
Vol.:(0123456789)

The International Journal of Advanced Manufacturing Technology (2024) 133:1585–1596 
https://doi.org/10.1007/s00170-024-13808-0

ORIGINAL ARTICLE

A comparative machinability analysis of aged and freshly 
manufactured epoxy resins through orthogonal machining 
experiments

Norbert Geier1  · Dániel István Poór1,2

Received: 17 January 2024 / Accepted: 11 May 2024 / Published online: 3 June 2024 
© The Author(s) 2024

Abstract
Applications of thermoset epoxy resins in load-bearing fibre-reinforced polymer (FRP) composites are decisive, mainly due 
to their excellent material properties, low viscosity before hardening and good adhesion with the reinforcing fibres. Although 
numerous experiences on the machinability of FRPs have been published, these experiences can be only indirectly adapted 
to pure epoxy resins. Reflecting on the lack of knowledge on the machinability of epoxy resins, the main aim of the present 
study is to compare the machinability of aged and freshly manufactured epoxy resins. Half of the epoxy specimens were 
naturally aged in a continental climate environment for a year, while the other half was manufactured prior to the orthogonal 
machining experiments. The experiments were conducted in a dry condition in a Kondia B640 machining centre. The cut-
ting speed and the uncut chip thickness were varied systematically. The cutting force was measured by a KISTLER 9257B 
dynamometer, and the machined surfaces were characterised by a Mitutoyo SJ400 surface tester and a Keyence VR-5000 
3D profilometer. The experimental results prove that the aged epoxy degraded significantly; thus, the specific cutting force is 
significantly smaller than that of freshly manufactured epoxy. However, the surface quality was not significantly influenced 
by the polymer degradation.
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1 Introduction

Properly implementing the principles and fundamentals 
of circular economy will possibly result in a significant 
improvement in the sustainability of our planet. Consid-
ering that repair, remanufacturing, and refurbishment are 
high-priority levels of circularity [1], more and more atten-
tion will be given to the machining of end-of-life thermo-
setting polymeric products in the future. Considering that 
the mechanical properties of end-of-life polymeric prod-
ucts are often degraded due to long-term natural impacts 
(e.g. thermal, UV, water absorption, etc.) [2], the analysis 

of the processability of aged polymeric products comes to 
the fore. Although there are some published experiences 
on the degraded material properties of aged thermosetting 
polymers [3], their mechanical machinability has not been 
analysed yet.

Thermosetting epoxy resins have high mechanical 
strength, excellent thermal and chemical stability, easy pro-
cessing, low cost and high adhesiveness to many substrates 
[4, 5]. Therefore, epoxy resins are widely used in high-tech 
industries such as automobile, aerospace and electronics 
[6, 7]. Considering that the material properties of particu-
lar epoxy parts significantly depend on the type of epoxy 
resin, curing agent, and their mixing ratio [8], various fields 
require slightly different epoxy applications. For example, 
in the aerospace industry, thermosetting epoxies are used as 
matrices in carbon fibre-reinforced polymer (CFRP) com-
posites that have to be lightweight and high-strength at the 
same time [9]. Therefore, the adhesion between the epoxy 
and the reinforcing fibres is a key issue [10]. Another exam-
ple of a typical epoxy application is electrical equipment or 
electronic components, where thermal conductivity is the 
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key property (not the load-bearing efficiency); therefore, 
thermally conductive fillers are often used [11].

Epoxies are easy to manipulate before curing due to their 
relatively low viscosity [12–14]; therefore, epoxy parts are 
usually manufactured by moulding techniques, where they 
get their final shape. However, post-manufacturing is often 
needed after curing to meet strict dimensional tolerances, 
mainly for assembly reasons [15]. Mechanical machining 
technologies such as drilling and edge trimming are the most 
frequently applied technologies for manufacturing difficult-
to-mould geometric features (e.g. holes and pockets) in parts 
containing epoxies [16–21]. Therefore, there is a consid-
erable need for an understanding of the machinability of 
epoxy resins. Although numerous studies have been pub-
lished on the machinability analysis of fibrous composites 
having epoxy matrices, they focus on the reinforcing fibres 
rather than the matrices because the high-strength fibre 
reinforcements primarily affect the cutting resistance of 
FRPs. Nevertheless, the softer and lower-strength polymeric 
matrix also plays an important role in the chip formation 
mode, chip type and cutting temperature in the cutting zone 
[22–24]. Material removal in thermosetting epoxy resins is 
governed by brittle fracture mechanisms with little strain 
to fracture; thus, the machined surface is often rough [25]. 
Sheikh-Ahmad [22] summarised the key issues of machining 
thermosetting polymers and highlighted that (i) the larger the 
uncut chip thickness, the larger the possibility of transition 
from ductile to brittle behaviour, (ii) the larger the cutting 
speed, the higher the cutting temperature and dominance of 
ductile behaviour, (iii) the larger the cutting temperature in 
the cutting zone, the larger the polymer softening resulting 
in a change of material removal mechanisms.

Although the manufacturing technology can be appro-
priately planned based on the published experiences on 
the machinability of FRPs having epoxy matrices, these 
experiences cannot be directly adapted to the technology 
planning of aged epoxy parts. Parts containing epoxy resins 
degrade over time due to the ageing of polymers governed 
by thermal, UV and water absorption mechanisms [2]. Since 
polymer ageing significantly influences the mechanical prop-
erties of epoxy materials (i.e., decreases tensile, shear and 
impact strength [3], lowers the adhesiveness with fillers and 
reinforcements [26], increases the number and length of 
cracks [27], and forms delamination [26], etc.), the machina-
bility is expected to be also significantly influenced by the 
ageing-induced polymer degradation. However, there is no 
published information on the machinability of aged epoxy 
resins in the open literature. In order to support the main-
tenance and renovation of old epoxy parts, a comparative 
machinability analysis of aged and freshly manufactured 
epoxy resins is required. Considering that the published 
experiences on the machinability of epoxy resins are mod-
erate, the main aim of the present study is to analyse the 

machinability of pure epoxy resins experimentally. Freshly 
manufactured and naturally aged epoxy specimens were 
orthogonally machined to gain information on their cutting 
energetics and machined surface quality to provide helpful 
information for technology planning of fresh and aged epoxy 
materials.

2  Experimental setups

Orthogonal machining experiments were conducted in a 
three-axis (X, Y and Z) Kondia B640 vertical machining 
centre. A turning tool was inserted into the spindle of the 
machine tool by using own-developed adapters aiming to fix 
the spindle orientation in a position where the main cutting 
edge of the cutting insert is perpendicular to the machined 
surface, as is illustrated in Fig. 1.

The interpolated linear movement of the cutting tool 
along the X-axis provided the cutting motion, i.e. the cutting 
speed. Considering that the maximal applicable feed rate of 
the machine tool is 20,000 mm/min, the maximum of the 
applicable cutting speed was limited to 20 m/min. A SECO 
CCGT09T304F-AL, KX cutting insert conducted the chip 
removal, which was inserted into a SECO SCLCR1616H09 
tool shank. The machining experiments were conducted 
in dry conditions. The experimental setup is illustrated in 
Fig. 1.

The cutting force along the cutting motion was measured 
by a KISTLER 9257B dynamometer using a sampling fre-
quency of f = 10,000 Hz. The instrument signal was ampli-
fied by a KISTLER 5070A11100 multichannel laboratory 
charge amplifier and collected by an NI USB-4431 five-
channel dynamic signal acquisition module. The noise (i.e., 
high-frequency vibrations) was decreased by the moving 
average method expressed by Eq. (1).

where Yi is the filtered response value, yj denotes the 
original signal, and 2n + 1 = 61 are the neighbouring signal 
values affecting the actual response value corresponding to 
vc (2n + 1) f−1≈ 1 mm of tool movement at 10 m/min cutting 
speed. The surface roughness parameters of the machined 
features were measured by a Mitutoyo SJ400 surface tester 
using the ISO 4287:1997 standard, and the surface quality 
was analysed by a Keyence VR-5000 3D profilometer. The 
machined surfaces were treated by a Helling 3D laser scan-
ning spray to improve measuring accuracy by decreasing the 
transparency of the polymer specimens.

Epoxy resin specimens were manufactured by casting into 
silicone moulds with a two-component MR3010/MH3124 

(1)

Yi =
1

2n + 1

n=30
∑

j=−30

yj =
yj−30 +⋯ + yj−1 + yj + yj+1 +⋯ + yj+30

2n + 1



1587The International Journal of Advanced Manufacturing Technology (2024) 133:1585–1596 

epoxy system (epoxy monomer: modified bisphenol A/F 
resin; hardener: modified cycloaliphatic amine hardener; 
produced by Ipox Chemicals). The components were mixed 
at room temperature with a mixing ratio of 100:33. The cur-
ing process was carried out at room temperature for 24 h, 
and then a post-curing process was applied at 80 °C for 2 h 
in a Heraeus UT20 drying oven. The epoxy sheets were 
cut into 30 × 20 × 6.5 mm workpieces for the machining 
experiments with a Mutronic Diadisc 5200 cut-off saw. The 
Charpy impact test specimens were also notched with the 
same cut-off saw. The ageing was performed in Gestitz 2824, 
Hungary, for one year. Hungary has a typical continental cli-
mate with hot, dry summers and mildly cold, snowy winters 
[28]. The average annual precipitation across Hungary is 600 
mm, the temperatures vary between − 10 and + 30 °C, and 
the average hours of sunshine vary between 1 700 h and 2 
100 h a year [28, 29]. Therefore, a significant polymer deg-
radation was expected during one year of ageing.

The tensile strength and Young modulus of the epoxy 
specimens were measured by a Zwick Z020 universal tensile 
tester machine equipped with a 5 kN tensile head according 
to the ISO 527-1:2019 standard. Five tensile specimens were 
tested in the case of both materials; the testing speed was 
set to 5 mm/min. The Charpy impact strength was tested 
with a Ceast Resil Impactor Junior with a 2 J hammer on 

five notched specimens of each material according to the 
MSZ EN ISO 179-1:2010 standard. Shore D hardness was 
measured according to the MSZ EN ISO 868:2003 standard 
with a Zwick/Roell H04.3150.000 hardness tester. All the 
material tests were performed at room temperature and 48% 
relative humidity. Digital optical microscopy images of the 
fractured surfaces of the mechanical tests (i.e., tensile test 
and Charpy impact test) were taken with a Keyence VHX-
5000 optical microscope (equipped with a VH-Z20UT VH 
Zoom Lens with DIC 20x-200x).

Considering the time-consuming preparation of the aged 
epoxy specimens, the machining experiments were designed 
using the  2k full factorial design. The ageing time (A), cut-
ting speed (vc), and uncut chip thickness (h) as continuous 
factors were selected to be varied each on two levels, as it 
is shown in Table 1. Each experimental run was repeated 

Fig. 1  Orthogonal machining experimental setup: (a) fixturing of the cutting tool and workpiece, (b) the relative position of the main cutting 
edge to the workpiece (orthogonal setup), (c) the interpretation of uncut chip thickness (h) during orthogonal machining

Table 1  Factors and their levels

Factors Levels
1 2

Ageing time A (year) 0 1
Cutting speed vc (m/min) 10 20
Uncut chip thickness h (mm) 0.1 0.2
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three times to gain sufficient information on the variances. 
The analysis of variance (ANOVA) was conducted at a sig-
nificance level of 0.05.

3  Results and discussion

3.1  Material properties

The tensile strength, Young modulus, impact strength and 
shore D hardness of the aged and freshly manufactured 
epoxy resins were measured each five times. The tensile 
curves of the epoxies can be seen in Fig. 2a. It can be 
clearly seen on the diagrams that the characteristics of the 
epoxy’s tensile curves did not change significantly after 
the ageing process; however, the strength of the aged 
epoxy decreased; and the aged tensile specimens were bro-
ken at lower strain and stress values. The calculated tensile 
strengths (σ) of the freshly manufactured and aged epoxy 
resins are 55.02 ± 7.168 MPa and 14.14 ± 4.090 MPa, 
respectively. One-way ANOVA results show that the age-
ing time has a significant influence (F-value = 122.68; 
P-value = 0.000) on the tensile strength, i.e. the means 

differ significantly. However, the Young modulus (E) is 
insignificantly influenced (F-value = 3.2; P-value = 0.111) 
by the ageing time. The main effect plots of ageing time 
on the tensile strength and Young modulus are shown in 
Fig. 2. The tensile test-induced fractures (Fig. 2b) suggest 
that the freshly manufactured epoxy has a brittle nature as 
the fractured surfaces are segmented with many craters as 
a result of the rapid crack propagation during failure. The 
aged epoxy has a ductile fracture behaviour; the torn and 
yielded fracture surface suggests that the failure happened 
in the plastic deformation region of the stress-strain curve.

The Charpy impact strength (KC) of the aged specimens 
decreased by ~ 70% compared to the freshly manufactured 
epoxy specimens’; the ANOVA also showed a significant 
(F-value = 106.77; P-value = 0.000; α = 0.05) effect of the 
ageing on the impact strength. The Charpy impact test-
induced fractures are shown in Fig. 3. These fractures have 
the same characteristics as the fractured surfaces of the 
tensile specimens (shown in Fig. 2): freshly manufactured 
Charpy specimens have a brittle, crack-propagated failure 
on the surface, while the aged Charpy specimens have a 
ductile characteristic with a much smoother, torn surface. 

Fig. 2  a Tensile curves, (b) tensile specimens’ representative fractured surfaces, main effect plots of epoxy ageing vs. material properties (with a 
symmetric error bar of two times the corrected sample standard deviation): (c) tensile strength, (d) Young modulus
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The main effect plot of ageing time on the Charpy impact 
strength is shown in Fig. 3a.

The Shore D hardness values’ change is negligible; only 
an ~ 0.5% decrease can be observed in the case of aged 
specimens; therefore, the effect of ageing is insignificant 
(F-value = 0.12; P-value = 0.736; α = 0.05) on the hardness 
of the epoxy. The main effect plot of ageing time on the 
Shore D hardness is shown in Fig. 3b.

The measured and calculated material properties are 
summarised in Table 2. The means of the measured mate-
rial properties are illustrated in Figs. 2 and  3. The results 
suggest that during ageing (i.e. UV exposure, moisture and 
humidity, temperature fluctuation, etc.), the mechanical 
properties of the epoxy deteriorated, which can refer either 
to the weakening of covalent chemical bonds between the 
polymer chains in the crosslinking network (as a result of 
e.g. UV exposure) or the macroscopic damage of the mate-
rial (initiation of cracks in the material as a result of e.g. 
temperature fluctuation).

3.2  Characteristics of cutting force

The cutting force (Fc), which is able to characterise the 
material removal, is considered to be the maximum of the 
measured Fx(t) function, while the specific cutting force (kc) 
is calculated according to Eq. (2) [30].

where h denotes the uncut chip thickness, and t is the 
thickness of the epoxy specimen. The numerical experimen-
tal results are listed in Table 3.

Representative cutting force diagrams suggest that the cut-
ting force is significantly smaller in the case of aged epoxy 
resins than in the case of freshly manufactured epoxies. The 
main effect of the factors on the specific cutting force can be 
seen in Fig. 4, and relating ANOVA tables in Table 4. The 
results show that the influence of the ageing time on the kc 

(2)kc =
Fc

h ⋅ t

Fig. 3  Main effect plots of epoxy ageing vs. material properties (with 
a symmetric error bar of two times the corrected sample standard 
deviation): (a) Charpy impact strength, (b) Shore D hardness, Charpy 

impact tests induced fractured surfaces of the (c) aged and (d) freshly 
manufactured epoxy resins

Table 2  Material properties of 
the applied epoxy resins, where 
σ denotes the tensile strength, 
E is the Young modulus, and 
KC denotes the Charpy impact 
strength

No. Freshly manufactured epoxy Aged epoxy

σ E KC Shore D σ E KC Shore D

(MPa) (GPa) (kJ/m2) (-) (MPa) (GPa) (kJ/m2) (-)

1 50.39 1.148 7.124 83.7 10.36 0.903 1.867 83.3
2 57.49 1.434 5.368 85.8 9.44 0.600 1.356 87.7
3 60.54 1.377 6.618 86.1 18.76 1.307 2.395 85.8
4 44.93 1.630 7.246 85.2 16.99 1.333 1.615 86.0
5 61.78 1.597 5.467 85.7 15.18 1.434 1.984 81.7
Mean 55.02 1.437 6.365 85.3 14.14 1.115 1.843 84.9
s 2 7.168 0.194 0.897 0.951 4.090 0.352 0.392 2.380
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is the most significant (F-value = 5.85, P-value = 0.028), fol-
lowed by the cutting speed (F-value = 5.68, P-value = 0.030). 
The influence of the uncut chip thickness (i) on the cutting 
force is significant (F-value = 7.34, P-value = 0.015), and 
(ii) on the specific cutting force is not significant, as it was 
expected based on Eq. (2). The main effect plots show that 
the larger the cutting speed, the smaller the specific cutting 
force. The larger cutting speed results in a larger cutting 
temperature-induced material softening and a larger rate of 
deformation-induced decreases in the ultimate elongation 
to fracture [22]; the larger speed will, therefore, lower the 
cutting energy needed for chip removal. The main effect plot 
of ageing time confirms that the older the epoxy resin, the 
significantly lower the specific cutting force is. This is in 
good agreement with the material testing results (Table 2).

3.3  Characteristics of the machined surfaces

The characteristics of machined surface roughness is ana-
lysed through the Ra, Rz and Rz/Ra measures. The calcu-
lated surface roughness parameters are listed in Table 3. 
The main effects of the cutting speed, uncut chip thickness 

and ageing time on the average surface roughness and the 
roughness depth can be seen in Fig. 5. The nominal results 
show that the larger the cutting speed and the ageing time, 
the slightly larger the Ra and Rz parameters. However, these 
effects were found to be insignificant at the significance 
level of 0.05. The influence of the cutting speed on the Ra 
is often parabolic [25, 31]; therefore, the influence of the 
vc should be investigated in the future on more than two 
levels and a wider scale (e.g. five levels according to the 
central composite inscribed (CCI) experimental design plan, 
using an advanced machine tool which can provide at least 
40,000–50,000 mm/min max. speed along one of the hori-
zontal axis). On the other hand, the influence of the uncut 
chip thickness on the analysed surface roughness indicators 
is significant (F-value = 272.74, P-value = 0.000 for the Ra 
and F-value = 255.95, P-value = 0.000 for the Rz), as shown 
in Table 5. The larger the uncut chip thickness, the signifi-
cantly larger the surface roughness. Tapoglou and Makris 
[32] observed a similar trend in the influence of uncut chip 
thickness on the Ra when machining polyether ether ketone 
(PEEK). It is well known that the chip cross-section sig-
nificantly influences the second moment of area; thus, the 

Table 3  Experimental design 
table, where vc is the cutting 
speed, h is the uncut chip 
thickness, A is the ageing time, 
t denotes the thickness of the 
epoxy specimen, Fc is the 
cutting force, kc is the specific 
cutting force, Ra is the average 
surface roughness, and Rz is the 
roughness depth

No. Factors t Responses

vc h A Fc kc Ra Rz Rz/Ra

(m/min) (mm) (year) (mm) (N) (N/mm2) (µm) (µm) (-)

1 20 0.2 0 6.73 49.19 36.54 41.23 194.80 4.72
2 20 0.2 1 6.38 44.87 35.17 37.40 192.27 5.14
3 10 0.2 1 6.60 58.03 43.97 35.93 171.97 4.79
4 20 0.2 1 6.75 43.55 32.26 45.35 220.00 4.85
5 10 0.2 0 6.33 201.93 159.51 34.29 173.57 5.06
6 10 0.1 0 6.67 70.10 105.09 0.76 9.30 12.29
7 10 0.1 1 7.28 55.59 76.36 0.59 6.47 10.96
8 10 0.1 1 7.02 49.34 70.28 0.49 5.80 11.84
9 10 0.2 0 5.21 60.00 57.58 34.64 195.83 5.65
10 10 0.1 0 5.95 71.81 120.69 7.72 54.57 7.07
11 20 0.1 0 5.68 50.97 89.74 4.04 35.63 8.81
12 20 0.1 0 5.10 45.47 89.15 1.10 14.40 13.13
13 20 0.2 0 6.38 87.22 68.36 38.30 182.77 4.77
14 10 0.2 1 6.84 65.73 48.05 45.28 208.80 4.61
15 10 0.2 0 5.91 184.63 156.20 38.81 189.93 4.89
16 20 0.1 0 6.48 53.71 82.89 6.93 48.43 6.99
17 10 0.2 1 6.70 214.43 160.02 50.65 215.43 4.25
18 20 0.2 1 6.39 71.76 56.15 35.32 166.90 4.73
19 20 0.2 0 5.60 98.04 87.53 38.37 186.50 4.86
20 10 0.1 0 6.26 63.86 102.02 0.89 9.67 10.86
21 20 0.1 1 6.21 5.93 9.54 3.29 21.63 6.58
22 20 0.1 1 6.12 46.24 75.55 17.28 95.00 5.50
23 20 0.1 1 6.83 49.65 72.69 21.26 109.23 5.14
24 10 0.1 1 6.43 33.68 52.38 0.57 7.53 13.29



1591The International Journal of Advanced Manufacturing Technology (2024) 133:1585–1596 

energy needed for chip removal; therefore, the epoxy res-
ins are expected to behave more brittle than ductile. This 
transition in material behaviour from ductile to brittle will 
result in a more fractured machined surface; thus, a rougher 
surface.

Representative machined 3D surface profiles of freshly 
manufactured and aged epoxy resins at various uncut chip 
thicknesses and cutting speed values can be seen in Fig. 6. 

The influence of the uncut chip thickness on the machined 
surface can be clearly seen; furthermore, the slight effect 
of the cutting speed is also visible. Significantly deeper 
craters are visible on the surfaces machined at the larger 
h, while the surface is smoother at the smaller h. The 3D 
microscopic images confirm the insignificance effect of 
the A on the surface quality. These results suggest that 
there is no significant influence on the machining of aged 

Fig. 4  a Main effect of the cutting speed (vc), uncut chip thickness (h) and ageing time (A) on the specific cutting force (kc) and the (b) Pareto 
chart of the standardized effects of factors and their interactions on the kc

Table 4  Analysis of variance 
(ANOVA) tables for the Fc ad kc 
response values

Source DF Fc (N) kc (N/mm2)

Adj SS Adj MS F-value P-value Adj SS Adj MS F-value P-value

Model 7 31577.7 4511.1 2.34 0.076 16740.1 2391.44 1.88 0.140
Linear 3 27570.4 9190.1 4.76 0.015 14682.9 4894.3 3.84 0.030
v c 1 9701.7 9701.7 5.03 0.039 7230.1 7230.14 5.68 0.030
h 1 14164.9 14164.9 7.34 0.015 1.1 1.06 0 0.977
A 1 3703.8 3703.8 1.92 0.185 7451.7 7451.7 5.85 0.028
2-way interactions 3 3997.6 1332.5 0.69 0.571 2025.4 675.14 0.53 0.668
v c ·h 1 3693.2 3693.2 1.91 0.185 1701.3 1701.3 1.34 0.265
v c ·A 1 116.7 116.7 0.06 0.809 248.2 248.23 0.19 0.665
h · A 1 187.7 187.7 0.1 0.759 75.9 75.89 0.06 0.810
3-way interactions 1 9.7 9.7 0.01 0.944 31.8 31.76 0.02 0.876
v c ·h·A 1 9.7 9.7 0.01 0.944 31.8 31.76 0.02 0.876
Error 16 30866.2 1929.1 20373.5 1273.34
Total 23 62443.9 37113.6
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epoxy resins from the point of view of machined surface 
characteristics.

Figure 7 shows the measured roughness depth values rela-
tive to the average surface roughness values. The character-
istics of Rz/Ra parameters are similar in both fresh and aged 
epoxies, i.e. the slope of the fitted line and the nominal value 
of Rz/Ra parameters are 4.9 and 4.7, respectively. This pro-
portion suggests that the dominance of outlier peaks and val-
leys is not significant, not like it is observable in machined 
surfaces of fibrous polymeric composites (Rz/Ra is between 
6 and 16 depending on the number of fibre pull-outs and 

uncut fibres [33]). The relatively large coefficient of deter-
mination values (R²= 0.9927–0.9952) indicate that the fitting 
of measurements to the nominal line is appropriate, i.e. the 
Rz/Ra value is independent of the varied factors (cutting 
speed and uncut chip thickness). It is observable in Fig. 7 
that the measurements are mainly located in two regions, 
namely Region A and Region B. While Region A includes 
the measurements of surfaces machined with smaller uncut 

Fig. 5  Main effect of the cutting speed (vc), uncut chip thickness (h) and ageing time (A) on the (a) average surface roughness (Ra) and the (b) 
roughness depth (Rz), and the (c, d) corresponding Pareto charts of the standardized effects

Table 5  Analysis of variance 
(ANOVA) tables for the Ra and 
Rz response values

Source DF Ra (µm) Rz (µm)

Adj SS Adj MS F-value P-value Adj SS Adj MS F-value P-value

Model 7 7435.57 1062.22 41.23 0.000 155349 22193 38.53 0.000
Linear 3 7180.38 2393.46 92.9 0.000 150090 50,030 86.85 0.000
v c 1 64.17 64.17 2.49 0.134 1993 1993 3.46 0.081
h 1 7026.85 7026.85 272.74 0.000 147439 147439 255.95 0.000
A 1 89.36 89.36 3.47 0.081 658 658 1.14 0.301
2-way interactions 3 97.96 32.65 1.27 0.319 3544 1181 2.05 0.147
v c ·h 1 90.13 90.13 3.5 0.080 2466 2466 4.28 0.055
v c ·A 1 7.62 7.62 0.3 0.594 1058 1058 1.84 0.194
h · A 1 0.21 0.21 0.01 0.929 20 20 0.03 0.856
3-way interactions 1 157.24 157.24 6.1 0.025 1715 1715 2.98 0.104
v c ·h A 1 157.24 157.24 6.1 0.025 1715 1715 2.98 0.104
Error 16 412.22 25.76 9217 576
Total 23 7847.8 164566
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chip thickness, Region B corresponds to the experimental 
results gained through the larger uncut chip thickness val-
ues. The significant separation of these regions proves that 
the influence of the uncut chip thickness on the machined 
surface characteristics is crucial.

4  Discussion and outlook

The experimental results showed that the tensile and 
impact strengths of the applied epoxy degraded signifi-
cantly due to the ageing procedure. Furthermore, the cut-
ting energy needed for chip removal was also found to be 
smaller in the case of the aged epoxy specimens. These 

Fig. 6  Representative machined 3D surface profiles of (a) freshly manufactured and (b) aged epoxy resins at various uncut chip thicknesses and 
cutting speed values

Fig. 7  The ratio of rough-
ness depth (Rz) to the average 
surface roughness (Ra) in the 
case of orthogonal machining of 
freshly manufactured and aged 
epoxy resins
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findings are in good agreement, as the lower the strength, 
the lower the expected resistance of the composite against 
cutting. On the other hand, the ANOVA results proved 
that ageing has an insignificant influence on the Young 
modulus and Shore D hardness. Although ANOVA proves 
these significances and insignificance of the influences of 
the analysed factors, the increase of the factor range would 
affect them, i.e. the significantly more extended ageing and 
larger range of analysed cutting speed may result in sig-
nificantly different chip removal and material properties. 
These are the focus of further investigations.

Current experimental findings are useful for designing 
and optimising the machining of pure epoxy resins, whether 
they are freshly manufactured or at the end of the product’s 
life cycle. On the one hand, the results are especially valu-
able for those manufacturing departments where the existing 
and used epoxy resin parts must be mechanically machined 
(hole-making for assembly, edge preparation, etc.) due to 
renovation or maintenance. According to the experiences 
gained, a sharper cutting edge is recommended for machin-
ing aged epoxy resin, as the material removal resistance is 
smaller, enabling the cutting edge to be sharper and less 
robust. Furthermore, the smaller uncut chip thickness (i.e. 
smaller feed in drilling or milling) is recommended for bet-
ter surface quality. On the other hand, we propose to widen 
the cutting tool portfolio of tool manufacturers for provid-
ing suitable tool geometries for fresh and aged thermoset-
ting polymers, as a sharper and weaker tool geometry (i.e., 
larger positive rake and clearance angles, smaller cutting 
edge radius) would be more beneficial for effective cutting of 
mechanically degraded aged polymers. However, the cool-
ing may further increase the rigidity of the aged polymers; 
thus, cooling of aged epoxies is not recommended. This is 
beneficial because dry conditions are more sustainable than 
cooling liquids.

Although the current study focuses on the machinabil-
ity of pure epoxy resins, these results can be applied to the 
technology planning of fibrous polymeric composites, espe-
cially carbon fibre-reinforced thermosetting polymer (CFRP) 
composites. The finite element analysis (FEA) and optimi-
sation of CFRP composites requires the proper definition 
of each composite ingredient’s material properties and chip 
removal characteristics, i.e., carbon fibres, non-reinforcing 
fibres and epoxy matrix. Therefore, knowing the machinabil-
ity indicators of pure thermosetting epoxy resin is essential 
in determining optimal machining conditions through FEA.

The result of the study proves the significant difference 
in chip removal of aged and freshly manufactured epoxy 
resins; however, there are many limitations that have to be 
pointed to for further work. For example, natural ageing has 
the benefit that it is closer to the real load of parts than arti-
ficial ageing. However, this is less controllable and, thus, 
difficult to reproduce. Furthermore, the ageing time was 

analysed in this study only on two levels (0 and 1 year), 
which enables us to determine the significance of its influ-
ence; however, the proper effect curve till the end of the life 
cycle of epoxy products (which may be more than 10 years) 
is still unknown.

The applied machining length (cc. 30 mm) was mini-
mised due to material and workspace (measuring range of 
the dynamometer) limitations; therefore, the cutting tem-
perature couldn’t be measured and analysed. The signifi-
cantly longer machining length may result in enough time 
for cutting-induced heat generation and conduction, which 
may have a significant influence on the machining perfor-
mance and surface characteristics if it approaches the glass 
transition temperature (Tg) of epoxy resin.

In the future, huge attention will be given to the appli-
cations of sustainable technical polymeric materials, as 
the current thermosetting polymers are irreversible and 
challenging to recycle or reuse. Polyimine vitrimers were 
introduced a few years ago that behave like a thermosetting 
polymer below a vitrimeric transition temperature (Tv) and 
like thermoplastics above it [34]. These sustainable vitrim-
ers will therefore, possibly replace current thermosetting 
polymers in the future. Therefore, the cutting mechanisms 
and properties of vitrimers have to be investigated shortly 
to support the sustainability aspirations of society and gov-
ernments. Another future research may be governed by the 
improvement of the machinability of aged polymers by 
applying smart particles or fillers.

5  Conclusions

In the present study, the machineability of aged and freshly 
manufactured pure epoxy resins were investigated through 
orthogonal machining experiments. Half of the epoxy speci-
mens were aged in a continental climate environment for 
a year, while the other half was manufactured prior to the 
orthogonal machining experiments. According to the present 
study, the following conclusions can be drawn.

One-way ANOVA results show that the ageing time has 
a significant influence on the tensile strength and Charpy 
impact strength. However, the Young modulus and the Shore 
D hardness are insignificantly influenced by the ageing time. 
The one year of natural ageing significantly degraded the 
tensile and impact strengths of epoxies by 74.6% and 71.1%, 
respectively.

The experimental results show that the influence of the 
ageing time on the specific cutting force is the most sig-
nificant, followed by the cutting speed. The influence of the 
uncut chip thickness on the cutting force was also found to 
be significant. The main effect plot of ageing time confirmed 
that the older the epoxy resin, the significantly lower the 
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specific cutting force is. This is in good agreement with the 
material testing results.

It was shown that the influence of the uncut chip thickness 
on the analysed surface roughness indicators is significant. 
The larger the uncut chip thickness, the significantly larger 
the surface roughness. However, the 3D microscopic images 
confirm the insignificance of the effect of the ageing time 
on the surface quality. These results suggest that there is no 
significant influence of the machining of aged epoxy resins 
from the point of view of machined surface characteristics.
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