestication.

Methods

Strains. S. cerevisiae isolates included in this project were sequenced and ana-
lyzed previously (52) and provided by Gianni Liti. Strains were carefully selected to 
be representative of non-admixed wild and domesticated S. cerevisiae populations 
with at least three strains when possible. S. paradoxus, Saccharomyces mikatae, 
and Saccharomyces kudriavzevii isolates were selected from the Saccharomyces 
Genome Resequencing Project (SGRP) collection and sequenced and analyzed 
previously (52). Saccharomyces arboricola, Saccharomyces eubayanus, S. castelli, 
and Kazachstania saulgeensis strains were purchased from CBS (https://wi.knaw.
nl/Collection). The Saccharomyces jurei isolate was provided by Daniela Delneri.

Growth Rate Measurements. We performed growth rate measurements at both 
25 °C and 30 °C to select a temperature that minimizes growth rate differences 
across the diverse yeast isolates studied here. Yeast cells were inoculated from 
frozen (−80 °C) samples on 2% agar solidified synthetic dextrose (SD) medium 
(0.145%yeast nitrogen base minus amino acids/0.5% ammonium sulfate, and 2% 
glucose + 2% agar). Cells were cultivated for 48 h at 25 °C and 30 °C. Pre-cultures 
were inoculated from colonies in 96-well format using Hamilton Microlab star 
liquid handling robot equipped with core grippers and V&P scientific pin-tool 
with 1.58-mm floating pins (53). Pre-cultures were cultivated in 96-well plates 
in SD media for 16 h using a Heidolph Titramax 1000 (900 rpm) vibrating plate 
shaker incubator at both temperatures.

We used a protocol designed to measure growth rate in minimal media (53). 
Growth was assayed by monitoring the OD (OD600) of liquid cultures of each 
strain using 384 well microtiter plates (Corning). The 384-well plates filled with 
60 µL medium per well were inoculated for growth curve recording with 1% 
starter culture. The 384-well plates were incubated at 25 °C with medium linear 
shaking in Powerwave HT plate readers (BioTek Instruments Inc). Cell growth was 
followed by recording the OD at 600 nm every 5 min. Four technical replicate 
measurements were executed on all strains. Growth rate was calculated from time 
series OD600 data as described elsewhere (47).

Targeted Quantification of Amino Acids. For metabolomics experiments, pre-
cultures were cultivated as described for growth rate measurements. We inoculated 
4% pre-cultures into 1,200 µL/wells of SD media in a 2 mL/well deep well plate 
and cultivated for 10 h at 25 °C (until the mid-exponential phase) in a Heidolph 
Titramax 1000 vibrating plate shaker incubator at 900 rpm. Stirring was enhanced 
by using a 2-mm size borosilicate glass/well. To obtain OD values at the time of 
inoculation, sampling, and stationary phase, we cultivated a separate plate in 
parallel and took a sample volume of 100 µL for OD measurement at the time 
of sample harvest for metabolome measurement. Growth state was calculated by 
subtracting OD values at inoculation from OD values at sampling and dividing 
this result by the OD values at stationary phase (Dataset S1). ODs were measured 
using a Powerwave HT plate reader. The full sample was harvested and extracted as 
described in ref. 13 with minor modifications. Briefly, cell pellets were extracted with 
200 µL 80 °C hot ethanol containing isotope labeled algal extract 5 mg/mL extrac-
tion solution. We obtained Algal Lyophilized Cells (U-13C, 98%+) from Cambridge 
Isotope Laboratories CLM-2065-PK. After 1 min of vigorous vortexing, we let the 
mixture incubate without shaking for 5 min and centrifuged for 5 min at maxi-
mum rpm. The aqueous phase was transferred to the prepared extraction solution. 
LC–MS-based quantification was also carried out in the same way as described in 
ref. 13, but free amino acids of ~0.5 mg 13C-labeled algae/sample extracts were 
used as internal standard for quantification instead of algal hydrolysate amino 
acid mixture. Metabolite identification was supported with standard injection and 
by monitoring 1 quantifier + 1 qualifier ion/metabolite. Metabolic concentration D
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data were normalized using i) probabilistic quotient normalization (PQN) to control 
for biomass amount and extraction efficiency differences between replicates and  
ii) linear regression between OD at the time of sampling and metabolite intensities 
to control for potential intensity differences stemming from growth differences (32).

Preparation of Internal Standards for Amino Acid Quantification. 
13C-labeled algae were extracted using a modified Bligh-and-Dyer extraction 
method (54). First, 700 µL of 4:10 water/MetOH was added to the 250 mg of 
lyophilized algal cells and vortexed vigorously. It was followed by the addition 
of 250 µL chloroform and vortexed vigorously for 1 min. After this, 250 µL water 
was added and vortexed vigorously for 1 min, which was followed by the addition 
of 250 µL chloroform again.

Non-Targeted Metabolomics. For non-targeted metabolomics, 1,200  µL 
culture/sample was cultivated at 25 °C in the same way as for amino acid quan-
tification. For metabolite extraction, 400 µL of cells/sample were centrifuged at 
4 °C for 3 min (13). Cell pellets were extracted using 200 µL of 40:40:20 (v/v/v) 
methanol/acetonitrile/water (55, 56) with 900 rpm shaking for 10 min at 4 °C. 
After pelleting the cells with 4,500 rpm −20 °C centrifugation for 5 min, the cells 
were re-extracted with the same method. Combined extracts from both extrac-
tions were centrifuged to remove debris. A pooled extract (QC, quality control) 
was prepared by joining the extracts from each experimental batch separately. 
Extracts were stored at −80 °C for high resolution mass spectrometry (HR-MS) 
measurements using polypropylene plates with a V-bottom. Before analysis, 
extracts were thawed and shaken for 10 min at room temperature at 900 rpm 
with Titramax 101. Metabolite extracts (2 µL) were injected directly into a Thermo 
Q-exactive Focus mass spectrometer (Thermo Fisher Corporation) operated in 
negative mode only, at 70,000 resolution, 2 micro-scans, and 3 × 10^6 AGC, 
using Dionex 3000 HPLC eluent flow. Flow rate was 150 mL/min, and the mobile 
phase was acetonitrile:water (70:30, v/v). To ensure measurement stability dur-
ing analysis, a pooled extract sample (QC) was assessed every 20 samples (57). 
We used ProFIA, a data preprocessing workflow specifically designed to process 
high-resolution, high-throughput metabolomics data for flow injection analysis 
(58). Signal to noise threshold was set to 10 and background intensities were 
measured at the last 30 s of the 3-min runtime. In one experimental batch, 4 
replicates were cultivated and measured.

We assigned putative metabolite to the measured ions using a high-quality 
genome-scale reconstruction of yeast metabolism (34, 59) based on their exact 
masses and only considering deprotonation. Putative metabolites were kept only 
if the i) corresponding ion was detected in at least 87.5% of the pooled extract 
(QC) samples, which were injected 8 times at the beginning of the measurement 
sequence, ii) showed a CV (coefficient of variation) of peak area lower than 25% 
and iii) was detected in at least 90% of the biological samples. Missing values 
were imputed using the k-nearest neighbors method (60, 61). Intensities were 
normalized as in amino acid quantification, i.e., using PQN normalization and linear 
regression between OD at the time of sampling and metabolite intensities (32).

Targeted Quantification of TCA Cycle Intermediates and Pyruvic Acid. We 
followed an established method (40) with small modifications for the quantifica-
tion of TCA cycle intermediates and pyruvate. We determined TCA cycle interme-
diates and pyruvic acid from 1,000 µL culture/sample in deep well plates. Pellets 
were extracted in 40:40:20 (v/v/v) methanol/acetonitrile/water and dried. Dried 
extracts were dissolved in 150 µL LC–MS grade water and cleared. Compounds 
were separated using a Waters HSS T3 column (1.7 μm, 2.1 mm × 100 mm) on a 
liquid chromatography (Waters ACQUITY Premier) and tandem mass spectrometry 
(Waters TQS-Micro) system. For a more detailed description, see SI Appendix.

Phylogenetic Analyses. We constructed a phylogenetic tree of the budding 
yeasts studied here using a phylogenomic approach following (62). We used 
the genomes of the 71 yeast isolates and two outgroups, Torulaspora delbrueckii 
CBS1146, and Tetrapisispora phaffii CBS4417. Genome sequences were acquired 
from different sources, see Dataset S6, column “Sequence source” (23, 28, 35, 
52, 63–67). To obtain consistent genome annotation across the studied yeast 
isolates, we annotated all budding yeast genomes, except the outgroups, using 
the MAKER genome annotation pipeline v2.31.10 (68). For a detailed description, 
see SI Appendix, Supporting text, Genome Annotation section. Note that for the 
outgroups, we used the published genome annotations.

To construct the phylogenetic tree, we first translated all nucleotide sequences to 
protein sequences with the transeq tool from the EMBOSS package (version 6.6.0) 

(69). Next, we used OrthoFinder (version 2.4.0) (70) to cluster homologous genes 
across all genomes. The clustering resulted in 1,1280 orthogroups in total. Of note, 
1,218 orthogroups contained a single gene copy from each genome and were further 
considered for concatenation-based phylogenetic tree inference. We performed mul-
tiple sequence alignment on each of the 1,218 orthogroups using MAFFT (version 
7.471) (71). TrimAl (version 1.4.1) (72) was applied with the “-gappyout” option to 
remove poorly aligned regions. Trimmed sequences shorter than 167 amino acids 
or shorter than 50% of the length of the total trimmed alignment were removed. We 
also removed sequences with missing amino acids. Orthogroups containing removed 
sequences were excluded from further analysis. After filtering, we concatenated the 
remaining 983 orthogroups to generate a single concatenated sequence for each 
genome. We built a concatenated maximum likelihood tree with RAxML (AVX version, 
8.2.12) (73) using the LG amino acid substitution matrix with the GAMMA model and 
using one partition for each orthogroup. Rapid bootstrapping was enabled, and the 
“autoMRE” option was used to determine the sufficient number of bootstrap repli-
cates. Most internal nodes at or above the population level received bootstrap support 
values higher than 95% (SI Appendix, Fig. S12). The tree with the best likelihood 
value was collected to represent the phylogenetic relationships between the strains 
in our dataset (Dataset S4). However, most of our analyses focus on the phylogenetic 
relationships of yeast populations instead of individual strains. In order to obtain a 
phylogenetic tree of populations, we selected one representative strain from each 
population and removed the rest of the strains from the tree (Dataset S5).

Calculation of Metabolome Divergence. We calculated metabolome diver-
gence between strain pairs as the average of the squared differences in metabolite 
levels for each metabolite (or putative metabolite in the case of the non-targeted 
dataset) using the following equation:

∑N

i=1

�

mk,i−ml,i

�2

N
,

where N is the number of metabolites in the dataset, k and l represent two sepa-
rate strains, and mk,i and ml,i represent the log-scaled and OD normalized level of 
the ith metabolite in strain k and l, respectively. Metabolome divergence between 
a pair of population was calculated as the average metabolome divergence of 
strain pairs where each strain belongs to one of the two populations. Similarly, 
the metabolome divergence between two species is the average metabolome 
divergence between strains of the two species.

To calculate phylogenetic distance-adjusted metabolome divergence, we 
divided the metabolome divergence of each population pair with the phyloge-
netic distance between the two populations. The phylogenetic distance between 
two populations is the sum of the lengths of the branches of the phylogenetic 
tree that connect the two populations to their common ancestor.

Metabolic Network Structure and Metabolite Production Capacities. 
Metabolic network reconstructions and amino acid production capacity (i.e., maxi-
mum theoretical yield of metabolite production) simulations were taken from the 
literature for seven of the species (S. castelli, S. arboricola, S. cerevisiae, S. eubayanus, 
S. kudriavzevii, S. mikatae, and S. paradoxus) and all of the S. cerevisiae strains 
present in our dataset (Dataset S6). Metabolite yield data were retained for the 19 
amino acids present in our dataset. Similarity between yield profiles was calculated 
in the same way as metabolite divergence; see section “Methods/Calculation of 
metabolome divergence” for more details. Briefly, for each species/population pair, 
we calculated the average of the squared differences of metabolite yields for each 
amino acid. Yield profiles were considered identical when yield distance between 
species/populations was lower than 1e-3, as small yield differences may occur due 
to the finite precision arithmetic used in yield calculations. Because several species 
pairs and the majority of population pairs display identical amino acid yield profiles 
according to this definition, we compared the metabolome divergence between 
species and population pairs with identical versus different yield profiles (Fig. 2).

Statistical Analyses.
Phylogenetic mantel test. We applied phylogenetic Mantel tests to calculate 
correlations between distance matrices, such as metabolome divergence and 
phylogenetic distance (74). This method uses phylogeny-based permutations 
to adjust the P-value for the non-independent nature of the values in distance 
matrices. The strength of the correlation was measured with Pearson’s r. The num-
ber of permutations was 1e-5.D
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Permutation test to compare metabolome divergence. To compare metab-
olome divergence or phylogenetic distance-adjusted metabolome divergence 
between different groups of population pairs or species pairs, we employed per-
mutation tests. First, we sorted each population (or species) into groups accord-
ing to our analysis (e.g., domesticated and wild). Next, we shuffled (resampled 
without replacement) the group associations of the populations (or species). We 
calculated the average (phylogenetic distance-adjusted) metabolome divergence 
of population (or species) pairs for each group and used the ratio of these two 
numbers as our test statistic. We repeated this randomization process 1e-5 times 
to acquire a distribution of our randomized test statistic. Finally, we calculated the 
probability that the original, unshuffled test statistic (ratio of average metabolome 
divergences between the two groups) comes from our randomized distribution 
with the following equation:

p=
(Number of randomized ratios higher than or equal to the ratio of the original data) +1

(Number of permutations) + 1
.

We reported this probability as the p-value of our permutation test. Note that 
ratios were calculated in a way that the group in the numerator had higher aver-
age metabolome divergence in the original, unshuffled data compared to the 
group in the denominator.
Phylogenetic ANOVA. To determine parallel changes in metabolite levels in 
domesticated S. cerevisiae populations compared to wild populations (or pop-
ulations with different climates or geographic locations), we performed phy-
logenetic generalized least squares ANOVA tests (75). First, we calculated the 
average metabolite levels for each population and marked each population as 
either wild or domesticated. Then, we used the corBrownian function from the ape 
package (version 5.7-1) (76) to calculate covariance for the phylogenetic tree of 
the populations. Next, we used the gls function from the nlme package (version 
3.1-162) (77) to fit phylogenetic ANOVA with the average metabolite level and 
domestication status of each population as variables and the corBrownian object 
as the correlation structure of the model. We repeated the calculations for each 
metabolite. The analysis was repeated without the Asian Fermentation population.

In order to control for growth state, we added the average growth state of 
each population as a covariate to the phylogenetic ANOVA model using the gls 
function. For each metabolite, the significance level of the independent effect of 
domestication on the metabolite level was returned.

Data, Materials, and Software Availability. Raw LC–MS data reported in this arti-
cle are accessible via Zenodo (https://zenodo.org/records/10680639) under acces-
sion number MTBLS9200 (78). Previously published data were used for this work 
(We used publicly available genome sequence data for yeast isolates from ref. 23).
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