
Computers and Electronics in Agriculture 227 (2024) 109482

0
n

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Development of a GPU-based DEM solver for parameter optimization in the
simulations of soil-sweep tool interactions
Dániel Nagy a, László Pásthy b, Kornél Tamás b,∗

a Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Muegyetem rakpart
3, Budapest, 1111, Hungary
b Department of Machine and Product Design, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Muegyetem rakpart
3, Budapest, 1111, Hungary

A R T I C L E I N F O

Keywords:
DEM
Soil simulation
GPU
Numerical optimization
Parameter fitting

A B S T R A C T

The Discrete Element Method (DEM) is a powerful technique for simulating granular materials in agricultural
applications, yet it is notoriously computationally and memory-intensive. A typical DEM simulation of soil-
sweep tool interactions involves tens of thousands of particles, each of which may potentially interact with
many others. This results in hundreds of thousands of interactions being computed at every time step, while
the need for numerical stability often requires very small time steps. Despite these challenges, DEM holds
significant promise to allow the design of more efficient agricultural tools. This paper introduces an in-house-
developed modular library based on CUDA C++ for GPUs, aimed at accelerating DEM simulations using a single
GPU. The library is designed to facilitate efficient memory usage, employing a per-thread approach where
each GPU thread computes one discrete-element particle. To accelerate particle–particle contact searches, we
implemented a cell-linked-list algorithm. Our library utilizes the Hertz–Mindlin contact model, which has been
widely adopted in agricultural DEM applications. Validation of the code was performed through comparisons
with commercial software. Using our software, experimental measurements of a sweep tool moving through
sandy soil were replicated with high accuracy by employing differential evolution for parameter calibration,
achieving these results using 38 912 particles and running 2 700 instances within 16 h on a single GPU.
1. Introduction

Enhancing soil quality and adopting sustainable management prac-
tices can not only boost food production but also assist in the con-
servation of natural resources. Despite soil tillage being a thousands
of years old practice, its technology continues to advance, yielding
new soil tillage tools, for instance, the narrow tillage tools used for
conservation tillage (Odey, 2016). In contemporary times, there is a
growing emphasis on environmentally friendly tillage practices (Prat-
ibha et al., 2019; Busari et al., 2015). The primary objectives of
tillage tool design include energy conservation, soil erosion control, and
emissions reduction (Rádics and Jóri, 2010). However, designing and
selecting the appropriate tillage tools pose significant challenges, given
the variability in soil types.

Mathematical modeling of soil-sweep tool interactions presents op-
portunities to find theoretical solutions to the above-mentioned chal-
lenges, such as by optimizing sweep tools for increased energy effi-
ciency. While analytical models offer insights into the draught force
necessary to move a plough at a given speed (Gupta et al., 1989;

∗ Corresponding author.
E-mail addresses: dnagy@hds.bme.hu (D. Nagy), pasthy.laszlo@gt3.bme.hu (L. Pásthy), tamas.kornel@gt3.bme.hu (K. Tamás).

Onwualu and Watts, 1998; Saunders et al., 2000), they provide only
limited information. Although validated analytical models can facilitate
the determination of optimal ploughing depth and speed (Godwin et al.,
2007), they lack the capability for geometry optimization. Alterna-
tively, the finite element method (FEM) can be employed to simulate
soil behavior (Shen, 2017; Bentaher et al., 2013; Abo-Elnor et al.,
2003). FEM enables the optimization of tool geometry and the simu-
lation of soil movement around the cutting edge of the tool (Fielke,
1999). However, a drawback of FEM is its assumption of a continuous
medium, which may not always align with real-world conditions. More-
over, FEM cannot adequately model soil deformation, the development
of cracks, or the flow of soil particles (Asaf et al., 2007). Over the past
two decades, the Discrete Element Method (DEM) has increasingly been
adopted for soil simulations. DEM offers the advantage of accounting
for soil heterogeneity and determining the flow of soil particles. It
enables the simulation of various agricultural problems, including the
determination of draught forces (Ucgul et al., 2017; Li et al., 2024),
the exploration of cracks in the soil produced by sweep tools (Tamás
https://doi.org/10.1016/j.compag.2024.109482
Received 6 May 2024; Received in revised form 16 September 2024; Accepted 21 S
168-1699/© 2024 The Authors. Published by Elsevier B.V. This is an open access art
c-nd/4.0/).
eptember 2024
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/compag
https://www.elsevier.com/locate/compag
mailto:dnagy@hds.bme.hu
mailto:pasthy.laszlo@gt3.bme.hu
mailto:tamas.kornel@gt3.bme.hu
https://doi.org/10.1016/j.compag.2024.109482
https://doi.org/10.1016/j.compag.2024.109482
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compag.2024.109482&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
et al., 2013), the movement of soil particles and seeds (Qi et al., 2019;
Milkevych et al., 2018; Binelo et al., 2019) and rotary tillage (Huimin
et al., 2016; Ucgul et al., 2018). Furthermore, DEM can be modified
to take into account the presence of stem residues in the soil (Tamás
and Bernon, 2021). The aforementioned studies mostly modeled large
particles with a limited number of parameters.

Calibrating micromechanical DEM parameters is essential for ensur-
ing physically accurate results, but this process requires the handling
of a large number of parameters. For instance, Roessler and Katterfeld
(2019) calibrated micromechanical DEM parameters of a cohesive bulk
using 10 000 particles and 576 parameters (8 × 8 × 9). Similarly, West-
brink et al. (2021) conducted 10 648 DEM simulations with various
micromechanical parameters to create a training dataset, with each
dynamic simulation containing 29 681 particles. The primary challenge
for achieving more accurate simulations with smaller particles is the
runtime (Aikins et al., 2023), as typical soil-sweep tool simulations take
over a day even when using larger particles (Tamás and Bernon, 2021).
Enhancing the efficiency of DEM software would allow for higher
resolution studies and the exploration of more parameters, potentially
yielding new insights into soil-sweep tool interactions. To conduct such
extensive numerical simulations, parallelization is crucial to reduce
runtime. With current computing technology, large-scale simulations
involving millions of particles are now feasible (Gan et al., 2016; Dosta
and Skorych, 2020).

Central Processing Units (CPUs) historically used the single instruc-
tion single data (SISD) architecture, executing one operation on a single
piece of data per machine cycle. Modern CPU architectures allow for
parallelization through multiple cores and vectorization. Graphics Pro-
cessing Units (GPUs) operate based on the principle of single instruction
multiple thread (SIMT) on a large scale. This means they can execute
a single instruction, such as multiplication or addition, across multiple
pieces of data simultaneously using different threads, enabling more
efficient processing of vast quantities of the same operation. In contem-
porary computing, there is a trend towards utilizing specialized tools
like graphics and tensor processors (GPUs and TPUs). One of the most
widely used development environments for GPUs is CUDA, an NVIDIA
proprietary platform and parallel programming model which is exclu-
sively compatible with NVIDIA GPUs (Karimi et al., 2010). Another
common platform is OpenCL, which can operate in any shared memory
parallel environment, including GPU and CPU clusters (Munshi, 2009).
The primary advantages of CUDA are its higher speed and broader
toolbox, largely attributed to the fact that both the programming model
and the GPU were developed by NVIDIA, resulting in a high level of
integration. The only notable disadvantage is its platform dependency.
In this paper, the CUDA programming model will be utilized.

GPU-based DEM simulations have been around for several years,
but in most cases, these are programs developed by a research group
to address a specific problem that requires a large number of par-
ticles (Liu et al., 2020; Govender et al., 2019, 2015). Some GPU-
based DEM solvers have been developed for general problems, such as
Chrono::GPU, which can simulate tens of millions of particles (Fang
et al., 2021), but the drawback of this package is that it can only use
one type of material and all the particles must have the same size.
Chrono DEM-Engine is a novel package that addresses the shortcoming
of Chrono::GPU, in which clump-based elements of arbitrary sizes
can be used (Zhang et al., 2024). A promising GPU accelerated DEM
software is Musen (Dosta and Skorych, 2020), that is capable of tackling
a wide range of problems from fracture processes (Hilarov et al., 2023)
to modeling collisions between ships (Kraus et al., 2021) involving
multiple materials. However it is not a pure GPU solver, as its contact
detection is CPU-based. Altair EDEM® also has an option to run its
calculations on a GPU, but the experience with that is limited. Although
GPU-based soil simulations are described in the literature, they are
limited to a few specific cases. GPUs have been utilized for simulating
off-road tire-granular terrain interactions (Yang et al., 2020) and for

modeling landslides (Zhang et al., 2023a; Zhou et al., 2021; Zhang

2
et al., 2023b). The application of GPUs in agricultural DEM simulations
has the potential to reduce runtime and enable efficient numerical
optimization of tools. To date, however, based on our literature review
there have been no examples of modeling the movement of an object
(e.g., tillage tool) through a domain filled with particles and calculating
the draught force in GPU-based DEM simulations. Currently, GPU-based
DEM simulations are not widely used in agriculture, although, this
approach could significantly accelerate simulations and contribute to
a deeper understanding of soil-sweep tool interactions through more
detailed studies involving smaller particles.

Our aim is to build a modular GPU-based DEM solver in CUDA C++,
which can be reliably used to create large-scale soil simulations while
operating faster than existing software thanks to the GPU acceleration.
This would enable more effective parameter calibrations, addressing
a major limitation in the current application of DEM in agriculture.
The software should be capable of modeling moving objects at a
desired velocity and calculating the resulting draught force, making it
particularly suitable for agricultural applications. This capability sets
our tool apart from current GPU-based DEM solvers, which lack this
functionality, to the authors’ knowledge. In addition to the creation of
an effective DEM software application, this paper has a number of other
objectives:

• Detailing the GPU specific implementation of the DEM algorithm
and validating the code by comparison to commercial software.
The per-thread approach we implemented, which assigns each
particle to a GPU thread, is novel for GPU-based DEM and enables
extremely high performance by means of low-level optimizations.

• Justifying the use of the Euler method for numerical time step
in DEM, through simulations and theoretical considerations. The
literature typically uses the first-order explicit Euler method
(Kruggel-Emden et al., 2008), but this choice is not justified in
most studies.

• Due to the significantly lower runtime offered by GPU accelera-
tion, a further aim of this paper is to investigate parameter sen-
sitivity in simulations of soil-sweep tool interaction, at a higher
resolution than previous authors.

• The ultimate aim of this paper is to demonstrate that microme-
chanical DEM parameters can be calibrated to accurately re-
produce soil-bin measurement results. Calibration is a lengthy
process that requires several days of compute time (Mohajeri
et al., 2020; Lubbe et al., 2022); our aim is to show that with
GPUs it can be carried out much faster.

2. Materials and methods

2.1. Graphical processing units

The fundamental computational unit in a GPU is the thread, and
there can be hundreds of millions of threads concurrently on a GPU.
Unlike CPU threads, GPU threads typically handle smaller amounts
of data, making them significantly lighter in terms of workload. Each
thread on the GPU possesses its own identifier (index), enabling ac-
cess to distinct data from memory based on this identifier. Moreover,
each GPU has multiple Streaming Multiprocessors (SMs) that func-
tion independently. This is the highest hierarchical level, and these
multiprocessors contain the computing units. GPU memory consists
of global memory and L2 Cache, accessible to the entire GPU. Each
multiprocessor has its own registers, local memory, L1 Cache, and user-
programmable shared memory. Global memory, the highest memory
level, is large but slow, with frequently accessed data automatically
moved to the faster L1 Cache. Register memory, located near compute
units, is exceptionally fast and user-programmable.

Threads are initially assigned to multiprocessors on a block-by-block
basis, with each block containing multiple threads, a parameter which

is adjustable by the user. Blocks are further subdivided into warps,

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 1. The structure of GPUDEM. Each block represents an element of the program,
with loops depicted by backward arrows. The green frame at the top is already
computed at compile time, while the middle green frame indicates the part of the
program running on the GPU. Notations: H2D — Host to Device (copy from CPU to
GPU); D2H — Device to Host (copy from GPU to CPU); R2D — Register to Device
(copy from GPU registers to GPU global memory); D2R — Device to Register (copy
from GPU global memory to GPU registers).

each comprising 32 threads in current NVIDIA GPU architectures. A
warp scheduler on each multiprocessor executes a warp when resources
become available. Warps operate according to the SIMT structure,
where each thread executes the same operation on different data simul-
taneously, resulting in substantial computational capacity compared to
CPUs. However, this presents challenges with branching, which may
potentially cause thread divergence, whenever individual threads need
to execute different operations such as if–else conditions.

2.2. Program architecture

The program can handle an arbitrary number and size of particles,
materials and boundary conditions, and at least one movable geome-
try, which is important for agricultural applications. Modularity is an
essential charactieristic of the program to allow the use of different
contact search algorithms, contact models and time step schemes and to
allow for future additions to the program. Currently, the Hertz–Mindlin
contact model is implemented with first and second order time step
schemes. This in-house developed software is referred to as GPUDEM.
The code has also been made open-source and available under the
GPL-3.0 license.1

1 Link to the repository: https://github.com/nnagyd/GPUDEM.
3
Table 1
Properties of the particle storage structure, stored in GPUDEM for each particle.
Reciprocals of commonly used values are also stored to reduce runtime.

Notation Dimension Name

𝒖 m Position vector
𝒗 m∕s Velocity vector
𝒂 m∕s2 Acceleration vector
𝝎 1∕s Angular velocity vector
𝜷 1∕s2 Angular acceleration vector
𝑭 N Force vector
𝑴 Nm Torque vector
𝑅 m Particle radius
𝑚 kg Particle mass
𝜃 kgm2 Moment of inertia

mid – Material index
cid – Cell index

𝑅−1 Radius−1

𝑚−1 Mass−1

𝜃−1 Moment of inertia−1

The complete GPUDEM program encompasses CPU, GPU, and com-
pile-time computations. During the compilation of the program pack-
age, various parameters such as the number of particles and materials,
the selected contact model, the contact search algorithm, and the time
step scheme must already be determined. These parameters enable
the optimization of the program code by the compiler. The primary
functions of the CPU include reading initial conditions, setting material
parameters, managing memory, and generating output files. In contrast,
the GPU handles the computationally intensive tasks, including contact
search, force calculation, and time stepping. The complete architecture
is illustrated in Fig. 1. The subsequent sections present the GPU-specific
implementation of the DEM algorithm, covering aspects such as particle
storage in the GPU memory, particle–particle contact, particle–wall
contact, force computation and temporal solution. Given the interre-
lated nature of computational, physical, and mathematical details, they
are presented together, as they often cannot be disentangled.

The program utilizes the perThread approach, wherein a GPU thread
is assigned to each particle. In Fig. 1, the number of threads initiated
in parallel at the GPU kernel call (denoted by the dashed frame)
matches the previously designated number of particles. However, the
number of particles usually surpasses the count of CUDA cores in
the GPU, resulting in not all threads being allocated computational
resources simultaneously. Consequently, situations may arise where
threads are not synchronized in the computation, potentially leading
to non-physical outcomes. To circumvent this issue, the program has
synchronization points at each time step, enabling threads to await each
other’s completion before proceeding.

2.3. Particles and their storage

In the following discussion, 𝑁𝑃 represents the number of particles,
and 𝑁𝑀 indicates the number of materials. Every particle possesses the
properties included in Table 1. Notably, one of the particle attributes
is its material, which is stored in a distinct structure; particles merely
store the associated material index. During a simulation, multiple mate-
rial parameter sets can be designated, with each particle being assigned
a corresponding material index, as mentioned earlier. The mass and
moment of inertia of each particle are computed based on their spec-
ified density, given that the particles are spherical, thus fulfilling the
equations

𝑚 = 4
3
⋅ 𝑅3 ⋅ 𝜋 ⋅ 𝜌 and (1)

𝜃 = 2
5
⋅ 𝑚 ⋅ 𝑅2. (2)

The reciprocal of the radius, mass, and inertia of the particles are
also stored to reduce computational demand, as these values are re-
quired in each time step. Division operations are more computationally

https://github.com/nnagyd/GPUDEM

D. Nagy et al.

a
H
s
f
t
c

t
p
F
r
a
i
a
m
r
o
m
e
o

2

d
c

𝑅

w
m
t
p
t
i
t

𝑑

T

𝑐

w
c
w
S
a

𝑐

w

c

i
t
e
t
l
t
s

n
i
t
k
l

r
t
l

Computers and Electronics in Agriculture 227 (2024) 109482
expensive than multiplication operations, requiring approximately an
order of magnitude more compute time than multiplication (Granlund,
2012).

Moreover, for each possible material-material combination, equiv-
alent material parameters such as the equivalent Young’s modulus 𝐸∗

nd the equivalent shear modulus 𝐺∗ are precalculated based on the
ertz–Mindlin model (Pasthy et al., 2022). Additionally, parameters

uch as the equivalent impact coefficient 𝑒∗, the equivalent sliding
riction coefficient 𝜇∗, the equivalent static friction coefficient 𝜇∗

0 , and
he equivalent rolling friction coefficient 𝜇∗

𝑟 can be specified for each
ombination.

Particle properties are initially stored in global memory and are then
ransferred to the much faster register memory at the onset of the GPU
rogram segment. This memory layout is illustrated in the appendix in
ig. A.14. Efficient memory reading operations necessitate data being
etrieved from a contiguous memory block. Since all the threads within
warp execute the same operation and a warp handles adjacent thread

ndices, read operations are performed in an aligned manner from
continuous memory block (see the coloring in Fig. A.14), which
akes memory usage more efficient. As the description of each particle

equires 7 vectors, and 8 scalars at minimum (see Table 1), storing
ne million particles requires 110.6MB of data. This fits in the global
emory of the GPU; however, for such large problems there is not

nough register space, and register spills into higher-level memory
ccur, thus diminishing efficiency.

.4. Particle–particle contact

Particle–particle contacts are relatively straightforward to detect
ue to their spherical nature. Two particles, indexed with 𝑖 and 𝑗, are
onsidered to be in contact if

𝑖 + 𝑅𝑗 > 𝑑𝑖𝑗 , (3)

here 𝑑𝑖𝑗 = |𝒖𝑖 − 𝒖𝑗 | represents the distance between the particles. The
ost straightforward algorithm for contact detection involves iterating

hrough all the particles, computing the distance between each possible
air of particles, and determining whether they are in contact according
o Eq. (3). This approach, known as the brute force method, leads to
nefficiencies due to the extensive computation required to calculate
he distance 𝑑𝑖𝑗 . This computational intensity arises from the fact that

=
√

(𝑢𝑥,𝑖 − 𝑢𝑥,𝑗)2 + (𝑢𝑦,𝑖 − 𝑢𝑦,𝑗)2 + (𝑢𝑧,𝑖 − 𝑢𝑧,𝑗)2, (4)

and it involves a square root operation. Furthermore, the number of
particle pairs increases quadratically with the number of particles,
exacerbating computational demands.

The efficiency of the simulation can be enhanced by partitioning the
entire computational domain with a mesh and computing the distance
𝑑𝑖𝑗 solely for particles residing in the same or adjacent cells. The
computation domain is resolved using 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 cells each with
dimensions 𝛥𝑥 × 𝛥𝑦 × 𝛥𝑧. An example mesh can be seen in Fig. A.15.

he following equation uniquely assigns a particle to a cell in 3D:

id =
⌊𝑥 − 𝑥min

𝛥𝑥

⌋

+𝑁𝑥

⌊

𝑦 − 𝑦min
𝛥𝑦

⌋

+𝑁𝑥 ⋅𝑁𝑦

⌊ 𝑧 − 𝑧min
𝛥𝑧

⌋

, (5)

here 𝑐id represents the cell index, 𝑁𝑥 and 𝑁𝑦 denote the number of
ells in the 𝑥 and 𝑦 directions, and ⌊□⌋ denotes the floor function,
hich returns the integer part of the number for positive numbers.
ubsequently, based on 𝑐id, it can be determined whether two particles
re in the same or adjacent cells. This condition is met if

id,𝑖 = 𝑐id,𝑗 +

⎧

⎪

⎨

⎪

⎩

1
0
−1

⎫

⎪

⎬

⎪

⎭

⋅ 1 +

⎧

⎪

⎨

⎪

⎩

1
0
−1

⎫

⎪

⎬

⎪

⎭

⋅𝑁𝑥 +

⎧

⎪

⎨

⎪

⎩

1
0
−1

⎫

⎪

⎬

⎪

⎭

⋅𝑁𝑥 ⋅𝑁𝑦, (6)

here there are 27 combinations of numbers between brackets.
Once the mesh is established, the Cell-Linked List (CLL) algorithm

an be employed, where for each cell, the particles currently occupying
4
t are recorded (Cai et al., 2018). However, when using the GPU,
his approach may suffer from thread divergence and consequently
xperience performance degradation. This occurs because each cell
ypically contains a different number of particles. Nonetheless, with a
arge number of particles, the number of potential contacts that need
o be computed decreases by orders of magnitudes, thus making the
imulation faster.

Implementing the CLL method on parallel architectures poses sig-
ificant challenges. The primary potential problem is threads execut-
ng in parallel, meaning that multiple threads may attempt to access
he same memory space simultaneously, leading to a phenomenon
nown as memory contention. In Listing 1, the loading of the cell-
inked list in the global memory is illustrated. In the code, glob-
almem.cellCount is an array of size 𝑁𝐶 = 𝑁𝑥 ⋅ 𝑁𝑦 ⋅ 𝑁𝑧, which
ecords the number of particles currently present in each cell. Addi-
ionally, globalmem.linkedCellList contains the corresponding
ist of particle indices for each cell. The size of the array glob-
almem.linkedCellList is 𝑁𝐶 ⋅𝑁𝑃 ,𝐶 , where 𝑁𝑃 ,𝐶 denotes the max-
imum number of particles in a cell. The thread that reaches row 4 first
increments the value of the variable globalmem.cellCount[cid]
in global memory. However, due to memory latency, for several cycles
after the instruction, the old value remains in the global memory.
During this time, if another thread reads from the same memory space,
it will access the outdated previous value. Consequently, both threads
might attempt to write to the same memory address in line 5, leading
to previously written data being overwritten.

Listing 1: Race condition between threads during the cell-linked list
contact search algorithm

1 int tid = ...; //thread index of the
particle

2 ...
3 int cid = ...; //cell index, in which the

particle is in
4 int cell_count=globalmem.cellCount[cid]++;//

num.of particles in cell
5 globalmem.linkedCellList[cid*N + cell_count]

= tid;

CUDA defines atomic expressions, which ensure that no other thread
has access to the specified data when writing to global memory until the
new data is stored in memory. The use of the atomicInc() function
defined by CUDA in line 4 guarantees that the aforementioned situation
is avoided. Finally, the equivalent radius 𝑅∗ and equivalent mass 𝑚∗ for
each particle–particle contact need to be calculated, in accordance with
the Hertz–Mindlin contact model (Pasthy et al., 2022).

For the particle–particle contact detection to perform optimally the
cell size should be as small as possible, but not smaller than the largest
particle diameter. The optimal cell size is usually 𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 =
2max𝑖 𝑅𝑖. The maximum number of particles within a cell (𝑁𝑃 ,𝐶) must
be specified, because the memory space must be pre-allocated. Memory
space limitations are not problematic even for small particles, as a
1m × 1m × 1m domain with 2max𝑖 𝑅𝑖 = 0.01m can contain millions of
particles, and requires 1 million cells. If 𝑁𝑃 ,𝐶 = 12, then a total of 12
million indices must be stored, which only requires 45.8MB of global
memory.

2.5. Geometry-particle contact

The geometry encompasses the bounding walls and the tillage tools,
all of which are defined as a geometry bordered by triangles in STL file
format. STL files contain the vertices of the triangles and the surface
normal vectors. In the GPUDEM framework, any STL file in ASCII
format can be read and utilized. Presently, the geometry is stored in the
local memory of the GPU during calculations. Employing local memory
offers the advantage of faster data access. However, its size is restricted,

D. Nagy et al.

p
v
d

𝑆

w
b
i

𝜎

L
c
(
F
𝒌

𝐓

T
p

⎛

⎜

⎜

⎝

w
𝑑
g
o

𝐓

w
I
e
o
c
a

v
𝒏
o
t
s
t
o

𝑅

2

m
p

𝜹

w
r
a
𝑗

𝑖

w
n

𝑆

w
s
e
a

w
t

𝑭

w
q
d
c

𝑭

T
i
p

𝑴

w
b
t

𝑴

Computers and Electronics in Agriculture 227 (2024) 109482
allowing only geometries bordered by a few hundred triangles to be
specified. Its maximum size is dependent on the GPU type and settings.

The advantage of utilizing STL files lies in the simplicity of detecting
contacts between a sphere and a triangle. Let 𝒑 denote the vector
ointing to one vertex of the triangle, while 𝒔 and 𝒕 point to the other
ertices of the triangle from 𝒑, as depicted in Fig. 2. These vectors
efine the plane 𝑆, which can be expressed as follows:

∶= 𝒑 + 𝒔𝜎 + 𝒕𝜏, (7)

here 𝜏 and 𝜎 represent coordinates in the coordinate system defined
y the vectors 𝒔 and 𝒕. For points lying within the triangle, the following
nequalities hold:

≥ 0, 𝜏 ≥ 0 and 𝜎 + 𝜏 ≤ 1. (8)

et 𝒏 represent the unit vector perpendicular to the plane 𝑆. By
alculating the coordinates of the vector 𝒖−𝒑 in the coordinate system
𝒔, 𝒕,𝒏), the coordinates 𝜎, 𝜏, and 𝑑 can be obtained, as illustrated in
ig. 2. The transformation matrix between the coordinate systems (𝒊̂, 𝒋̂,
̂) and (𝒔, 𝒕, 𝒏) can be expressed as follows:

=
⎛

⎜

⎜

⎝

𝒔𝑡
𝒕𝑡
𝒏𝑡

⎞

⎟

⎟

⎠

. (9)

he coordinates can then be calculated easily by performing the appro-
riate transformations,

𝜎
𝜏
𝑑

⎞

⎟

⎟

⎠

= 𝐓−𝑡(𝒖 − 𝒑), (10)

here 𝐓−𝑡 =
(

𝐓−1)𝑡 represents the inverse transpose of matrix 𝐓, and
denotes the distance of the center of the particle from the plane,

iven that the basis vector 𝒏 has unit length. Moreover, the number
f calculations and stored data can be further reduced, as

−𝑡 =
⎛

⎜

⎜

⎝

𝒔̃𝑡
𝒕̃𝑡

𝒏̃𝑡

⎞

⎟

⎟

⎠

and 𝜎 = 𝒔̃ ⋅ (𝒖 − 𝒑), 𝜏 = 𝒕̃ ⋅ (𝒖 − 𝒑), 𝑑 = 𝒏 ⋅ (𝒖 − 𝒑), (11)

here the vectors 𝒔̃𝑡, 𝒕̃𝑡, and 𝒏̃𝑡 represent the rows of the matrix 𝐓−𝑡.
t is important to note that the vector 𝒏̃ is not needed in the above
quation since distance 𝑑 is simply the perpendicular projection of 𝒖−𝒑
nto 𝒏 and can therefore be calculated by a scalar product. From the
omputed coordinates, contact can be detected. A triangle and a sphere
re in contact if the following two conditions are satisfied:

1. The center of the sphere is closer to the plane of the triangle 𝑆
than its radius, i.e., 𝑑 < 𝑅.

2. The projection of the center of the sphere on the plane 𝑆 is inside
the triangle, i.e., the inequalities in Eq. (8) are satisfied.

The algorithm described is highly efficient, requiring only four
ectors to describe the coordinate transformation and the offset (𝒔̃, 𝒕̃,
, 𝒑). Moreover, these vectors can be computed for each triangle at the
utset of the simulation, provided that the given geometry remains only
ranslated, as only the vector 𝒑 is modified during translation. In the
ubsequent step, the particle–wall contact can be computed similarly to
he particle–particle contact, with the distinction lying in the definition
f the equivalent radius and mass:
∗ = 𝑅 and 𝑚∗ = 𝑚. (12)

.6. Force calculation

The force calculation follows the principles of the Hertz–Mindlin
odel (Pasthy et al., 2022). The normal and tangential overlap of
articles (𝛿𝑛 and 𝜹𝑡) are determined as detailed in Golshan et al. (2023):
𝛿𝑛 = 𝑑 − (𝑅𝑖 + 𝑅𝑗) and (13)

5
{𝑛+1}
𝑡 = 𝜹{𝑛}𝑡 + 𝛥𝑡 ⋅ 𝒗̃𝑖,𝑗,t, 𝜹{0}𝑡 = 𝟎, (14)

here □{𝑛} denotes the state at the 𝑛th time step of contact, 𝑅𝑖
epresents the radius of the 𝑖th particle, 𝛥𝑡 signifies the time step size,
nd 𝒗̃𝑖,𝑗,t denotes the relative tangential velocity between particles 𝑖 and
.

In the following discussion, the contact between particles indexed
and 𝑗 is addressed. To reduce operations within the Hertz–Mindlin

model, the following quantity is introduced:

𝑅𝛿 =
√

𝑅∗ ⋅ 𝛿𝑛. (15)

here 𝑅∗ = (𝑅−1
𝑖 + 𝑅−1

𝑗)−1 is the equivalent radius. The equivalent
ormal and shear stiffness can then be calculated as,

𝑛 = 2𝐸∗ ⋅ 𝑅𝛿 and (16)

𝑆𝑡 = 8𝐺∗ ⋅ 𝑅𝛿 . (17)

here 𝐸∗ is the equivalent Young modulus and 𝐺∗ is the equivalent
hear modulus. From the previously described quantities, the normal
lastic force 𝑭 𝑛𝑒, tangential elastic force 𝑭 𝑡𝑒, normal damping force 𝑭 𝑛𝑑
nd tangential damping force 𝑭 𝑡𝑑 can be calculated,

𝑭 𝑛𝑒 = −4
3
𝐸∗𝑅𝛿𝛿𝑛𝒓𝑖,𝑗 , (18)

𝑭 𝑡𝑒 = −𝜹𝑡 ⋅ 𝑆𝑡, (19)

𝑭 𝑛𝑑 = −2
√

5
6
⋅ 𝛽 ⋅

√

𝑆𝑛 ⋅ 𝑚∗ ⋅ 𝒗̃𝑖,𝑗,𝑛 and (20)

𝑭 𝑡𝑑 = −2
√

5
6
⋅ 𝛽 ⋅

√

𝑆𝑡 ⋅ 𝑚∗ ⋅ 𝒗̃𝑖,𝑗,𝑡. (21)

where 𝑚∗ is the equivalent mass, 𝒓𝑖,𝑗 is the direction unit vector and
𝒗̃𝑖,𝑗,𝑛 is the normal component of the relative velocity between particle 𝑖
and 𝑗. Normal and tangential forces result from elasticity and damping,
i.e.,

𝑭 𝑛 = 𝑭 𝑛𝑒 + 𝑭 𝑛𝑑 and (22)

𝑭 𝑡 = 𝑭 𝑡𝑒 + 𝑭 𝑡𝑑 . (23)

The particles slip on each other if the following condition is not
satisfied:

|𝑭 𝑡| > 𝜇∗
0 ⋅ |𝑭 𝑛|, (24)

here 𝜇∗
0 is the equivalent coefficient of static friction. Then the

angential force is modified as follows:

𝑡,new = 𝜇∗ ⋅ 𝑭 𝑡 ⋅
|𝑭 𝑛|

|𝑭 𝑡|
, (25)

here 𝜇∗ represents the equivalent sliding friction coefficient. Conse-
uently, |𝑭 𝑡,new| = 𝜇∗ ⋅ |𝑭 𝑛|, and the direction of 𝑭 𝑡,new aligns with the
irection of 𝑭 𝑡. The total force acting on the particle due to a contact
an now be calculated as:

= 𝑭 𝑛 +
{

𝑭 𝑡, 𝑖𝑓 |𝑭 𝑡| ≤ 𝜇∗
0 ⋅ |𝑭 𝑛|

𝑭 𝑡,new, 𝑖𝑓 |𝑭 𝑡| > 𝜇∗
0 ⋅ |𝑭 𝑛|

. (26)

he tangential force induces a torque since its line of action does not
ntersect the center of the particle. The torque is given by the cross
roduct:

𝑝 = 𝒑𝑖,𝑗 × 𝑭 𝑡, (27)

here 𝒑𝑖,𝑗 is the vector pointing from particle 𝑖 to the contact point
etween particles 𝑖 and 𝑗. Considering rolling friction introduces a
orque in the direction of the angular velocity vector (Solutions, 2014),

𝜇 = −𝜇∗
𝑟 ⋅ |𝑭 𝑛| ⋅ |𝒑𝑖,𝑗 | ⋅

𝝎𝑖
|𝝎𝑖|

. (28)

The total torque exerted on a particle due to a contact is:

𝑴 = 𝑴 +𝑴 . (29)
𝑝 𝜇

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 2. The intersection of a triangle and a sphere. Plane 𝑆 is defined by the vectors 𝒔 and 𝒕, which also characterize the triangle. Here, 𝒑 represents the position vector of one
vertex of the triangle, while 𝒖 denotes the position vector of the center of the particle. The coordinates 𝜎, 𝜏, and 𝑑 correspond to the coordinates in the local coordinate system
(𝒔, 𝒕, 𝒏) of the triangle.
𝝎

w
m
s
(

A particle may be in contact with several walls and other particles,
hence the force and torque calculations outlined in Eqs. (26) and (29)
must be executed for all contacts involving all of the particles. The
number of contacts between the 𝑖th particle and the walls or other
particles is denoted by 𝑁𝐶,𝑖, where 𝑁𝐶,max represents the maximum
number of contacts. The total force and torque acting on the 𝑖th
particle is the cumulative sum of the forces and torques arising from
all contacts:

𝑭 𝑖,total =
𝑁𝐶,𝑖−1
∑

𝑗=0
𝑭 𝑖,𝑗 and (30)

𝑴 𝑖,total =
𝑁𝐶,𝑖−1
∑

𝑗=0
𝑴 𝑖,𝑗 , where 𝑁𝐶,𝑖 ≤ 𝑁𝐶,max, (31)

where 𝑭 𝑖,𝑗 and 𝑴 𝑖,𝑗 are the force and torque acting on the 𝑖th particle
from the 𝑗th contact.

2.7. Temporal solution

To calculate a temporal solution the accelerations must be deter-
mined. Given that the particles are spherical,

𝒂{𝑛}𝑖 = 𝑚−1
𝑖 ⋅ 𝑭 {𝑛}

𝑖,total + 𝒈 and (32)

𝜷{𝑛}
𝑖 = 𝜃−1𝑖 ⋅𝑴{𝑛}

𝑖,total, (33)

where 𝑚𝑖 denotes the mass, 𝒈 the gravitational acceleration vector,
𝜃𝑖 the moment of inertia, 𝒂{𝑛}𝑖 the acceleration and 𝜷(𝑛)

𝑖 the angular
acceleration of the 𝑖th particle at time step 𝑛. These accelerations serve
as the basis for computing the new velocity, position, and angular
velocity at the given step size. Various time-step schemes can be chosen
for this purpose.

Euler’s method
The simplest choice is Euler’s method, wherein the velocity 𝒗𝑖,

position 𝒖𝑖, and angular velocity 𝝎𝑖 are determined as follows:

𝒗{𝑛+1}𝑖 = 𝒗{𝑛}𝑖 + 𝛥𝑡 ⋅ 𝒂{𝑛}𝑖 , (34)

𝒖{𝑛+1}𝑖 = 𝒖{𝑛}𝑖 + 𝛥𝑡 ⋅ 𝒗{𝑛+1}𝑖 and (35)

𝝎{𝑛+1}
𝑖 = 𝝎{𝑛}

𝑖 + 𝛥𝑡 ⋅ 𝜷{𝑛}
𝑖 , (36)
6
where 𝛥𝑡 is the step size. Higher order terms can be taken into account
in the position calculation (Kruggel-Emden et al., 2008) and a more
accurate estimate of the position can be obtained if

𝒖{𝑛+1}𝑖 = 𝒖{𝑛}𝑖 + 𝛥𝑡 ⋅ 𝒗{𝑛}𝑖 + 1
2
𝛥𝑡2𝒂{𝑛}𝑖 . (37)

Assuming that the acceleration is constant throughout a time step,
Eq. (37) gives the exact position. For this reason in GPUDEM this time
step scheme is called Exact. Of course, the acceleration is not constant
during the time step, in reality the slightest displacement of a particle
will change the forces and hence the acceleration.

Adams-method
The solver also incorporates the second-order Adams–Bashforth–

Adams–Moulton time step method (Hairer et al., 1993; Butcher, 2016).
This method offers the advantage of second-order accuracy but neces-
sitates storing one additional time step. The essence of the method
is the explicit computation of the velocity using the Adams–Bashforth
method:

𝒗{𝑛+1}𝑖 = 𝒗{𝑛}𝑖 + 𝛥𝑡 ⋅
(3
2
𝒂{𝑛}𝑖 − 1

2
𝒂{𝑛−1}𝑖

)

and (38)

{𝑛+1}
𝑖 = 𝝎{𝑛}

𝑖 + 𝛥𝑡 ⋅
(3
2
𝜷{𝑛}
𝑖 − 1

2
𝜷{𝑛−1}
𝑖

)

. (39)

Then, the implicit Adams–Moulton method is used to determine the
position,

𝒖{𝑛+1}𝑖 = 𝒖{𝑛}𝑖 + 1
2
⋅ 𝛥𝑡 ⋅

(

𝒗{𝑛}𝑖 + 𝒗{𝑛+1}𝑖

)

, (40)

here 𝒗{𝑛+1}𝑖 is already known from Eq. (38). The method requires
ore memory, as the acceleration and velocity values from the previous

tep are necessary. In the initial step (𝑛 = 0), in Eqs. (38) and
39), no information is available regarding the values of 𝒂{−1}𝑖 and
𝜷{−1}
𝑖 . Therefore, an Euler step is always utilized in the initial step, as

described in Eqs. (34)–(36). Although higher-order Adams methods that
offer the advantage of providing sufficiently accurate solutions with
larger time steps exist, the nature of the problem restricts the potential
increase in time step significantly. Contacts are continuously created
and terminated during the motion of the particles, and a high temporal
resolution of the collisions is essential. Hence, the implementation of

higher-order numerical methods is not justified.

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 3. The measurement setup and the recorded force. The sweep tool moved with a constant velocity 𝑣 = 0.706m∕s, at a tillage depth of 150mm.
2.8. Measurement details

Subsequent DEM simulations of draught force were compared to
measurements conducted in the soil-bin facility at the Institute of Tech-
nology of the Hungarian University of Agriculture and Life Sciences
in Gödöllő, Hungary. The details of the soil-bin measurements at the
same location were discussed by Tamás (2018). This facility spans
50 meters in length and 1.95 meters in width (Tamás et al., 2013)
and was filled with sandy soil having a moisture content of 3.96%
on a dry mass basis. During the experiment, a sweep tool with the
dimensions 313mm × 289mm (see Fig. A.17) moved at a velocity of
𝑣 = 0.706m∕s with a standard deviation of 𝜎𝑣 = 0.091m∕s. The tillage
depth was 150mm. Strain gauges were placed on the tine of the sweep
tool and calibrated to measure the draught force. The measurement
setup is illustrated in Fig. 3a. The draught force of two sweep tools
was measured independently at the same time, although, only the data
for the red tool on the left in the picture were utilized in this research.
A draught force of 𝐹𝑥 = 309.5N was recorded in the sandy soil, with a
standard deviation of 𝜎𝐹𝑥 = 14.5N. The results for the first 10 meters
of displacement, in steady state, are illustrated in Fig. 3b.

3. Results

3.1. Validation based on comparison with commercial software

The aim of the validation process is to ensure that all of the methods
in the program are implemented correctly, without any typos or logical
errors. One validation approach involves comparing the program with
other software packages that utilize similar methods. Altair EDEM® is
one of the most widely used DEM software packages, implementing var-
ious contact models such as the Hertz–Mindlin model (Solutions, 2014).
In a validation comparison, two gravitational deposition cases were
considered: one using 509 particles and the other using 8519 particles.
The objective of the deposition was to establish a suitable initial par-
ticle distribution for subsequent soil simulations. During gravitational
deposition, particles initially placed in random locations within a given
domain fall and stack on top of each other under gravity. Throughout
deposition, the velocity of each particle is expected to converge to zero.
In both EDEM and GPUDEM, the same initial particle distribution was
employed.

The material parameters and time step settings are listed in column
1 of Table B.5. In both software packages, the velocity of all particles
is expected to approach zero after 1 s. The success of deposition can
be assessed by monitoring the total kinetic and potential energy of the
particles. The total kinetic energy of the particle assembly is given by:

𝐾 = 1
𝑁𝑃 −1
∑

(

𝑚𝑖 ⋅ 𝒗𝑖 ⋅ 𝒗𝑖 + 𝜃𝑖 ⋅ 𝝎𝑖 ⋅ 𝝎𝑖

)

, (41)

2 𝑖=0

7
where 𝒗𝑖 represents the velocity of the 𝑖th particle and 𝝎𝑖 denotes
its angular velocity. The potential energy of the particle assembly is
calculated as:

𝑃 =
𝑁𝑃 −1
∑

𝑖=0
𝑚𝑖 ⋅ 𝑔 ⋅ 𝑢𝑧,𝑖, (42)

given that the vector of gravitational acceleration is 𝒈 = [0, 0,−𝑔]𝑇 , and
𝑢𝑧,𝑖 represents the 𝑧-coordinate of the 𝑖th particle. The potential and
kinetic energy are illustrated in Fig. 4. It is evident that the potential
and kinetic energy of the particle assembly are similar in both cases.
The kinetic energy (continuous line) gradually converges to zero in all
instances, although it never precisely reaches zero due to the finite time
steps and rounding errors. The potential energy (dashed line) exhibits
a slight disparity after a certain duration, probably due to differences
in the implementation between GPUDEM and EDEM. Since the source
code of EDEM is closed, the exact details of the implementation of
the contact search and Hertz–Mindlin model remain unknown. Overall,
Fig. 4 demonstrates that the deposition is successful, as the kinetic en-
ergy approaches zero and the potential energy converges to a constant
value. A direct comparison of the runtimes is not possible as the EDEM
simulations use CPU cores, but experience shows an order of magnitude
increase when using GPUDEM.

3.2. Scaling for larger problems

Simulations were conducted with the same parameters but varying
particle numbers 𝑁𝑃 , employing both brute force and CLL contact
search methods. In each case 2500 time steps were performed with
𝛥𝑡 = 1 × 10−4 s. With the given time step settings, the simulations
remained stable, that is, the kinetic energy converged to zero during
deposition. The parameters are listed in Table B.5 in column 2. The
runtimes (𝑇run) as a function of particle number 𝑁𝑃 are depicted in
Fig. 5 on a logarithmic plot. For a small particle number (𝑁𝑃 < 250)
the Brute-Force approach proved to be efficient. However, for a larger
particle size (𝑁𝑃 > 104) the runtime increases by almost threefold when
doubling the particle number:
𝑇run(𝑁𝑃 = 32768)
𝑇run(𝑁𝑃 = 16384)

= 2.84 and
𝑇run(𝑁𝑃 = 65536)
𝑇run(𝑁𝑃 = 32768)

= 2.91, (43)

thus, the scaling is not linear. This accelerated growth is attributed to
the fact that the number of operations is proportional to 𝑁2

𝑃 during the
contact search. However, the runtime growth does not quadruple with
the doubling of the number of particles, since the GPU resources are
not fully utilized even when employing 105 particles.

For the CLL contact search, the runtime initially decreases as the
number of particles increases. The mesh in this case contains 𝑁 =
𝐶

D. Nagy et al.

d

2
S
n
t
t
t
w
i
t
f
i
n
f

3

l
t
s
a
c
s
b

𝑁

Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 4. The kinetic energy 𝐾 and −1 times the potential energy −𝑃 during deposition in GPUDEM and EDEM using a different number of particles (𝑁𝑃).
i
h
f
i
t
a
t
t
m
p
t

Fig. 5. Runtime of the deposition with different number of particles (𝑁𝑃) and using
ifferent contact search algorithms (BruteForce and CLL).

83 = 21952 cells, and each cell can accommodate up to 8 particles.
ince the cells need to be reinitialized before each time step, and the
umber of threads is low, the reinitialization is a slow process. This
rend holds true until 𝑁𝑃 ≈ 250, as more threads are applied, leading
o faster cell updates. As the number of particles increases further,
he runtime also increases. It takes roughly twice as long to compute
ith twice as many particles. The advantage of the CLL method lies

n its linear scaling, where the number of operations is proportional
o 𝑁𝑃 . In summary, the CLL contact search method is notably faster
or calculations involving larger numbers of particles. The difference
n runtime between the two methods becomes more pronounced as the
umber of particles increases, with CLL proving to be eight times faster
or 𝑁𝑃 = 65536 particles.

.3. Time step size

Increasing the time step can reduce the runtime, but excessively
arge time steps may lead to instability. In DEM particle collisions have
o occur gradually, which necessitates the use of sufficiently small time
teps to maintain stability. To test the effect of step size, the length of
deposition simulation was set to 𝑇 = 2.5 s, and the time step size was

hosen within the range 𝛥𝑡 = 1 × 10−5 s to 1 × 10−2 s. The number of
teps (denoted as 𝑁step) determines the total number of time steps to
e executed in the simulation, and it is calculated as:

step = 𝑇
𝛥𝑡

. (44)

It was observed that if the number of steps is sufficiently large,
i.e., 𝑁 > 10000, then doubling the number of time steps results
step a

8
in a doubling of the runtime. For a lower number of steps, this pro-
portionality is not true. Detailed results can be found in Fig. 6(a). This
discrepancy arises because the DEM calculation constitutes a decreasing
portion of the total running time, while other operations such as
writing outputs, initialization, and memory management become more
significant. For instance, the particle positions and velocities are saved
50 times throughout the entire simulation, independent of 𝑁step.

A time step that is too large (𝛥𝑡 > 10−3 s) results in non-physical
outcomes during settling, as illustrated in Fig. 6(b). It is evident from
the figure that when a large time step is applied, the kinetic energy (𝐾)
of the particle assembly does not converge to zero. This phenomenon
occurs because the large time step leads to the rapid development of
significant overlaps during collisions. Determining the optimal time
step size depends on the specific task, as it depends on factors such as
the size, material parameters, and geometry of the particles involved.

All the implemented time step schemes were used with a time step
of 𝛥𝑡 = 1 × 10−3 s on the same case. There was no discernible difference
in the runtime, as the computational requirement for time step calcula-
tion is negligible compared to the contact search and force calculation.
Fig. A.16 illustrates the kinetic energy 𝐾 during the simulations. When
the first-order Euler method was applied, the kinetic energy of the par-
ticle assembly decreased to nearly 0.1 J. The kinetic energy decreased
almost similarly when using the Exact method. Using the second-order
Adams predictor–corrector method, an order of magnitude more kinetic
energy remains. Although the order of the method is higher, this does
not necessarily imply greater accuracy.

It is a well-established principle in numerical methods for differ-
ential equations that the order of convergence is guaranteed only in
cases where the functions involved are suitably continuous (Bellen
and Zennaro, 2013). However, during the onset of collisions between
particles, the change in force is discontinuous. The normal elastic force
is proportional to the normal overlap:

𝑭 𝑛𝑒 ∝ 𝛿
3
2
𝑛 , (45)

where 𝛿𝑛 = 𝑑 − (𝑅𝑠 + 𝑅𝑖) is the normal overlap, and although it is
seemingly continuous, it is only meaningful when 𝛿𝑛 > 0. Fig. 7(a)
llustrates the tangential overlap in a scenario in which two particles
ave been in contact since 𝑡 = 1 s. It is evident that when 𝛿𝑛 < 0, the
unction value is instead set to zero (indicating no collision), resulting
n a discontinuity in the derivative at 𝑡 = 1 s. If the numerical solution
akes a time step from 𝑡 = 0.95 s with a step size of 𝛥𝑡 = 0.1 s,

discontinuity in the derivative of the function occurs during the
ime step. In such scenarios, convergence becomes first-order, meaning
he error is proportional to 𝛥𝑡, as the continuity condition is not
et (Wanner and Hairer, 1996). The ideal solution would involve the
recise detection of all contact times and the numerical solution of
he equation of motion on continuous sections only, with appropriate

djustments to the time step. As depicted in Fig. 7(b), connections

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 6. The results of settling using different time step sizes.
Fig. 7. Explanation of the discontinuity during particle contact.
between particles are constantly formed and broken, necessitating the
identification of numerous discontinuous points to compute just one
particle. Considering the large number of particles involved in DEM,
accurate collision detection becomes impractical. Consequently, higher-
order numerical methods should be avoided, as maintaining the order
of convergence relies on precise collision detection, which is not pos-
sible when modeling a large number of particles. In the literature, the
Euler method is commonly employed (Di Renzo and Di Maio, 2004;
Melheim, 2005), often without explicit justification. Throughout the
remainder of the paper, the first-order Euler method is utilized.

3.4. Profiling

Profiling aims to identify the bottleneck (the most resource-intensive
part of the program) using data from low-level hardware counters that
monitor memory and computational operations. The NVIDIA NSight
Compute application was utilized to profile the software in the present
research. Table 2 presents the primary profiling results at three dif-
ferent particle counts, revealing an almost linear increase in runtime.
The CLL contact search procedure was employed, and only 100 time
steps were executed. Analysis of Table 2 indicates that GPUDEM
predominantly utilizes GPU memory over computational resources, a
phenomenon often termed a memory-limited problem (Cheng et al.,

2014). According to the profiling data, the L1 cache contains the

9
Table 2
Results of profiling using the NVIDIA NSight Compute.

Number of particles 213 = 8192 214 = 16384 215 = 32768

Runtime 490 ms 869 ms 1846 ms
Compute utilization 13.30% 22.03% 27.03%
Memory Bandwidth utilization 27.65% 40.92% 49.54%
Floating point operations 241.0 ⋅ 106 741.6 ⋅ 106 2511.1 ⋅ 106

Instruction/cycle 0.22 0.32 0.36
L1 Cache hit rate 20.68% 15.90% 12.51%
L2 Cache hit rate 76.06% 77.28% 70.38%
No eligible warp 94.09% 91.46% % 90.76%
Warp stall: long scoreboard 15.79 25.88 57.21
Warp stall: barrier 6.55 7.23 8.95
Warp stall: wait 2.48 2.60 2.67
Warp stall: branch resolving 1.88 1.78 1.13

requested data 12.5% of the time, while the L2 cache contains it 70.4%
of the time.

As Table 2 indicates, it is evident that both memory and com-
putational utilization increase as the number of particles rises. This
observation suggests that the runtime does not simply double when
the particle count doubles. Further scrutiny of the data reveals that
the number of floating-point operations nearly triples when the particle
number doubles. This phenomenon is presumably due to the non-linear

D. Nagy et al.

p

d
t
t
w
1
A
s
m
s
s
i
m
u
t
i

l
T
F

t
t
l
d
t
t
a
t
t
c
a

a
t
s
d
t
c

s
a
t
t
v
f
m
b

𝐹

w
s
f
B
2

4

s
i
f
i
(
a
a
𝐹
a
p
t
t
𝐸
s
t
c

Computers and Electronics in Agriculture 227 (2024) 109482
increase in connections between particles at the onset of the deposition
simulation as the particle count increases.

The GPU’s relatively low resource utilization stems from its low
instruction/cycle count. Ideally, each warp should execute one opera-
tion per cycle throughout the program, resulting in an instruction/cycle
ratio of 1. However, in the case of GPUDEM, the instruction/cycle count
is 0.22 for all warps with a low particle count, increasing slightly to
0.36 as the particle count rises. The primary reason for this low count is
the absence of eligible warps for execution. Even though computational
capacity remains available, the initiation of new warps is hindered
when no warp is ready for execution, accounting for over 90% of cycles
in the code. The root cause of this issue can be found in warp stalls,
particularly in connection with data retrieval from global memory (see
row Warp stall: long scoreboard in Table 2). On average, a warp waits
15.79 cycles for data with a small particle count and 57.21 cycles in the
case of the largest particle count. This delay arises because not all of the
data can fit into the L1 and L2 caches, which leads to slower retrieval
from global memory. The wait time for instruction results with fixed
cycle numbers (e.g., floating-point operations) is minimal compared to
waits induced by memory dependencies, as indicated in the ‘‘wait’’ row
of Table 2.

Another aspect of profiling involves estimating the percentage of
warp stalls and the contribution of various program segments. Over
half of the warp stalls arise during the contact search phase, primarily
due to data retrieval delays from global memory (see Table B.6 for
more details). This finding underscores the significance of optimizing
the contact search algorithm. Further enhancements to this algorithm
could substantially reduce runtime and should be an important aim of
further research.

4. Applications for soil-sweep tool interactions

4.1. Large scale simulations

Soil sweep tool tillage aims to loosen soil, enhancing its water
absorption capacity and facilitating root penetration. The following
examples showcase the utility of GPUDEM in addressing practical
problems connected with tillage, notably in determining the forces
exerted on the soil sweep tool during tillage. The DEM parameters of
the simulated sandy soil and other simulation settings are summarized
in Table B.5, column 3 (Tamás et al., 2013). The length and width of
the domain was 𝑙 = 1m and 𝑤 = 0.7m, respectively. The soil particles
have an average size of 𝑅 = 4.8mm, with a maximal deviation of 0.8mm
and the particle sizes follow a uniform distribution. In this simulation,
a layer of soil particles 140mm deep is formed, and the sweep tool is
ositioned 100mm deep within the soil.

The first step in the simulation involves preparing the soil through
eposition. The deposition process used 𝑁𝑃 = 147 456 particles. During
he simulation, it was observed that the particles accumulated more
hickly at the corners of the domain, a phenomenon known as the
all effect. To eliminate this effect, all particles with a center above
40mm were removed, which resulted in a completely smooth surface.
fter removing the top particles, 𝑁𝑃 = 146 180 particles remained. The
econd step involves adding the sweep tool geometry. The sweep tool
odel has been previously used in laboratory measurements, and a 3D

canned model was created for those studies. The model from the 3D
can contains 14 304 triangles, which is not applicable in the current
mplementation of GPUDEM, due to the limited size of GPU constant
emory. Consequently, the size of the original model was reduced
sing Blender software. The new reduced model contains only 500
riangles. A comparison of the original and reduced models is shown
n Fig. A.17.

Three different simulations were conducted at different tillage ve-
ocities. In the first simulation, the sweep tool moved at 𝑣 = 0.7m∕s.
he sweep tool leaves a V-shaped furrow in the soil, as shown in
ig. 8, with the profile of the furrow depicted in blue. Furthermore,
10
he figure clearly shows that the upper red layer remained intact after
he sweep tool had passed through the soil particles, with only the
ower layers being mixed. Additional snapshots of the simulation are
epicted in Fig. A.18. It was observed that the particles rise in front of
he sweep tool and fall back behind it, rearranging the lower layers in
he process, as shown in Fig. 8. The force acting on the sweep tool was
lso calculated by summing the force from each interaction between
he particles and the sweep tool, a feature that was implemented in
he program. Since the forces acting on the particles have already been
alculated, creating a new global variable to summarize these forces
llows the force acting on the tool to be determined.

The forces acting on the sweep tool in the 𝑥-, 𝑦-, and 𝑧-directions
re depicted in Fig. 9(a). As the sweep tool moves in the 𝑥-direction
he draught force is nearly 𝐹𝑥 ≈ 20N. In the 𝑦-direction, despite the
ymmetry of the sweep tool, a small force oscillating around zero arises
ue to inhomogeneity. In the 𝑧-direction, a larger force is noticeable as
he sweep tool is pushed downwards by the particles. Three intervals
an be distinguished in the figure:

1. Initially (𝑥 < 0.28m), the draught force increases as the sweep
tool penetrates the soil.

2. In the stationary section (0.28m < 𝑥 < 0.84m), the draught force
is nearly constant, but fluctuations due to soil inhomogeneity are
observed around a constant value.

3. Towards the end of the simulation (𝑥 > 0.84m), as the sweep
tool leaves the domain, the particles are compressed between
the edge of the domain and the sweep tool, resulting in an unreal
increase in the draught force.

In the second interval, the draught force fluctuates around a con-
tant value, which is consistent with findings in the literature (Tamás
nd Bernon, 2021). However, the phenomena observed in the first and
hird intervals are not realistic and are attributed to the boundaries of
he simulation domain. In the following simulations, the sweep tool
elocity was increased. Fig. 9(b) illustrates the draught force as a
unction of the displacement of the sweep tool along the 𝑥-axis. The
ean draught force as a function of tool velocity increases linearly,

ased on model fitting:

𝑥 = 𝑎 + 𝑏 ⋅ 𝑣, where 𝑎 = 8.96N and 𝑏 = 12.03 N
m/s (𝑅2 = 0.969) (46)

here 𝑎 and 𝑏 are calibrated parameters and 𝑣 is the tool velocity
ubstituted with units m/s. The linear correlation between draught
orce and tool velocity is consistent with the literature (Tamás and
ernon, 2021; Tekeste et al., 2019; Chen et al., 2013; Zhang et al.,
023c; Pásthy and Tamás, 2023).

.2. Parameter sensitivity studies

DEM simulations usually do not perfectly replicate real soil, as the
oil particles used in DEM are much larger than the actual particles
n empirical studies. However, by adjusting the soil parameters, it is
easible to find a configuration that reproduces the force measured
n the experiments. In this section, the effects of soil particle density
𝜌), micromechanical Young modulus (𝐸), coefficient of restitution
t impact (𝑒), and sliding friction coefficient (𝜇) will be analyzed,
iming to determine the parameters that reproduce the measured force
𝑥 ≈ 310N. Aforementioned parameters effect the apparent friction
nd cohesion of the soil. In the following simulations the number of
articles and the domain size were reduced. Despite this simplification,
he aim is to isolate a near steady-state phase. Deposition must be par-
ially redone for each parameter combination. For instance, reducing

enables better compression of the particles while also altering the
oil thickness. After deposition, the sweep tool can be moved through
he domain. To ensure the same initial soil thickness for any parameter
ombination, the following steps are undertaken:

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 8. The left figure shows the surface profile after tillage (surface depicted in blue). The right figure depicts the particles around the sweep tool during tillage, with 𝑣 denoting
the velocity in the given direction. The coloring of the particles are based on their initial heights.
Fig. 9. Forces in the soil-sweep tool simulation involving 𝑁𝑃 = 146 180 spherical particles and domain length 1m.
1. Initially, 38 912 particles of radius 𝑅 = 8.5mm are deposited in
a domain of 0.7 × 0.6m, resulting in a layer roughly 30−40 cm
thick, depending on the parameters.

2. Particles with a center above 30 cm are removed to ensure a
consistently 30 cm thick soil layer across all cases.

3. The final step involves moving the sweep tool through the
domain at a velocity of 𝑣 = 0.7m∕s and calculating the average
draught force. The force is saveraged over the displacement
range 0.28m < 𝑥 < 0.56m to mitigate the influence of domain
boundaries on the simulation results.

The steps outlined above were automated, resulting in a total runtime
of approximately 20 s on an NVIDIA GeForce RTX 3060 Ti Graphics
Card. The additional parameters can be found in column 4 of Table B.5.

4.2.1. Effect of particle density
First, the effect of particle density was investigated by varying it in

the range 𝜌 = 500 kg∕m3 …3000 kg∕m3, with a total of 100 simulations
made with even divisions. In the simulations, a linear increase in
the draught force with increasing density was observed, as shown in
Fig. 10(a). A straight line can be fitted to the simulation results in the
following form:

𝐹𝑥 = 𝑏 ⋅ 𝜌, where 𝑏 = 0.072N∕(kg∕m3) (𝑅2 = 0.99969). (47)

According to the literature (Ucgul et al., 2015), the density of the
soil is linearly correlated with the required draught force, which was
11
also confirmed by the GPUDEM simulation. The increase in density
is expected to cause an increase in the draught force since the soil
particles are heavier; therefore, a greater force must be exerted to move
them.

4.2.2. Effect of the micromechanical Young’s modulus
In the second analysis, the micromechanical Young’s modulus was

varied within the range of 𝐸 = 5 × 104 Pa…1 × 107 Pa. A total of
100 simulations were conducted with a logarithmic scale. The results
depicted in Fig. 10(b) show an increase in the draught force as the
micromechanical Young modulus of particles increases. Interestingly,
it can be observed that once the Young’s modulus reaches a certain
threshold (𝐸 ≈ 3 × 106 Pa), further increases in its value do not sig-
nificantly impact the draught force. In a similar soil-tool study, Chen
et al. (2013) found an increase in the draught force as a function of
particle stiffness using the parallel bond contact model. The effect of
the micromechanical Young modulus on the draught force was not
investigated previously using the Hertz–Mindlin contact model.

4.2.3. Effect of the coefficient of restitution between particles
In the investigation of the effect of the coefficient of restitution, 100

simulations were conducted using the same procedure as before. The
effect of this coefficient is illustrated in Fig. 10(c), revealing a linear
decrease in the draught force along with an increase in the coefficient

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 10. The draught force as a function of different micromechanical DEM parameters.
of restitution. This trend can be fitted to the simulation results with a
straight line,

𝐹𝑥 = 𝑎+𝑏⋅𝑒, where 𝑎 = 170.9N and 𝑏 = −91.8N (𝑅2 = 0.99927). (48)

If the coefficient of restitution is small, particles tend to stick together
more, resulting in increased friction between the adhered particles.
Consequently, more effort is required to move the sweep tool. As
depicted in Fig. 11, a lower collision factor (e.g., 𝑒 = 0) leads to the
creation of a significantly more homogeneous compaction zone. This
zone is thicker and contains more particles. Conversely, with a higher
coefficient of restitution, the thickness of the soil layer above the sweep
tool decreases, resulting in a smaller compaction zone. The soil in this
reduced zone requires less force to move, as it contains fewer particles
and has less mass. The effect of the coefficient of restitution on draught
force has not been investigated in the literature previously.

4.2.4. Effect of the friction coefficient between particles
The pair of sliding (𝜇) and static (𝜇0) friction coefficients were

simultaneously adjusted, with the static friction coefficient set 10%
higher than the sliding friction coefficient, i.e., 𝜇0 = 1.1𝜇. The results
of the simulation are illustrated in Fig. 10(d), where an increase in
draught force is observed with the rising friction factor. This increase
can be explained without much difficulty: as friction increases, particles
experience greater force while sliding against each other, necessitating
a greater force to move them. Tekeste et al. (2019) established a similar
relationship between friction and draught force, although, their results

were only based on 4 data points.

12
4.3. Parameter calibration with an evolutionary algorithm

4.3.1. Differential evolution
Calibration involves adjusting the parameters to match the mea-

surement results. Typically in DEM, this is carried out manually by
running simulations iteratively and adjusting parameters based on
the outcomes. However, this process is time-consuming and requires
significant human effort. To streamline the process, an evolutionary
algorithm was employed to facilitate automated parameter calibration.
Differential evolution, known for its effectiveness in continuous opti-
mization problems under specific constraints, was utilized (Feoktistov,
2006). In the differential evolution algorithm, the population size (𝑁𝑃)
denotes the number of parameter combinations (agents). The initial
population is randomly generated within the limits outlined in Table 3.
Each 𝐱 agent contains the following control variables (elements):

𝐱 = [𝜌 𝐸 𝜈 𝑒 𝜇 𝜇𝑟]𝑡. (49)

The goal is to calibrate the parameters to reproduce the measured
draught force 𝐹meas. = 309.5N (see Section 2.8). The fitness function
is accordingly

𝑓 (𝐱) = |

|

|

𝐹𝑥(𝐱) − 𝐹meas.
|

|

|

, (50)

where 𝐹𝑥(𝐱) is the draught force in the simulation as a function of the
control variables. After generating the initial population and defining
the fitness function, the evolution itself takes place:

1. Three unique agents, 𝐚,𝐛 and 𝐜, different from 𝐱, are selected.
Agent 𝐲 is created from these,

𝐲 = 𝐚 + 𝐹 (𝐛 − 𝐜), (51)

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 11. Velocity of particles around the sweep tool for coefficient of restitution 𝑒 = 0 and 𝑒 = 1. The coloring of the particles is proportional to the magnitude of the velocity
vector according to the color scale. The thickness of the soil layer above the sweep tool is marked on the figures.
Table 3
Restrictions on the micromechanical DEM parameters (control variables) in the evolutionary algorithm.

Control Variable Min Max Init. distribution

𝜌 particle density 500 kg∕m3 2500 kg∕m3 linear
𝐸 Young-modulus 5 × 104 Pa 1 × 107 Pa logarithmic
𝜈 Poisson-number 0 0.5 linear
𝑒 coeff. of restitution 0.05 0.95 linear
𝜇 sliding friction coeff. 0.05 0.70 linear
𝜇𝑟 rolling friction coeff. 0.01 0.30 linear
where 𝐹 is the differential weighting.
2. The 𝐲 and the 𝐱 agents are crossed. This means that each element

is replaced with probability 𝐶𝑅 in 𝐱, and one element is always
randomly replaced. Thus, a new agent 𝐱̃ is created.

3. The new agent (𝐱̃) is better than the old one (𝐱) if the fitness
value is smaller, i.e.

𝑓 (𝐱̃) ≤ 𝑓 (𝐱), (52)

where 𝑓 is the fitness. If Eq. (52) is satisfied, then the agent 𝐱 is
replaced by 𝐱̃.

4. Points 1–3 are performed on each individual, then the next
generation follows.

For parameter calibration, a population size of 𝑁𝑃 = 60, a differential
weight of 𝐹 = 0.8, and a crossover ratio of 𝐶𝑅 = 0.5 were chosen. A
C++ implementation was developed for the differential evolution algo-
rithm, which interfaces with the GPUDEM library for all of the function
evaluations (draught force calculation). In each generation 60 function
evaluations are performed, with the runtime for one generation ranging
between 20 and 25 min on an NVIDIA GeForce RTX 3060 Ti GPU.

4.3.2. Results of the calibration
The optimization process ran for 45 generations over a period of

16 h, involving a total of 2 700 function evaluations. During this time,
the settling and the sweep tool traversing the domain were performed
2 700 times, with more than 30 000 particles in each function evaluation.
As the generations progressed, both the best individual and the average
of the individuals approached the desired goal. Differential evolution
demonstrated the ability to find optimal solutions after approximately
20 generations in this case. However, it is important to note that each
individual represents a unique set of parameters, and the individuals do
not converge to a single global optimum. Instead, they identify several
13
local optima. These local optima were determined through clustering,
using the built-in FindClusters function of Wolfram Mathematica
using the K-Means algorithm.

After clustering, four larger groups were identified, as shown in
Table 4, along with the number of agents in each group. The optimiza-
tion process revealed several solutions, each characterized by a specific
combination of parameters . For each parameter combination, the table
includes the simulated draught force along with its standard deviation.
Fig. 12 illustrates the simulated draught force for the four different
parameter combinations, with the measured draught force indicated by
a dashed black line. Overall, a good agreement was observed between
the measurement and the simulation for the average force across all
parameter combinations. However, the simulations exhibited larger
fluctuations compared to the empirically measured results, which can
be attributed to the discrete nature of the simulation, as the size of the
spheres in the simulation exceeds that of real soil grains (Tamás and
Bernon, 2021; Ucgul et al., 2014).

Fig. 13 illustrates the surface profile following tillage for the four
different parameter combinations. In cases 1 and 3, the surface profile
is rendered as a straight line, which is not realistic. Conversely, cases
2 and 4 depict a U-shaped furrow, consistent with findings in the
literature (Ucgul et al., 2014). As can be seen in Table 4, parameter
combinations 1, 3, and 2, 4 primarily differ in density and microme-
chanical Poisson number. However, increasing the micromechanical
Poisson number to 𝜈 = 0.45, or the density to 𝜌 = 2400 kg∕m3, or
both at the same time does not alter the surface profile in case 1;
it remains flat in each instance. This suggests that the furrow profile
is not influenced by a single parameter but results instead from the
combination of several DEM parameters.

The calibration process could be further refined by considering the
standard deviation as a quantity to be optimized, potentially leading
to an even better match between the simulated and measured forces.

D. Nagy et al.

A
w
t
t
m
t
i
a
s
t
i
t
a
(
L
w
e
s
r
t
a
w

5

m
b
d

Computers and Electronics in Agriculture 227 (2024) 109482
Table 4
The average values of the clusters containing the most agents, the average draught force and its standard deviation with the specified
micromechanical DEM parameters.

Control Variable #1 #2 #3 #4

𝜌 particle density 2082 kg∕m3 2379 kg∕m3 1993 kg∕m3 2387 kg∕m3

𝐸 Young-modulus 2.979 × 106 Pa 2.305 × 106 Pa 8.960 × 106 Pa 7.978 × 106 Pa
𝜈 Poisson-number 0.259 0.475 0.227 0.486
𝑒 coeff. of restitution 0.063 0.258 0.104 0.113
𝜇 sliding friction coeff. 0.684 0.637 0.684 0.495
𝜇𝑟 rolling friction coeff. 0.229 0.277 0.282 0.264

agents in the cluster 5 4 9 10

𝐹 𝑥 draught force 316.0N 303.9N 312.5N 310.5N
𝛥𝐹𝑥 standard dev. of 𝐹𝑥 25.6N 26.2N 25.5N 25.8N
Fig. 12. The draught force during soil loosening with different parameters. The parameters can be seen in Table 4.
nother option for refinement would be to include more measurements
ith different tillage velocities or to include the furrow profile as an op-

imization parameter. Nonetheless, the present research demonstrates
he feasibility of calibrating parameters and reproducing measure-
ents using the in-house developed GPUDEM within a relatively short

imeframe. Previous authors have not conducted such detailed cal-
bration studies. In a similar study of the interaction between soil
nd a tool Tamás (2024) used a genetic algorithm to calibrate two
oil parameters; only 85 simulations were run for that study and
he duration of each was approximately 1 h. A DEM parameter cal-
bration by Westbrink et al. (2021) run in 15 seconds/agent using
he LIGGGHTS® open-source DEM package on multiple CPU cores,
lthough it considered only 29 681 particles. Roessler and Katterfeld
2019) also calibrated three micromechanical DEM parameters using
IGGGHTS with 10 000 particles, but only 576 parameter combinations
ere tested, without the use of an optimization algorithm. Mohajeri
t al. (2020) calibrated DEM simulations against ring shear tests; their
imulation modeled 1 767 particles and ran for 11 min. In most cases
eported in the literature, the evaluation of a single agent (i.e. simula-
ion) takes hours (Lubbe et al., 2022; Nguyen, 2022); thus, employing
n evolutionary algorithm in those cases takes several days or even
eeks.

. Conclusion

The paper introduced an in-house developed GPUDEM library. The
ain novelty of this paper is using GPUs to model the interaction

etween soil and a sweep tool at the required accuracy but with re-

uced runtime. GPUDEM is also applicable to a wide range of problems

14
involving spherical elements, accommodating particles of varying sizes
and materials. Beyond achieving a notable reduction in runtime, the
following conclusions can be drawn:

• The main bottleneck of our GPU-based DEM software is the mem-
ory limitation during contact search. Despite that, runtime scales
linearly with the number of particles if the domain decomposition
based Cell-Linked List (CLL) contact search algorithm is used.

• All numerical time-step schemes exhibit first-order accuracy when
the continuity condition is not fulfilled. Given that the forces un-
dergo discontinuous changes during particle collisions, employing
higher-order numerical integration methods becomes nonsensical,
as their accuracy also drops to first-order, without the proper
handling of the discontinuities.

• It was found that increasing particle density, and consequently
particle weight, resulted in a linear increase in the draught force
required to move the tool at a constant velocity. While increasing
the friction coefficient and Young’s modulus in the Hertz-Mindlin
contact model also increased the draught force, the relationships
observed in these cases were not linear. Conversely, increasing
the coefficient of restitution was found to decrease the draught
force linearly. The correlations were established based on 100
data points each, at a much higher resolution than previous
studies. These results can be used to better understand the effect
of micromechanical parameters in the Hertz–Mindlin model.

• Using differential evolution the micromechanical parameters of
a soil were calibrated, resulting in the identification of several
potential parameter combinations that can replicate the measure-
ment results, but produce different surface profiles. Remarkably,

the calibration process was completed within a single day, despite

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Fig. 13. The surface profile (blue line) after the sweep tool left the domain. The different subfigures depict the results using different parameter sets given in Table 4. The different
colors show the layers based on the initial particle height.
2 700 instances of settling and sweep tool tillage being conducted,
each involving 38 912 particles.

The exceptionally fast runtime of the GPUDEM software opens up
opportunities to address additional real-world challenges. In the future,
the integration of other contact models into GPUDEM is feasible. The
DEM-FEM connection can also be seamlessly integrated, since the forces
acting on the geometry triangles have already been calculated. With
this information, deformation can be computed using an appropriate
FEM program, allowing the simulation to progress with the updated
geometry.

GPUDEM is particularly well-suited for mezo-sized DEM problems
involving 10 000 to 100 000 particles, where its current design with
a per-thread approach offers optimal efficiency. Using GPUDEM, soil
parameters can be rapidly calibrated on a single GPU. The calibrated
DEM model can then be employed to investigate the parameter depen-
dence (e.g., tillage depths, velocity, geometrical parameters) of soil-tool
interactions and optimize tool geometry. As our solver is focused on
running efficiently on a single-GPU, it does not support distributing the
workload across many GPUs, and the maximum number of particles is
limited by the maximum number of threads that a GPU can handle.
In the future, multi-GPU support can be added using domain-based
decomposition to handle larger problems.

CRediT authorship contribution statement

Dániel Nagy: Writing – review & editing, Writing – original draft,
Visualization, Validation, Software, Resources, Methodology, Investi-
gation, Data curation, Conceptualization. László Pásthy: Writing –
review & editing, Validation, Methodology, Conceptualization. Kornél
Tamás: Writing – review & editing, Supervision, Resources, Project
administration, Methodology, Investigation, Funding acquisition, Data
curation, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.
15
Data availability

Data will be made available on request.

Acknowledgments

Supported by the ÚNKP-23-3-I-BME-51 New National Excellence
Program of the Ministry for Culture and Innovation, Hungary from the
source of the National Research, Development and Innovation Fund.
This paper was supported by the János Bolyai Research Scholarship of
the Hungarian Academy of Sciences, Hungary. The research reported in
this paper is part of project no. TKP-6-6/PALY-2021, implemented with
the support provided by the Ministry of Innovation and Technology
of Hungary from the National Research, Development and Innovation
Fund, Hungary, financed under the TKP2021-NVA funding scheme. The
project supported by the Doctoral Excellence Fellowship Programme
(DCEP) is funded by the National Research Development and Inno-
vation Fund of the Ministry of Culture, Hungary and Innovation and
the Budapest University of Technology and Economics, Hungary, un-
der a grant agreement with the National Research, Development and
Innovation Office. This research was supported by the ÚNKP, Hungary,
funded by the National Research Development and Innovation Fund
under grant number ÚNKP-23-5-BME-80. This paper was supported by
the Hungarian Scientific Research Fund, Hungary (NKFIH FK-146067).
This research was supported by the EKÖP, Hungary funded by the Na-
tional Research Development and Innovation Fund under grant number
EKÖP-24-3-BME-13.

Appendix A. Figures

See Figs. A.14–A.18.

Appendix B. Tables

See Tables B.5 and B.6.

D. Nagy et al.

Fig. A.14. Storage of the particles in the global memory and registers. Cells with the same color contain the same particle data. Rows are contiguous memory areas of size 𝑁𝑃 ,
where 𝑁𝑃 is the number of particles. All data is stored in this way, including position (𝒖), velocity (𝒗), radius (𝑅), mass (𝑚) and moment of inertia (𝜃).

Fig. A.15. The underlying mesh in a block-based computational domain, where the size of the cells is 𝛥𝑥 × 𝛥𝑦 × 𝛥𝑧. The mesh extends in all directions between the specified
minimum and maximum values (see 𝑥min, 𝑥max. . .).

Fig. A.16. The change in kinetic energy in the same simulation with 𝛥𝑡 = 1 × 10−3 s, but using different time stepping schemes as indicated in the legend on the right.

Computers and Electronics in Agriculture 227 (2024) 109482

16

D. Nagy et al.

Fig. A.17. The 3D scanned sweep tool model with 14 304 triangles (left) and the simplified version for DEM simulations with 500 triangles (right)

Fig. A.18. Sweep tool soil sweeping at a velocity of 𝑣 = 0.7m∕s, viewed from two different angles. The domain size is 1m × 0.7m and the simulation contains 𝑁𝑃 = 146 180
spherical particles. The different colors of the particles depict the equally thick initial layers.

Computers and Electronics in Agriculture 227 (2024) 109482

17

D. Nagy et al.

B

B

C

C

C

D

D

F

Computers and Electronics in Agriculture 227 (2024) 109482
Table B.5
Simulation settings.

Simulation #1 #2 #3 #4

Dom. size 𝑙 [m] 3 × 1 × 3 2 × 2 × 2 1 × 0.7 × 2 0.7 × 0.6 × 0.7
Mesh (cell number) 25 × 8 × 25 28 × 28 × 28 – 32 × 24 × 32
𝑁𝑃 ,𝐶 12 8 – 8
𝑁𝐶,max 12 12 12 12
time step Exact Exact Euler Euler
𝛥𝑡 [s] 1 × 10−4 1 × 10−4 5 × 10−5 1 × 10−4

Particle number 𝑁𝑃 509/8519 varied 147 456 38 912

Particle properties

𝑅 [mm] 200/40 30 4.8 8.5
±𝛥𝑅 [mm] 60/12 5 0.8 1.5
𝜌 [kg∕m3] 2500 1000 1850 1850
𝐸 [Pa] 2.5 × 108 2 × 105 2 × 106 2 × 106

𝐺 [Pa] 1 × 108 7.69 × 104 7.24 × 105 7.24 × 105

𝜈 0.25 0.3 0.38 0.38
𝑒 0.5 0.1 0.5 0.5
𝜇 0.5 0.6 0.6 0.6
𝜇0 0.5 0.7 0.7 0.7
𝜇𝑟 0.01 0.05 0.03 0.03
Table B.6
Warp stall rate and number of operations in the different parts of the program.

Part Warp stall rate Number of operations of total

Solver logics 2.33% 2.83%
Geometry handling 0.28% 1.86%
Contact search 57.64% 67.66%
Distance calculation 4.78% 7.74%
Force calculation 1.53% 3.74%
Acceleration calculation 0.08% 0.06%
time step 0.00% 0.22%
Synchronization 19.94% 11.43%
References

Abo-Elnor, M., Hamilton, R., Boyle, J., 2003. 3D dynamic analysis of soil–tool
interaction using the finite element method. J. Terramech. 40 (1), 51–62. http:
//dx.doi.org/10.1016/j.jterra.2003.09.002.

Aikins, K.A., Ucgul, M., Barr, J.B., Awuah, E., Antille, D.L., Jensen, T.A., Des-
biolles, J.M., 2023. Review of discrete element method simulations of soil
tillage and furrow opening. Agric. 13 (3), 541. http://dx.doi.org/10.3390/
agriculture13030541.

Asaf, Z., Rubinstein, D., Shmulevich, I., 2007. Determination of discrete element
model parameters required for soil tillage. Soil Tillage Res. 92 (1–2), 227–242.
http://dx.doi.org/10.1016/j.still.2006.03.006.

Bellen, A., Zennaro, M., 2013. Numerical Methods for Delay Differential Equations.
Oxford Science Publications.

Bentaher, H., Ibrahmi, A., Hamza, E., Hbaieb, M., Kantchev, G., Maalej, A., Arnold, W.,
2013. Finite element simulation of moldboard–soil interaction. Soil Tillage Res. 134,
11–16. http://dx.doi.org/10.1016/j.still.2013.07.002.

Binelo, M.O., de Lima, R.F., Khatchatourian, O.A., Stránskỳ, J., 2019. Modelling of the
drag force of agricultural seeds applied to the discrete element method. Biosys.
Eng. 178, 168–175. http://dx.doi.org/10.1016/j.biosystemseng.2018.11.013.

usari, M.A., Kukal, S.S., Kaur, A., Bhatt, R., Dulazi, A.A., 2015. Conservation tillage
impacts on soil, crop and the environment. Int. Soil Water Conserv. Res. 3 (2),
119–129. http://dx.doi.org/10.1016/j.iswcr.2015.05.002.

utcher, J.C., 2016. Numerical Methods for Ordinary Differential Equations. John Wiley
& Sons.

ai, R., Xu, L., Zheng, J., Zhao, Y., 2018. Modified cell-linked list method using
dynamic mesh for discrete element method. Powder Technol. 340, 321–330. http:
//dx.doi.org/10.1016/j.powtec.2018.09.034.

hen, Y., Munkholm, L.J., Nyord, T., 2013. A discrete element model for soil–sweep
interaction in three different soils. Soil Tillage Res. 126, 34–41. http://dx.doi.org/
10.1016/j.still.2012.08.008.

heng, J., Grossman, M., McKercher, T., 2014. Professional CUDA C Programming.
John Wiley & Sons.

i Renzo, A., Di Maio, F.P., 2004. Comparison of contact-force models for the
simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59
(3), 525–541. http://dx.doi.org/10.1016/j.ces.2003.09.037.

osta, M., Skorych, V., 2020. MUSEN: An open-source framework for GPU-accelerated
DEM simulations. SoftwareX 12, 100618. http://dx.doi.org/10.1016/j.softx.2020.
100618.

ang, L., Zhang, R., Vanden Heuvel, C., Serban, R., Negrut, D., 2021. Chrono:: GPU: An
open-source simulation package for granular dynamics using the discrete element
method. Processes 9 (10), 1813. http://dx.doi.org/10.3390/pr9101813.
18
Feoktistov, V., 2006. Differential Evolution. Springer.
Fielke, J.M., 1999. Finite element modelling of the interaction of the cutting edge of

tillage implements with soil. J. Agricul. Eng. Res. 74 (1), 91–101. http://dx.doi.
org/10.1006/jaer.1999.0440.

Gan, J., Zhou, Z., Yu, A., 2016. A GPU-based DEM approach for modelling of particulate
systems. Powder Technol. 301, 1172–1182. http://dx.doi.org/10.1016/j.powtec.
2016.07.072.

Godwin, R., O’dogherty, M., Saunders, C., Balafoutis, A., 2007. A force prediction model
for mouldboard ploughs incorporating the effects of soil characteristic properties,
plough geometric factors and ploughing speed. Biosys. Eng. 97 (1), 117–129.
http://dx.doi.org/10.1016/j.biosystemseng.2007.02.001.

Golshan, S., Munch, P., Gassmöller, R., Kronbichler, M., Blais, B., 2023. Lethe-DEM:
An open-source parallel discrete element solver with load balancing. Comput. Part.
Mech. 10 (1), 77–96. http://dx.doi.org/10.1007/s40571-022-00478-6.

Govender, N., Rajamani, R.K., Kok, S., Wilke, D.N., 2015. Discrete element simulation of
mill charge in 3D using the BLAZE-DEM GPU framework. Miner. Eng. 79, 152–168.
http://dx.doi.org/10.1016/j.mineng.2015.05.010.

Govender, N., Wilke, D.N., Wu, C.-Y., Tuzun, U., Kureck, H., 2019. A numerical
investigation into the effect of angular particle shape on blast furnace burden
topography and percolation using a GPU solved discrete element model. Chem.
Eng. Sci. 204, 9–26. http://dx.doi.org/10.1016/j.ces.2019.03.077.

Granlund, T., 2012. Instruction latencies and throughput for AMD and intel x86
processors. Technical report, KTH.

Gupta, P., Gupta, C., Pandey, K., 1989. An analytical model for predicting draft
forces on convex-type wide cutting blades. Soil Tillage Res. 14 (2), 131–144.
http://dx.doi.org/10.1016/0167-1987(89)90027-5.

Hairer, E., Nø rsett, S.P., Wanner, G., 1993. Solving Ordinary Differential Equations I.
Nonstiff problems. Springer Series in Comput. Math..

Hilarov, V., Damaskinskaya, E., Gesin, I., 2023. The effect of materials structure on the
features of fracture process in rocks: Discrete elements modeling and laboratory
experiment. Izv. Phys. Solid Earth 59 (3), 477–485. http://dx.doi.org/10.1134/
S1069351323030035.

Huimin, F., Changying, J., Ch, F.A., et al., 2016. Analysis of soil dynamic behavior
during rotary tillage based on distinct element method. Nongye Jixie Xuebao/Trans.
Chin. Soc. Agricult. Mach. 47 (3).

Karimi, K., Dickson, N.G., Hamze, F., 2010. A performance comparison of CUDA and
opencl. http://dx.doi.org/10.48550/arXiv.1005.2581, arXiv preprint arXiv:1005.
2581.

Kraus, S., Woitzik, C., Dosta, M., Düster, A., 2021. Simulation of granular materials
with the discrete element method to investigate their suitability as crash-absorber
in ship collisions. PAMM 21 (1), http://dx.doi.org/10.1002/pamm.202100036.

http://dx.doi.org/10.1016/j.jterra.2003.09.002
http://dx.doi.org/10.1016/j.jterra.2003.09.002
http://dx.doi.org/10.1016/j.jterra.2003.09.002
http://dx.doi.org/10.3390/agriculture13030541
http://dx.doi.org/10.3390/agriculture13030541
http://dx.doi.org/10.3390/agriculture13030541
http://dx.doi.org/10.1016/j.still.2006.03.006
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb4
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb4
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb4
http://dx.doi.org/10.1016/j.still.2013.07.002
http://dx.doi.org/10.1016/j.biosystemseng.2018.11.013
http://dx.doi.org/10.1016/j.iswcr.2015.05.002
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb8
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb8
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb8
http://dx.doi.org/10.1016/j.powtec.2018.09.034
http://dx.doi.org/10.1016/j.powtec.2018.09.034
http://dx.doi.org/10.1016/j.powtec.2018.09.034
http://dx.doi.org/10.1016/j.still.2012.08.008
http://dx.doi.org/10.1016/j.still.2012.08.008
http://dx.doi.org/10.1016/j.still.2012.08.008
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb11
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb11
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb11
http://dx.doi.org/10.1016/j.ces.2003.09.037
http://dx.doi.org/10.1016/j.softx.2020.100618
http://dx.doi.org/10.1016/j.softx.2020.100618
http://dx.doi.org/10.1016/j.softx.2020.100618
http://dx.doi.org/10.3390/pr9101813
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb15
http://dx.doi.org/10.1006/jaer.1999.0440
http://dx.doi.org/10.1006/jaer.1999.0440
http://dx.doi.org/10.1006/jaer.1999.0440
http://dx.doi.org/10.1016/j.powtec.2016.07.072
http://dx.doi.org/10.1016/j.powtec.2016.07.072
http://dx.doi.org/10.1016/j.powtec.2016.07.072
http://dx.doi.org/10.1016/j.biosystemseng.2007.02.001
http://dx.doi.org/10.1007/s40571-022-00478-6
http://dx.doi.org/10.1016/j.mineng.2015.05.010
http://dx.doi.org/10.1016/j.ces.2019.03.077
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb22
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb22
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb22
http://dx.doi.org/10.1016/0167-1987(89)90027-5
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb24
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb24
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb24
http://dx.doi.org/10.1134/S1069351323030035
http://dx.doi.org/10.1134/S1069351323030035
http://dx.doi.org/10.1134/S1069351323030035
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb26
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb26
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb26
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb26
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb26
http://dx.doi.org/10.48550/arXiv.1005.2581
http://arxiv.org/abs/1005.2581
http://arxiv.org/abs/1005.2581
http://arxiv.org/abs/1005.2581
http://dx.doi.org/10.1002/pamm.202100036

D. Nagy et al. Computers and Electronics in Agriculture 227 (2024) 109482
Kruggel-Emden, H., Sturm, M., Wirtz, S., Scherer, V., 2008. Selection of an appropriate
time integration scheme for the discrete element method (DEM). Comput. Chem.
Eng. 32 (10), 2263–2279. http://dx.doi.org/10.1016/j.compchemeng.2007.11.002.

Li, X., Luo, Z., Hao, Z., Zheng, E., Yao, H., Zhu, Y., Wang, X., 2024. Investigation on
tillage resistance and soil disturbance in wet adhesive soil using discrete element
method with three-layer soil-plough coupling model. Powder Technol. 119463.
http://dx.doi.org/10.1016/j.powtec.2024.119463.

Liu, G.-Y., Xu, W.-J., Sun, Q.-C., Govender, N., 2020. Study on the particle breakage
of ballast based on a GPU accelerated discrete element method. Geosci. Front. 11
(2), 461–471. http://dx.doi.org/10.1016/j.gsf.2019.06.006.

Lubbe, R., Xu, W.-J., Zhou, Q., Cheng, H., 2022. Bayesian calibration of GPU–based
DEM meso-mechanics part II: Calibration of the granular meso-structure. Powder
Technol. 407, 117666. http://dx.doi.org/10.1016/j.powtec.2022.117666.

Melheim, J.A., 2005. Cluster integration method in Lagrangian particle dynamics.
Comput. Phys. Comm. 171 (3), 155–161. http://dx.doi.org/10.1016/j.cpc.2005.05.
003.

Milkevych, V., Munkholm, L.J., Chen, Y., Nyord, T., 2018. Modelling approach for soil
displacement in tillage using discrete element method. Soil Tillage Res. 183, 60–71.
http://dx.doi.org/10.1016/j.still.2018.05.017.

Mohajeri, M.J., Do, H.Q., Schott, D.L., 2020. DEM calibration of cohesive material
in the ring shear test by applying a genetic algorithm framework. Adv. Powder
Technol. 31 (5), 1838–1850. http://dx.doi.org/10.1016/j.apt.2020.02.019.

Munshi, A., 2009. The opencl specification. In: 2009 IEEE Hot Chips 21 Symposium.
HCS, IEEE, pp. 1–314. http://dx.doi.org/10.1109/HOTCHIPS.2009.7478342.

Nguyen, Q.H., 2022. Machine learning in the calibration process of discrete particle
model. University of Twente.

Odey, S.O., 2016. Design steps of narrow tillage tools for draught reduction and
increased soil disruption–a review. Agricul. Eng. Int.: CIGR J. 18 (1), 91–102.

Onwualu, A., Watts, K., 1998. Draught and vertical forces obtained from dynamic soil
cutting by plane tillage tools. Soil Tillage Res. 48 (4), 239–253. http://dx.doi.org/
10.1016/S0167-1987(98)00127-5.

Pasthy, L., Graeff, J., Tamás, K., 2022. Development of a 2D discrete element software
with labview for contact model improvement and educational purposes.. In: ECMS.
pp. 203–209.

Pásthy, L., Tamás, K., 2023. Talaj-eke-szármaradvány egymásra hatás diszkrételemes
szimulációjának paraméter érzékenységi vizsgálata=Parameter Sensitivity Analysis
of the Soil-Plough-Stem Interaction with Discrete Element Method.

Pratibha, G., Srinivas, I., Rao, K., Raju, B., Shanker, A.K., Jha, A., Kumar, M.U.,
Rao, K.S., Reddy, K.S., 2019. Identification of environment friendly tillage im-
plement as a strategy for energy efficiency and mitigation of climate change in
semiarid rainfed agro ecosystems. J. Clean. Prod. 214, 524–535. http://dx.doi.org/
10.1016/j.jclepro.2018.12.251.

Qi, L., Chen, Y., Sadek, M., 2019. Simulations of soil flow properties using the
discrete element method (DEM). Comput. Electron. Agric. 157, 254–260. http:
//dx.doi.org/10.1016/j.compag.2018.12.052.

Rádics, J.P., Jóri, I.J., 2010. Development of 3E tillage system and machinery to
challenge climate change impacts. Periodica Polytech. Mech. Eng. 54 (1), 49–56.
http://dx.doi.org/10.3311/pp.me.2010-1.08.

Roessler, T., Katterfeld, A., 2019. DEM parameter calibration of cohesive bulk materials
using a simple angle of repose test. Particuology (ISSN: 1674-2001) 45, 105–115.
http://dx.doi.org/10.1016/j.partic.2018.08.005.

Saunders, C., Godwin, R., O’Dogherty, M., 2000. Prediction of soil forces acting on
mouldboard ploughs. In: Fourth Int. Conf. on Soil Dyn., Adelaide.

Shen, J., 2017. Soil-machine interactions: a finite element perspective. http://dx.doi.
org/10.1201/9780203739228, Routledge.
19
Solutions, D., 2014. EDEM 2.6 Theory Reference Guide. Edinburgh, United Kingdom.
Tamás, K., 2018. The role of bond and damping in the discrete element model

of soil-sweep interaction. Biosys. Eng. 169, 57–70. http://dx.doi.org/10.1016/j.
biosystemseng.2018.02.001.

Tamás, K., 2024. Modelling the interaction of soil with a passively-vibrating sweep
using the discrete element method. Biosys. Eng. 245, 199–222. http://dx.doi.org/
10.1016/j.biosystemseng.2024.06.006.

Tamás, K., Bernon, L., 2021. Role of particle shape and plant roots in the discrete
element model of soil–sweep interaction. Biosys. Eng. 211, 77–96. http://dx.doi.
org/10.1016/j.biosystemseng.2021.09.001.

Tamás, K., Jóri, I.J., Mouazen, A.M., 2013. Modelling soil–sweep interaction with
discrete element method. Soil Tillage Res. 134, 223–231. http://dx.doi.org/10.
1016/j.still.2013.09.001.

Tekeste, M.Z., Balvanz, L.R., Hatfield, J.L., Ghorbani, S., 2019. Discrete element
modeling of cultivator sweep-to-soil interaction: Worn and hardened edges effects
on soil-tool forces and soil flow. J. Terramech. 82, 1–11. http://dx.doi.org/10.
1016/j.jterra.2018.11.001.

Ucgul, M., Fielke, J.M., Saunders, C., 2014. 3D DEM tillage simulation: Validation of a
hysteretic spring (plastic) contact model for a sweep tool operating in a cohesionless
soil. Soil Tillage Res. 144, 220–227. http://dx.doi.org/10.1016/j.still.2013.10.003.

Ucgul, M., Fielke, J.M., Saunders, C., 2015. Three-dimensional discrete element mod-
elling (DEM) of tillage: Accounting for soil cohesion and adhesion. Biosys. Eng.
129, 298–306. http://dx.doi.org/10.1016/j.biosystemseng.2014.11.006s.

Ucgul, M., Saunders, C., Fielke, J.M., 2017. Discrete element modelling of tillage forces
and soil movement of a one-third scale mouldboard plough. Biosys. Eng. 155,
44–54. http://dx.doi.org/10.1016/j.biosystemseng.2016.12.002.

Ucgul, M., Saunders, C., Li, P., Lee, S.-H., Desbiolles, J.M., 2018. Analyzing the mixing
performance of a rotary spader using digital image processing and discrete element
modelling (DEM). Comput. Electron. Agric. 151, 1–10. http://dx.doi.org/10.1016/
j.compag.2018.05.028.

Wanner, G., Hairer, E., 1996. Solving Ordinary Differential Equations II, vol. 375.
Springer Berlin Heidelberg New York.

Westbrink, F., Elbel, A., Schwung, A., Ding, S.X., 2021. Optimization of DEM parameters
using multi-objective reinforcement learning. Powder Technol. 379, 602–616. http:
//dx.doi.org/10.1016/j.powtec.2020.10.067.

Yang, P., Zang, M., Zeng, H., Guo, X., 2020. The interactions between an off-road tire
and granular terrain: GPU-based DEM-fem simulation and experimental validation.
Int. J. Mech. Sci. 179, 105634. http://dx.doi.org/10.1016/j.ijmecsci.2020.105634.

Zhang, Y., Hou, S., Di, S., Liu, Z., Xu, Y., 2023a. DEM–SPH coupling method for
landslide surge based on a GPU parallel acceleration technique. Comput. Geotech.
164, 105821. http://dx.doi.org/10.1016/j.compgeo.2023.105821.

Zhang, R., Tagliafierro, B., Vanden Heuvel, C., Sabarwal, S., Bakke, L., Yue, Y., Wei, X.,
Serban, R., Negruţ, D., 2024. Chrono DEM-engine: A discrete element method dual-
GPU simulator with customizable contact forces and element shape. Comput. Phys.
Commun. 300, 109196. http://dx.doi.org/10.1016/j.cpc.2024.109196.

Zhang, W., Wu, Z., Peng, C., Li, S., Dong, Y., Yuan, W., 2023b. Modelling large-
scale landslide using a GPU-accelerated 3D MPM with an efficient terrain contact
algorithm. Comput. Geotech. 158, 105411. http://dx.doi.org/10.1016/j.compgeo.
2023.105411.

Zhang, C., Xu, J., Zheng, Z., Wang, W., Liu, L., Chen, L., 2023c. Three-dimensional
DEM tillage simulation: Validation of a suitable contact model for a sweep tool
operating in cohesion and adhesion soil. J. Terramech. 108, 59–67. http://dx.doi.
org/10.1016/j.jterra.2023.05.003.

Zhou, Q., Xu, W.-J., Liu, G.-Y., 2021. A contact detection algorithm for triangle
boundary in GPU-based DEM and its application in a large-scale landslide. Comput.
Geotech. 138, 104371. http://dx.doi.org/10.1016/j.compgeo.2021.104371.

http://dx.doi.org/10.1016/j.compchemeng.2007.11.002
http://dx.doi.org/10.1016/j.powtec.2024.119463
http://dx.doi.org/10.1016/j.gsf.2019.06.006
http://dx.doi.org/10.1016/j.powtec.2022.117666
http://dx.doi.org/10.1016/j.cpc.2005.05.003
http://dx.doi.org/10.1016/j.cpc.2005.05.003
http://dx.doi.org/10.1016/j.cpc.2005.05.003
http://dx.doi.org/10.1016/j.still.2018.05.017
http://dx.doi.org/10.1016/j.apt.2020.02.019
http://dx.doi.org/10.1109/HOTCHIPS.2009.7478342
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb37
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb37
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb37
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb38
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb38
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb38
http://dx.doi.org/10.1016/S0167-1987(98)00127-5
http://dx.doi.org/10.1016/S0167-1987(98)00127-5
http://dx.doi.org/10.1016/S0167-1987(98)00127-5
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb40
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb40
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb40
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb40
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb40
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb41
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb41
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb41
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb41
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb41
http://dx.doi.org/10.1016/j.jclepro.2018.12.251
http://dx.doi.org/10.1016/j.jclepro.2018.12.251
http://dx.doi.org/10.1016/j.jclepro.2018.12.251
http://dx.doi.org/10.1016/j.compag.2018.12.052
http://dx.doi.org/10.1016/j.compag.2018.12.052
http://dx.doi.org/10.1016/j.compag.2018.12.052
http://dx.doi.org/10.3311/pp.me.2010-1.08
http://dx.doi.org/10.1016/j.partic.2018.08.005
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb46
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb46
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb46
http://dx.doi.org/10.1201/9780203739228
http://dx.doi.org/10.1201/9780203739228
http://dx.doi.org/10.1201/9780203739228
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb48
http://dx.doi.org/10.1016/j.biosystemseng.2018.02.001
http://dx.doi.org/10.1016/j.biosystemseng.2018.02.001
http://dx.doi.org/10.1016/j.biosystemseng.2018.02.001
http://dx.doi.org/10.1016/j.biosystemseng.2024.06.006
http://dx.doi.org/10.1016/j.biosystemseng.2024.06.006
http://dx.doi.org/10.1016/j.biosystemseng.2024.06.006
http://dx.doi.org/10.1016/j.biosystemseng.2021.09.001
http://dx.doi.org/10.1016/j.biosystemseng.2021.09.001
http://dx.doi.org/10.1016/j.biosystemseng.2021.09.001
http://dx.doi.org/10.1016/j.still.2013.09.001
http://dx.doi.org/10.1016/j.still.2013.09.001
http://dx.doi.org/10.1016/j.still.2013.09.001
http://dx.doi.org/10.1016/j.jterra.2018.11.001
http://dx.doi.org/10.1016/j.jterra.2018.11.001
http://dx.doi.org/10.1016/j.jterra.2018.11.001
http://dx.doi.org/10.1016/j.still.2013.10.003
http://dx.doi.org/10.1016/j.biosystemseng.2014.11.006s
http://dx.doi.org/10.1016/j.biosystemseng.2016.12.002
http://dx.doi.org/10.1016/j.compag.2018.05.028
http://dx.doi.org/10.1016/j.compag.2018.05.028
http://dx.doi.org/10.1016/j.compag.2018.05.028
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb58
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb58
http://refhub.elsevier.com/S0168-1699(24)00873-1/sb58
http://dx.doi.org/10.1016/j.powtec.2020.10.067
http://dx.doi.org/10.1016/j.powtec.2020.10.067
http://dx.doi.org/10.1016/j.powtec.2020.10.067
http://dx.doi.org/10.1016/j.ijmecsci.2020.105634
http://dx.doi.org/10.1016/j.compgeo.2023.105821
http://dx.doi.org/10.1016/j.cpc.2024.109196
http://dx.doi.org/10.1016/j.compgeo.2023.105411
http://dx.doi.org/10.1016/j.compgeo.2023.105411
http://dx.doi.org/10.1016/j.compgeo.2023.105411
http://dx.doi.org/10.1016/j.jterra.2023.05.003
http://dx.doi.org/10.1016/j.jterra.2023.05.003
http://dx.doi.org/10.1016/j.jterra.2023.05.003
http://dx.doi.org/10.1016/j.compgeo.2021.104371

	Development of a GPU-based DEM solver for parameter optimization in the simulations of soil-sweep tool interactions
	Introduction
	Materials and methods
	Graphical Processing Units
	Program architecture
	Particles and their storage
	Particle–particle contact
	Geometry-particle contact
	Force calculation
	Temporal solution
	Euler's method
	Adams-method

	Measurement details

	Results
	Validation based on comparison with commercial software
	Scaling for larger problems
	Time step size
	Profiling

	Applications for soil-sweep tool interactions
	Large scale simulations
	Parameter sensitivity studies
	Effect of particle density
	Effect of the micromechanical Young's modulus
	Effect of the coefficient of restitution between particles
	Effect of the friction coefficient between particles

	Parameter calibration with an evolutionary algorithm
	Differential evolution
	Results of the calibration

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Figures
	Appendix B. Tables
	References

