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A B S T R A C T

Electric power systems during transient states are extensively investigated using variations of the Kuramoto
model to analyze their dynamic behavior. However, the majority of current models fail to capture the physics
of power flows and the heterogeneity of the grids under study. This study addresses this gap by comparing the
levels of heterogeneity in continent-sized power grids in Europe and North America to reveal the underlying
universality and heterogeneity of grid frequencies, electrical parameters, and topological structures. Empirical
data analysis of grid frequencies from the Hungarian grid indicates that q-Gaussian distributions best fit
simulations, with spatio-temporally correlated noise evident in the frequency spectrum. Comparing European
and North American power grids reveals that employing homogeneous transmission capacities to represent
power lines can lead to misleading results on stability, and nodal behavior is heterogeneous. Community
structures of the continent-sized grids are detected, demonstrating that Chimera states are more likely to occur
when studying only subsystems. A topographical analysis of the grids is presented to assist in selecting such
subsystems. Finally, synchronization calculations are provided to illustrate the occurrence of Chimera states.
The findings underscore the necessity of heterogeneous grid models for dynamic stability analysis of power
systems.
1. Introduction

Electric power systems under transients are often studied using vari-
ations [1–4] of the Kuramoto-model [5]. A notable shortcoming of this
approach is that it relies on simplified models of the grid under study,
including its infrastructural properties (topological and topographical
structure, electrical parameters) and its behavior (volume of supply
and demand at each node, spatio-temporal correlations), which may
lead to qualitatively wrong results [6]. While agreeing that researchers
are forced to make simplifications mainly because open data sources
are rare and incomplete, bridging this gap is inevitable to effectively
transform theoretical results into practice.

For this reason, the present paper focuses on completing the grid
datasets using experience from the domain of power systems. Another
goal is to use this process to deepen the understanding of dynamical
heterogeneity and universality in power grids, continuing the work
presented in [7].
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Cascade failures in power grids occur when the failure of one
component or subsystem causes a chain reaction of failures in other
components or subsystems, ultimately leading to a widespread blackout
or outage and disintegration of the network [8]. Historical data [9]
and self-organized criticality (SOC) models [10] on direct current (DC)
model simulation [11] have shown that blackout size distributions,
measured by various quantities, energy, power, duration, can be de-
scribed by fairly universal power-law (PL) tails [11,12], and SOC is
expected to arise by the competition of trends in load demands weak-
ening parts of the system and the responses to blackouts strengthening
parts of the system [9]. To explain the scale-free behavior, its relation
to the PL of city-size distributions has also been suggested [13].

Cascade failures in alternating current (AC) models have also been
investigated [14–19]. Symmetry breaking (a situation where part of
the oscillators, initially exhibiting symmetrical behavior, transition to
a state where this symmetry is lost) in the network parameters, espe-
cially in the phase shifts between neighboring nodes, have been found
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List of symbols

𝛼 Dissipation parameter
𝛽 Power capacitance exponent of the genera-

tors
𝛤 Resolution parameter of the community

finding algorithm
𝛾 Decay exponent
𝜅 Kurtosis
⟨𝑘⟩ Average degree
𝛺 Variance of frequencies
𝜔𝑖(𝑡) Measured frequency of generator i
𝜔0
𝑖 Self frequency of generator i

𝜎(𝑥) Variance of quantity x
𝜏 Time lag
𝜃𝑖(𝑡) Phase of oscillator i
𝐴𝐶 Alternating current
𝐶 Auto correlation
𝐶𝑖𝑗 Capacitance of the power line between

node i and j
𝑑 Graph dimension
𝐷𝐶 Direct current
𝐸𝑁𝑇𝑆𝑂 − 𝐸 European Network of Transmission System

Operators
𝐸𝑈16 European 2016 high-voltage power grid
𝐸𝑈22 European 2022 high-voltage power grid
𝑓 Frequencies measured at substations
𝐻𝑂𝑇 Highly optimized tolerance
𝐻𝑉 High voltage
𝐼𝑖 Inertia of generator i
𝐾 Coupling between the oscillators
𝑘 Graph degree
𝐿𝑉 Low voltage
𝑀𝑉 Middle voltage
𝑁 Number of nodes in the graph
𝑝(𝑥) Probability density distribution of a quan-

tity x
𝑃𝐷𝐹 Probability density functions
𝑃𝐿 Power law
𝑄𝑖 Modularity of system i
𝑅 Kuramoto phase order parameter
𝑅𝑖𝑗 Resistance of the power line between node

i and j
𝑆𝑂𝐶 Self-organized criticality
𝑇𝑠𝑡𝑎𝑡𝑖𝑜𝑛 Super-statistical time scale of a given

station
𝑈𝑆16 United States 2016 high-voltage power grid
𝑈𝑆𝑁𝑊 United States North-West high-voltage

power grid
𝑊𝑖𝑗 Weight of the power line between node i

and j
𝑥 Admittance decay exponent
𝑋𝑖𝑗 Admittance of the power line between node

i and j

to stabilize the synchronization [20]. Fine tuning of the asymmetry
in the mass generators is essential, without this, local damage can
cause fatal blackouts [21]. Our previous studies, which were based
on solving the swing equations on different power-grids, arrived at
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different conclusions. While for a full high–middle–low voltage (HV–
MV–LV) synthetic network a higher stability was found than on the
2-dimensional homogeneous lattice of same size [22], in the HV net-
works of Europe and Hungary, strong heterogeneity drastically reduces
global synchronization [23]. An important and challenging question
that remains is the determination of network topological effects and
regions of enhanced stability, which can be obtained by symmetry
breaking [24].

Very recently, PL blackout size distributions have been confirmed
via AC modeling, using the numerical solution of the swing equations
near the vicinity of the power-grid synchronization point [22,23,25].
For this, Gaussian distributed self-frequencies have been used, in gen-
eral. The question arises whether the synchronization stability or the
properties of cascade failures are altered by various heterogeneities
(i.e. exponential or PL distribution of consumer and generator powers).
Earlier it was found that these kinds of modifications in solutions of
the swing equations lower the level of synchronization, but did not
change the forms of failure cascade size distributions or the range of
their occurrence in the control parameter space [23].

More generally, to explain PL electrical outage statistics, other
mechanisms were proposed following the spectral analysis of large
outage duration data sets. According to this solution, the observed auto-
correlations in data for shorter durations imply a SOC mechanism of
the competing maintenance supply and demand, leading to branching
failure cascades [26]. SOC theory was introduced in the 1980s [10] to
provide a possible explanation for the widespread occurrence of PL-s
in nature [27]. For extended durations, the lack of such correlations
suggested a highly optimized tolerance (HOT) mechanism [26].

While the previously mentioned topics are often examined using the
variations [1,2] of the Kuramoto-model [5], notable shortcomings were
highlighted recently, criticizing the simplicity of many solutions [28].
As a result, the physics of power flows and the heterogeneity and
localization of generators and loads are not captured by the majority
of current models.

In this paper we contribute to the deeper understanding of this
aspect by (i) revealing the underlying heterogeneity of grid frequencies,
topological structures and electrical parameters of real-world high-
voltage grids, and (ii) comparing data of two widely used grid models to
show that these heterogeneities show universal traces. We also provide
a way to estimate missing admittances and graph edge weights for the
variations of the Kuramoto model upon some assumptions. This method
can help researchers create more realistic grid models, compared to the
use of open-source and/or generative models (such as SciGRID, GridKit,
PyPSA, OpenMod Initiative or the Open Power System Data models),
which typically lack the level of detail necessary for case studies.

Finally, we provide an analysis of network communities in HV
power-grids of Europe and north America. We shall point out that,
contrary to the existing large heterogeneity, main features seem to be
universal and may provide explanation for the frequent occurrences
of power laws in the outage distributions. (The level of universality,
of course, is just approximate, as various previous studies have found
it [22,23,29,30].) Our results imply that PL emerges on continent sized
networks, while sub-systems exhibit deviations from it. Here we go
beyond static and graph theoretical analysis and provide a dynamical
study by determining the graph communities and the synchronization
in them via solving the swing equations. The role of communities, as
strongly connected domains, can be very profound and may provide
rare region effects, altering the dynamics of the system [31–33]. The
modular structure can also enhance frustrated synchronization [34–
37] and Chimera states [38,39], as demonstrated in the final part
of our study. As far as frustrated synchronization is concerned, Ku-
ramoto oscillators are expected to fully synchronize their phases and
frequencies over time on homogeneous full graphs. In this respect,
frustration refers to the phenomenon when the interactions hinder A
fully synchronized state. This can be caused by conflicting interaction

patterns, heterogeneous coupling strengths, or the inherent topology
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of the network (like network modules). Meanwhile, the chimera state
refers to the coexistence of synchronized and desynchronized regions
in general, within the same system.

The remainder of the paper is organized as follows. Section 2
provides an overview of related literature, organized along the main
aspects of the discussed shortcomings. Section 3 presents the results
of the numerical modeling, and Section 4 discusses the main findings.
Finally, conclusions are drawn in Section 5.

2. Heterogeneity and universality in empirical power-grid data

In this section, an analysis of various empirical data released con-
cerning European power grids is presented. The non-Gaussian distribu-
tions obtained through this analysis underpin the necessity to perform
numerical modeling by applying more sophisticated models, based on
swing equations to be discussed below. Besides, we determine com-
munities of the 2016 EU network by which the local synchronization
analysis, started in Ref. [25], is extended.

The time evolution of power-grid synchronization is described by
the swing equations [40], set up for mechanical elements (e.g. rotors
in generators and motors) with inertia. It is formally equivalent to the
second-order Kuramoto equation [1], for a network of 𝑁 oscillators
with phases 𝜃𝑖(𝑡). The second-order Kuramoto-model is one of the
most successful mathematical models used to describe synchronization-
related issues in power system analysis [2]. The field of its applications
varies from transient stability analysis to topology design, as presented
recently in [41]. Here a more specific form [22,42] is applied, which
includes dimensionless electrical parametrization and approximations
for unknown parameters:

�̈�𝑖 + 𝛼 �̇�𝑖 = 𝑃𝑖 +
𝑃𝑚𝑎𝑥
𝑖

𝐼𝑖 𝜔𝐺

𝑁
∑

𝑗=1
𝑊𝑖𝑗 sin

(

𝜃𝑗 − 𝜃𝑖
)

. (1)

In the above equation, 𝛼 is the damping parameter, which describes
the power dissipation, or instantaneous feedback [23]. 𝐾 ∶= 𝑃𝑚𝑎𝑥

𝑖
is defined as a global control parameter, related to the maximum
transmitted power between nodes. The inertia 𝐼𝑖 = 𝐼 and the nominal
generator frequency 𝜔𝐺 are kept constant in the lack of our knowledge.
𝑊𝑖𝑗 is the adjacency matrix of the network, which contains admittance
elements, calculated from impedances to be described in Section 3.1.
The constant external drive, denoted by 𝑃𝑖 ∶= 𝜔0

𝑖 , which is proportional
to the self-frequency of the 𝑖th oscillator, carrying a dimension of
inverse squared time [1∕𝑠2], describes the power in/out of a given node.
Thus, Eq. (1) is the swing equation (phases without amplitudes) of an
AC power circuit. As is customary with the first-order Kuramoto model,
the self-frequencies are drawn from a zero-centered Gaussian random
variable, as rescaling invariance allows to gauge out the mean value
in a rotating frame. For simplicity, one can assume that 𝜔𝑖(0) is drawn
from the same distribution as 𝜔0

𝑖 and numerically set 𝜔𝑖(0) = 𝜔0
𝑖 . In this

study, the following parameter settings were used: the dissipation factor
𝛼 is chosen to be equal to 0.4 to meet expectations for power grids, with
the [1∕𝑠] inverse time physical dimension assumption. Note, however
that the massive Kuramoto Eq. (1) exhibits a rescaling invariance
[25], thus the parameter values used can be changed and taken to be
dimensionless.

The following subsections A-D separately discuss the state-of-the-art
and our contributions in relation to four topics: grid frequency distri-
butions, capacity distributions, topological and topographical structure
of the grid, respectively.

2.1. Heterogeneity in grid frequency distributions

The Kuramoto equations show that the frequencies of the oscillators
constitute an important variable to power-grid dynamics. Firstly, the
nominal frequency 𝜔𝐺 may show slight spatial variation. Secondly, the
measured frequency 𝜔(𝑡) will fluctuate in the vicinity of 𝜔 due to
𝐺

3 
Fig. 1. Locations of frequency measurement sites used for the analysis. Abbreviations
refer to 400 kV substations, as follows: BEKO — Békéscsaba, DETK — Detk, GYOR1
— Győr, HEVI1 — Hévíz, PECS2 — Pécs, SAFA1 — Sándorfalva, SAJO — Sajószöged,
and SZHE — Szombathely.

Fig. 2. Probability density functions (PDF) of (a) frequencies measured at different
locations and of (b) increments of BEKO at time lags 𝜏 = 0.04 s and 𝜏 = 1 s. In (a), the
Gaussian fit is  (49 996.2601, 18.9679) and the 𝑞-Gaussian fit is given by the expression

0.0220

(1+0.000 179(49 996.3−𝑥)2)9.274
with 𝑞 ≃ 1.1078. The dotted lines in (b) are the corresponding

Gaussian distribution fits.

the system dynamics [43], despite the efforts to bring the system to
synchronization.

In the past decade and a half, various approaches have been em-
ployed in modeling frequencies within the Kuramoto equations [6]. The
research community did not only search for more accurate representa-
tions, but they also examined the effect of frequency distributions on
synchronization and stability. In their early work, Filatrella et al. [44]
suggested that a bimodal distribution of frequencies is the most appro-
priate one for the power grid, a consideration which served as a basis
for later studies. A different approach was presented by Olmi et al. [45],
who used natural frequencies randomly distributed according to a
Gaussian distribution, and by Pinto and Saa [46] and Taher et al. [47],
who drew initial frequencies from uniform distributions.
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It was shown in [48] that the addition of a stochastic noise and
modeling random frequencies of distributed generation do not af-
fect the forms of desynchronization distributions. Their results imply
that heterogeneous networks have better performances than what
homogeneous approximations could predict. In [7], the Gaussian self-
frequencies were replaced by exponentially distributed ones. This
change led to a drop in the steady state synchronization averages, but
did not affect cascade size distributions.

Recently the focus of research was shifted to the analyses of fre-
quency measurement data and their implication on synchronization.
Wolff et al. [49] found that local frequency deviations from the nominal
frequency show Gaussian nature for small deviations and an exponen-
tially decaying tail part. In their papers [50–52], Rydin et al. conclude
that histograms of frequency measurements are good indicators of
how heavy-tailed the distributions are. It is shown that synchronously
recorded frequency data exhibits very complex spatio-temporal behav-
ior, and small fluctuations around the mean follow different types
of super-statistics. A subsequent work [53] capitalizes on these ex-
periences and proposes a Fokker–Planck equation to extend stochas-
tic power-grid frequency models to handle non-Gaussian statistics as
well. A different stochastic process, an Ornstein–Uhlenbeck process is
suggested by [54] to model statistical properties (e.g. double-peaked
probability density functions, heavy tails) of frequency measurements.
Finally, Jacquoud et al. [55,56] show that non-Gaussian fluctuations of
frequency decay with the distance from the source faster than Gaussian
ones do, but such noise also propagates through the whole grid, re-
sulting in voltage angle fluctuations resembling the same non-Gaussian
distribution.

To demonstrate the variation and fluctuation of power-grid fre-
quency, empirical frequency data were published, which were mea-
sured synchronously at eight different locations across Hungary within
24 h on Oct. 23 2022 [57]. The nominal synchronous frequency of the
Hungarian Grid is 50 Hz and the recordings were taken at 8 sites at
an interval of 0.02 s (see Fig. 1 for locations). As shown in Fig. 2(a),
the bulk behavior of the frequency [denoted by 𝑓 (𝑡) to distinguish it
rom 𝜔(𝑡) in the Kuramoto rotating frame] basically follows a Gaussian
istribution. The only difference is that the tail parts are slightly
eavier than in the Gaussian curve, which could be better fitted with
𝑞-Gaussian curve with 𝑞 very close to 1. Note that the 𝑞-Gaussian

robability density function

(𝑥) =

√

𝛽
𝐶𝑞

𝑒−𝛽𝑥
2

𝑞 , 𝛽 = 1
2𝜎2

(2)

ecovers the Gaussian distribution if 𝑞 → 1. Furthermore, for 𝑞 < 1, 𝑒𝑥𝑞 =

ReLU(1+(1−𝑞)𝑥)]
1

1−𝑞 is the 𝑞-exponential, where ReLU is the so-called
ectified linear unit activation function, and 𝐶𝑞 is the normalization

factor for the distribution. (See Ref. [58] for a detailed account of this
definition.) Due to the synchronization of the power system, frequency
time series from different locations usually seem to be almost identical
on a coarse time scale, regardless of the measured locations [59]. This
phenomenon gives rise to an almost identical bulk distribution, which
may be utilized as an initial condition for the Kuramoto equation (1).

However, on a short time scale of a few hundred milliseconds, fre-
quencies fluctuate around the synchronous behavior, leading to distinct
dynamics for each recording [60]. These fluctuations can be studied by
the increments of frequencies [60,61]

𝛥𝑓𝜏 (𝑡) = 𝑓 (𝑡 + 𝜏) − 𝑓 (𝑡) , (3)

where 𝜏 is the incremental time lag. The increment of a time series
is useful in that it eliminates the deterministic trends and focuses on
the stochastic characteristics of the fluctuations on the shortest time
scales. In contrast to the frequency distribution, Fig. 2(b) shows that the
frequency increment distributions, here with the example for the BEKO
case, are characterized by much heavier tails than those of Gaussian

distributions (leptokurtic with kurtosis 𝜅 > 3). This non-Gaussian

4 
behavior suggests that the system is genuinely non-equilibrium, as
power generation and consumption change over a long time scale,
e.g. over one day. Then, similarly to the super-statistics of the overall
energy distribution of a non-equilibrium system contained in a vol-
ume (which can be regarded as a superposition of Gibbs distributions
pertaining to equilibrium states reached in small local cells [62]), it
has been demonstrated that the observed non-Gaussian distribution for
frequency increment may also be explained by super-statistics if one
divides the increment time series into snippets [60]. Due to the relation
between the frequency and its increments (3), the super-statistics of
𝛥𝑓𝜏 (𝑡) may also be connected to the super-statistics of the frequency
itself. The reason for this might be, as Ref. [62] showed, that the origin
of 𝑞-Gaussian behavior in complex systems can be explained by a super-
statistical framework, as manifested for the frequency. To demonstrate
how stability analysis and related fields can benefit from the previous
findings, we briefly present the main idea of super-statistics following
Ref. [60], and the results for the Hungarian data-sets.

Fig. 2(b) showed that the Kurtosis of the whole frequency increment
time series is larger than 3 (i.e. leptokurtic). If one looks at a shorter
increment time series of time length 𝛿𝑡, it should be expected that
t a short enough intermediate time scale 𝛿𝑡 = 𝑇 , local equilibrium
haracterized by a Gaussian distribution will be reached. For even
horter increment time series with 𝛿𝑡 < 𝑇 , larger deviations from
he mean do not have sufficient chances to occur, so the distribution
s intrinsically platykurtic, characterized by thinner tails (𝜅 < 3). In
ractice, one may slice the whole increment time series corresponding
o the time lag 𝜏 into snippets of time duration 𝛿𝑡 and study their
veraged kurtosis at this time scale 𝛿𝑡:

𝛿𝑡(𝛥𝑓𝜏 ) =

⟨ 1
𝛿𝑡
∑𝑗𝛿𝑡

𝑖=(𝑗−1)𝛿𝑡+1 𝛥𝑓
4
𝜏 (𝑖)

( 1
𝛿𝑡
∑𝑗𝛿𝑡

𝑖=(𝑗−1)𝛿𝑡+1 𝛥𝑓
2
𝜏 (𝑖))2

⟩

𝛿𝑡

. (4)

At an intermediate time scale 𝛿𝑡 = 𝑇 when 𝜅𝛿𝑡=𝑇 = 3, the snippets
just resemble the local equilibrium cells of non-equilibrium thermal sys-
tems, only that the underlying equilibrium distribution is now assumed
to be Gaussian. In accord with super-statistics [60,62], the frequency
increment distribution can be expressed as superposed by a spectrum
of Gaussian distributions:

𝑝(𝛥𝑓𝜏 ) = ∫

∞

0
𝐹 (𝛽)𝑝𝑁

(

𝛥𝑓𝜏 |𝛽
)

𝑑𝛽 , (5)

here 𝑝𝑁 (𝛥𝑓𝜏 |𝛽) =
√

𝛽
2𝜋 𝑒

− 1
2 𝛽𝛥𝑓

2
𝜏 . To properly separate different time

scales, a caveat to note is that this super-statistics analysis is valid only
if the super-statistical variation time scale 𝑇 is much greater than the
local relaxation time scale 𝑑, as strong auto-correlation will hinder the
reaching of a local equilibrium. The time scale 𝑑 can be determined by
the auto-correlation function

𝐶(𝑡 − 𝑡′) =
⟨

(𝛥𝑓𝜏 (𝑡) − ⟨𝛥𝑓𝜏⟩)(𝛥𝑓𝜏 (𝑡′) − ⟨𝛥𝑓𝜏⟩)
⟩

(6)

ia 𝐶(𝑑) = 𝑒−1𝐶(0).
In Figs. 3(a) and (b), the kurtosis indeed shows a transition from

𝛿𝑡 < 3 to 𝜅𝛿𝑡 > 3 as 𝛿𝑡 increases, and for 𝜏 = 0.04, 𝑇 ≫ 𝑑 is strictly
eld. Fig. 3(c) further shows the spectrum 𝐹 (𝛽) = 𝐹 (𝛽)∕max(𝐹 (𝛽)) with

𝛽 values extracted from the inverse variance of the snippets at 𝛿𝑡 = 𝑇 :

𝛽𝑇 (𝑡) =
1

⟨𝛥𝑓 2
𝜏 (𝑡)⟩𝑇 − ⟨𝛥𝑓𝜏 (𝑡)⟩2𝑇

, (7)

here the index 𝑇 means that the averages are performed over snippets
f length 𝑇 . For 𝜏 = 0.04 seconds, since 𝑇 ≫ 𝑑 holds, the spectra 𝐹 (𝛽)-
span wide distributions and are distinct for recordings of different

ocations. When we increase the time lag to 𝜏 = 1 second, 𝑇 -s become
only a few times larger than the corresponding 𝑑-s, and the spectra are
much narrower.

Based on the analyzed measurements we conclude that
(i) a 𝑞-Gaussian is the best fit for the distribution of grid frequencies,
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Fig. 3. (a) Snippet kurtosis, (b) connected auto-correlation functions, and (c) spectra of frequency increments of different locations at time lags 𝜏 = 0.04 seconds (solid curves) and
𝜏 = 1 second (dashed curves). In (a), the super-statistical time scales are 𝑇BEKO = 0.562688, 𝑇DETK = 1.13538, 𝑇GYOR1 = 0.680575, 𝑇HEVI1 = 0.748079, 𝑇PECS2 = 0.423406, 𝑇SAFA1 = 0.668517,
𝑇SAJO = 0.821327, and 𝑇SZHE = 0.822878 when 𝜏 = 0.04, and are 𝑇BEKO = 9.50441, 𝑇DETK = 6.21044, 𝑇GYOR1 = 8.35081, 𝑇HEVI1 = 6.68289, 𝑇PECS2 = 8.2801, 𝑇SAFA1 = 8.44334, 𝑇SAJO = 7.52667,
and 𝑇SZHE = 12.4069 when 𝜏 = 1.
(ii) the frequency increment time series display spatial–temporal
correlations. Hence, power system stability studies should extend their
analysis beyond uncorrelated noise to correlated noise.

(iii) further research is necessary to examine whether fluctuation of
grid frequency in simulations leads to super-statistical behavior.

2.2. Heterogeneity in capacity distributions

Representing the heterogeneous nature of the transmission infras-
tructure is typically done either by using the grid model of a country
of synchronous area or by modifying the coupling strengths of the Ku-
ramoto equation according to a pre-specified probabilistic distribution.
In this section, a brief overview is provided for both aspects, along
with addressing some limitations or deficiencies found in the existing
literature.

Olmi et al. used the representations of the Italian [45] and the
German [47] power grids, which were good examples of heterogeneous
topologies; however, the coupling strength was assumed to be identical
for all lines. Similarly, a uniform coupling strength, 1600MW, repre-
senting the capacity of a 380 kV line was used in the examinations of
Menck et al. [63]. Schäfer et al. [64] generated two homogeneous and
a heterogeneous representation of the Turkish power grid, using the
magnitude of power flows to represent the coupling strengths.

Real-world, heterogeneous grid topologies were used by Nishikawa
and Motter [65], who showed that there is a non-trivial structure in
the coupling among the generator nodes and that the coupling strength
spans across many orders of magnitude. Large synthetic networks were
generated with characteristics of real power grids exhibiting hierar-
chical modular structure, low clustering and topological dimensions,
which resemble medium-distribution networks, to examine synchro-
nization processes [48]. Kim et al. showed a heterogeneous distribution
of load and generation in their paper [66], which were investigated
under the condition of varying coupling strength, concluding that con-
centration of power generation at a single location is likely to increase
vulnerability to perturbations. As a case study of the German power
grid, they also reveal that the modular structure of the power grid does
affect its vulnerability [67]. Ódor and Hartmann [7] concluded that
too weak quenched heterogeneity of couplings among oscillators is not
sufficient to observe power-law tailed distributed cascades. They also
pointed out, that too strong heterogeneity destroys the synchronization
of the system.

To demonstrate the nature of heterogeneity in terms of power
capacity, the ENTSO-E 2016 data-set was analyzed, which includes
information about the voltage level and the thermal power limit of the
transmission lines. Using these two, the theoretical maximum trans-
mittable power can be determined. The above-mentioned data was
available for 8511 lines, of which 4024 were 220 kV lines, 592 were
275 kV lines and 3738 were 400 kV lines; these three groups represent
the vast majority of infrastructural elements to be considered. As it is
shown in Fig. 4, the capacity distribution of three selected voltage levels

display rather different characteristics, with mean capacities at 254,

5 
480 and 1144 MW for 220, 275 and 400 kV, respectively. The average
power capacity of the lines in the ENTSO-E 2016 model, considering all
voltage levels is 666.4MW an atypical value for any widely used voltage
level.

In many studies the generators/load capacities are assumed to be
constant and are described by Gaussian centered 𝜔𝑖-s or by some
bimodal distributions. To demonstrate the nature of heterogeneity and
universality in terms of nodal behavior, generation and load values
of the ENTSO-E 2016 and the 2021 US [68] data set are presented. (It
has to be noted that these values represent a single, but characteristic
operational point of the European and the US power system.) As one
can see in Figs. 5 and 6, nodal behavior is far from being uniform and
can be approximated by stretched exponential functions in wide MW
ranges of the form

𝑝(𝑘) ∝ exp(−(𝑘∕𝐵)𝛽 ) , (8)

with similar exponents. But PL-s can also be fitted for rather wide
power ranges, with different success and exponents. The generator
distributions stretch to MW values higher than the load distributions
and exhibit a sharp cutoff if we assume PL-s. The fitting of Pareto-like
functions was not successful.

Based on the analysis of the European and US grid datasets we find
that

(i) using a homogeneous capacity in studies could easily under- or
overestimate the strength of the coupling between nodes, thus giving
misleading results on stability;

(ii) distribution of generation and load nodes is far from being
uniform, thus heterogeneous modeling of capacities is necessary.

2.3. Topological structure of the European and North American HV power-
grids

As a standard characterization of networks, first the comparison of
the degree distributions of the EU16 (European 2016) [69], US16
(North-American 2016) [69], EU22 (European 2022) [70], USNW (US
North-West) [71] graphs are shown. Fig. 7 summarizes the results,
obtained using logarithmic binning for the different grids.

The PDFs look rather similar, with the outlier EU22 case, which
decays almost as fast as the USNW, which is just the subset of the US
power-grid: the standard North American HV grid, used in many graph
theoretical papers [71]. Whether exponential, power-law or mixed
distributions are the best fits to cumulative probability distributions of
node degrees is still somewhat controversial, as pointed out in [72].
Here results of the common census for HV networks are presented,
fitting with exponential functions in the following form:

𝑝(𝑘) ∝ exp(−𝛾𝑘) . (9)

Note that other authors [29,73] often consider the cumulative distri-
butions 𝑝(𝑘 > 𝐾) to achieve lower fluctuations in the tails. As Fig. 7
shows, the 𝛾 parameters are rather close to the value 𝛾 = 0.5. The 𝛾

parameters are summarized in Table 2.
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Fig. 4. Distribution of thermal power limits of transmission lines included in the
ENTSO-E 2016 database. Contributions of 220, 275 and 400 kV lines are highlighted
as the biggest populations. The distribution does not reflect the combined length of
voltage levels, only the number of lines.

Fig. 5. Distribution of nodal generations and loads of the ENTSO-E 2016 database.
Power-law fits were applied to the [20–300] MW range in the inset figure. The
exponents of the fits are: 𝑦 = 1.16(5) both for generation and load curves, respectively.
The load data shows an earlier size cutoff, which is an important characteristic of
traditional power systems, where energy is produced in a centralized manner by large
power plants to increase efficiency, and energy is consumed in a distributed manner.
The main figure shows the same data, with stretched exponential fits, according to
Eq. (8) in the range [10–1000] MW.

In what follows, the topological heterogeneity of power-grid net-
works are tested through their community structures [74,75]. Com-
munities in networks are usually groups of nodes that are more densely
connected to each other than to the rest of the network and as such,
they can be considered as unique patterns of the heterogeneity that
characterizes the topology. One might intuitively assume that a net-
work with a greater number of communities exhibits increased di-
versity, potentially resulting in weaker synchronization on a global
level. However, due to the size dependence of 𝑅 in the case of the
crossover synchronization transition of the second order Kuramoto
model, small communities synchronize at smaller couplings 𝐾 [76],
leading to Chimera states, as shown in Section 3.2.

We used openly available data for the power grid network from
ENTSO EU transmission data set from 2016 and from 2022, combined
6 
Fig. 6. Distribution of nodal generations and loads of the 2021 US [68] database. Inset:
different power-law fits were applied to the [5–200] MW for generators and [50–200]
MW for loads. The load data shows an earlier size cutoff as for the European case. The
main figure shows the same data with stretched exponential fit according to Eq. (8) in
the range [20–500] MW.

Fig. 7. Basic graph invariants of the power grids investigated. Main plot: degree
distribution, using logarithmic binning. Exponential fits of form Eq. (9) for 5 < 𝑘 < 15
resulted in similar 𝛾 values. In the inset, the graph dimension analysis results of these
graphs are presented. PL fits of form Eq. (11) for 5 < 𝑟 < 20 provide similar 𝑑-s, except
for the EU22 case, plotted by red triangles. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

with OpenStreetMap for power-line identifications. For detecting the
community structure, the hierarchical Louvain [77] method was chosen
due to its speed and scalability, as this algorithm runs almost in linear
time on sparse graphs, like power grids. The Louvain algorithm is based
on modularity optimization. For finding communities on a higher level,
the Leiden [78] algorithm optimizing an extended modularity quotient
with a resolution parameter was also applied. The modularity quotient
of a network is defined by [79]

𝑄 = 1
𝑁⟨𝑘⟩

∑

𝑖𝑗

(

𝐴𝑖𝑗 − 𝛤
𝑘𝑖𝑘𝑗
𝑁⟨𝑘⟩

)

𝛿(𝑔𝑖, 𝑔𝑗 ), (10)

where 𝐴𝑖𝑗 is the adjacency matrix, 𝑘𝑖, 𝑘𝑗 are the degrees of nodes 𝑖
and 𝑗, and 𝛿(𝑔𝑖, 𝑔𝑗 ) is 1 when 𝑖 and 𝑗 were found to be in the same
community, or 0 otherwise. 𝛤 is the resolution parameter that allows

https://transmission-system-map.entsoe.eu/
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Table 1
Community sizes and average degrees for different data-sets, for the resolution 𝛤 = 10−4.
Sizes are referred to here as number of nodes in the respecting community. These
structures correspond to the maps plotted on Figs. 9, 11, 12.

Community Size
(EU22)

⟨𝑘⟩
(EU22)

Size
(EU16)

⟨𝑘⟩
(EU16)

Size
(US16)

⟨𝑘⟩
(US16)

1 924 2.72 4285 2.83 3511 2.79
2 479 2.70 2526 2.66 2829 2.98
3 2016 2.84 1527 2.67 1640 2.72
4 698 3.06 1461 2.72 1484 2.69
5 595 2.94 1455 2.69 1396 2.93
6 1059 2.66 966 2.77 1165 2.58
7 1237 2.68 638 2.57 768 2.97
8 16 2.81 289 2.06 710 2.57
9 332 2.18 277 2.99 673 2.70
10 55 2.74 26 3.07 390 2.84
11 – – 22 3.31 230 2.43
12 – – 6 2.66 194 2.69

a more generalized community detection, merging together smaller
communities.

Community detection algorithms based on modularity optimization
are believed to get the closest to the true modular properties of the
network. With 𝛤 = 1, ≈ 425 communities were found, with maximum
modularity score of 𝑄𝐸𝑈16 = 0.92724. For reference, the results were
compared with the 2016 USA network (obtained similarly), which has
larger number of nodes in the giant component: 14 990 connected by
20 880 links. At 𝛤 = 1 for USA, 460 communities gave high modularity
score of 𝑄𝑈𝑆16 = 0.92525. This result is in concordance with the
previously calculated modularity [25]. To obtain community structures
similar to the real TSO areas of typically 10–12 domains, was rerun
with 𝛤 < 1. Good agreement has been found as discussed in Section 2.4
and shown on Figs. 8, 9, 10, 11.

We could also compare the communities of 2016 power-grids with
that of a 2022 EU one. This network, at first glance, seemed to be
multiple connected, containing sub-networks of different voltage levels.
After the unification at nodes with the same node IDs, a graph was
obtained, which seems to be incomplete in several ways. It does not
contain nodes with 𝑘 = 27 as the 2016 one, but 𝑘𝑚𝑎𝑥 = 14. Furthermore,
looking at the node degree and edge length distributions, it appears
that links are missing from the middle 𝑘 region. More importantly, the
node number of the largest component is just 𝑁𝐸𝑈22 = 7.411, contrary
to the 𝑁𝐸𝑈16 = 13.478, even though the graphical map shows nodes
in North Africa as well as in the Middle East, see Fig. 11. So, care
should be taken about the faithfulness of EU22. This is just presented
for an interesting comparison and to follow the topological changes
in the latest European data. The graph dimension, measured by the
breadth-first search algorithm, defined by

⟨𝑁𝑟⟩ ∼ 𝑟𝑑 , (11)

where 𝑁𝑟 is the number of nodes that are at a topological (also called
‘‘chemical’’) distance 𝑟 from each other, resulted in 𝑑 < 2, unlike for
the other networks, see Table 2. It is also shown that the 𝑁𝑟 results in
the inset of Fig. 7.

The EU22 is also less heterogeneous than the other networks, calcu-
lating the highest modularity with 𝛤 = 1 results in a score of 𝑄𝐸𝑈22 =
0.93346 from the contribution of only 92 communities.

The community structures of the investigated networks are sum-
marized in Table 1. The EU16 and US16 graphs exhibit very similar
structures, the same number of communities for the same resolution
𝛤 = 10−4 and their size distribution is also very similar as one can see
on Fig. 8. This graph also shows the effect of 𝛤 on the size distributions:
lower 𝛤 results in faster decays. However, the EU22 network is different
both in the lower number of communities and their fast decaying
distribution.

In conclusion, our results imply that
7 
Fig. 8. Community size distributions at different 𝛤 resolution parameters for the
different networks shown in the legend.

(i) the continent sized synchronous areas exhibit similar PLs in their
degree distributions,

(ii) however, sub-systems show deviations from these patterns, lead-
ing to synchronization at smaller couplings. Thus, these sub-systems are
more likely to show Chimera states.

2.4. Topographical structure of the power-grids

In order to relate topological communities to the topography, the
modularity scores have been calculated with a lower 𝛤 resolution. The
results are shown in Figs. 9–12. Note that the complete EU 2016 data-
set (Fig. 9) and the giant components of that does not take into account
only above 120 kV lines (Fig. 10). At the same 𝛤 , 11 shows visibly
different community structure, even though only around 50 nodes were
removed from 13 478 nodes and the number of links were reduced
to 17 749 not significantly far from 18 393. The modularity score also
shows little difference. However, on the two maps, it is noticeable that
the Apennine Peninsula is split into multiple smaller communities. It
is also worth mentioning that when a higher threshold is introduced
(e.g. lines below 220 kV are left out), the network falls completely
apart. Considering ‘‘true’’ communities with 𝛤 = 1, the resulting
modularity score cannot get higher than 𝑄𝐸𝑈16−𝑠ℎ𝑎𝑡𝑡𝑒𝑟𝑒𝑑 = 0.2499 with
344 communities. In the case of the 2016 base network with removed
links, was used. The community boundaries were compared to the real
topology of the European power grid to identify the main topological
reasons for the results.

In Fig. 9, two cut-sets are shown, the separation of the British
Isles and the Iberian Peninsula from the rest of continental Europe.
In the first case, the cut-set consists of three HV direct current lines,
while in the second case, it is four AC lines (220 kV and 400 kV).
The split in Northern Italy is along the 400 kV connection between La
Spezia–Vignole–Baggio, an important north–south interconnection. The
community in Southern Norway mainly consists of 330 kV lines, in con-
trast to the surrounding areas’ 400 kV subsystems. Finally, the imprints
of history (e.g. the Iron Curtain) can be recognized in Central Eastern
Europe, which is separated from the Western part of the continental
system, but is also distinguishable from the IPS/UPS (Integrated Power
System, Unified Power System) cooperation of the former Soviet Union.

Fig. 10 shows similar results for the British Isles, the Iberian Penin-
sula and the separation between Central Eastern and Western Europe. A
notable difference is that the cut-set between Italy and its neighboring
countries is formed according to the political borders in this case.
Northern and Southern parts of Italy are separated along bottlenecks
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Fig. 9. All nodes of the European power-grid 2016 data separated into 12 communities,
taking into account admittance, using a giant component of 13 478 nodes connected by
18 393 links, maintaining the modularity score close to the maximum 𝑄 ≈ 0.795.

formed by the Piombino–Poggio, Piombino–Calenzano and the Candia–
Teramo 400 kV lines. The split in Denmark is along the parallel 400 kV
connections between Ferslev and Jardelund. Finally, the former Soviet
states are separated from the rest of Europe along the different trans-
mission voltage levels, which is 330 kV in the former and 220 and 400 kV
in the latter region.

A partially different result of community detection is seen in Fig. 11,
where the effects of HV direct current lines is more emphasized. This
is clearly seen (i) in the case of Ireland and Great Britain with the
Auchencrosh–Ballycronanmore (the Moyle Interconnector) and
Deeside–Woodland (the East–West Interconnector) lines, (ii) for the is-
land of Sardinia with the Bonifacio–S.Teresa (SACOI) and Fiume Santo–
Latina (SAPEI) lines, and (iii) in the Southern Scandinavian region
with the Fraugde–Herslev (Storebælt HVDC), Bjæverskov–Bentwisch
(KONTEK), Kruseberg–Herrenwyk (Baltic Cable) connections. Other
easily identifiable cut-sets are seen on the western borders of Turkey
(Filippi–N.Santa single and Maritsa Iztok 3–Hamitabat double 400 kV
lines) and between Europe and Africa (Fardioua–Tarifa line).

As for the power grid of the USA (Fig. 12), similar telltale signs
are seen. In general, the outlines of the Eastern, the Western and
the Texas Interconnection can be recognized, but both large areas
are divided into more sub-parts. The northern and southern parts of
the Western Interconnection are divided along the cut-set of 500 kV
lines. The state of Colorado lacks significant interconnections, and
thus it forms a separate community. The three largest communities
of the Eastern Interconnection indicate the use of different dominant
transmission voltage levels, namely 345 kV in the northwestern region,
and a mix of 161 , 230 and 500 kV in the remaining parts. The other three
large communities (two in the US Northeast and Florida) are rather
the results of their geographical properties. An interesting feature of
the map is that the orange community includes both Eastern and
Western parts; the backbone of this community is a 230 kV topological
formation.

In conclusion the detection of communities helps in understand-
ing the unique patterns and the heterogeneity that characterizes the
topology and thus the dynamic behavior of the system. The topo-
graphical maps can also help the research community to identify those
sub-systems that are suitable for the detection of Chimera states.

3. Numerical modeling

To further elaborate the findings of Section 2, especially in relation
to the heterogeneity of network structures and the role of communi-
ties, dynamical simulations were performed. To solve the differential
8 
Fig. 10. Nodes of the European HV power-grid 2016 data giant component. Excluding
lines below 120 kV and using 𝛤 = 10−4 resolution, taking into account the admittance
values the graph is separated into 19 communities. A giant component of 13 420 nodes
linked with 17 749 edges emerges, giving a modularity score at this resolution 𝑄 ≈ 0.785.

Fig. 11. All nodes of the European power-grid 2022 data giant component, separated
into 10 communities, taking into account the admittances and 7411 nodes connected
by 10 912 edges without smaller voltage level edges, maintaining the modularity score
𝑄 ≈ 0.854.

Fig. 12. All nodes of the USA power-grid 2016 data giant component, separated into
12 communities, taking into account the admittances and 14 990 nodes connected by
20 880 edges, maintaining the modularity score 𝑄 ≈ 0.859 with resolution 𝛤 = 1 × 10−4.

equations, the adaptive Bulirsch–Stoer stepper [80] was applied, which
provides more precise results for large 𝐾 coupling values than the
fourth-order Runge–Kutta method. The solutions depend on the 𝜔0
𝑖
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values and become chaotic, especially at the synchronization transition.
Thus, to obtain reasonable statistics, we needed strong computing
resources, using parallel codes running on GPU clusters.

To obtain larger synchronization, the initial state was set to be
phase synchronized: 𝜃𝑖(0) = 0, but due to the hysteresis one can also
investigate other uniform random distributions like: 𝜃𝑖(0) ∈ (0, 2𝜋). The
nitial frequencies were set as: �̇�𝑖(0) = 𝜔0

𝑖 .
To characterize the phase transition properties, both the phase

rder parameter 𝑅(𝑡) and the frequency spread 𝛺(𝑡), referred to as the
requency order parameter, were studied. The Kuramoto phase order
arameter was measured:

(𝑡𝑘) = 𝑟(𝑡𝑘) exp
[

𝑖𝜃(𝑡𝑘)
]

= 1∕𝑁
∑

𝑗
exp

[

𝑖𝜃𝑗 (𝑡𝑘)
]

. (12)

Sample averages for the phases

𝑅(𝑡𝑘) = ⟨𝑟(𝑡𝑘)⟩ (13)

and for the variance of the frequencies

𝛺(𝑡𝑘, 𝑁) = ⟨

1
𝑁

𝑁
∑

𝑗=1
(𝜔(𝑡𝑘) − 𝜔𝑗 (𝑡𝑘))2⟩ (14)

were determined, where 𝜔(𝑡𝑘) denotes the mean frequency within
each respective sample. To locate the synchronization crossover points
better, their variances were determined: 𝜎(𝑅) and 𝜎(𝛺).

3.1. Modeling admittances and weights in incomplete databases

In order to carry out synchronization calculations for detailed case
studies, missing admittances and graph edge weights must be esti-
mated. One of the possible solutions is to use the physical parameters
of the grid if they are known. The backbones of the EU16 and US16
networks are based on the SciGRID project [69], which relies on the
2016 statistics of ENTSO-E and data obtained from OpenStreetMap
(.osm) files. The backbone of the EU22 network is based on the data
from the PyPSA-Eur python package [70], which is a model and dataset
of the European power system at the transmission network level. The
transmission network data is based on a cleaned-up extraction of the
Interactive ENTSO-E Transmission Network Map, extracted using Grid-
Kit [81]. Since acquiring data from .osm files is not always possible,
the resulting data set may be incomplete. In the following a possible
solution is presented to substitute the missing data.

The power grid may be interpreted as a graph, where the nodes
correspond to generators (power sources) or loads (consumers). At the
same time, the transmission lines may be considered the edges in the
graph. First, the largest connected component of the grid was consid-
ered. Selecting the known voltage data for the links makes it possible
to estimate the rest of voltages. Averaging the available voltages in the
giant component yields the average voltage, 𝑉 of the known links. As
the simplest possible assumption, this average value was entered in the
system as the voltage level for every unknown entry in the database.

This is a different approach compared to what is used typically in
synthetic grid models. The original SciGRID database extracts topolog-
ical data from OpenStreetMap files using an SQL script. The method
proposed here, however, builds a model dominantly relying on physical
properties. Drawing on our expertise in grid modeling, specific values
of the relevant quantities (such as the resistance, the reactance and the
capacitance) are proposed as the function of the voltage level. For the
exact values used, see Table 2.

Electrical parameters could be calculated by grouping the edges
in different voltage levels and performing the calculations on the
common voltage level of the network. Three groups are identified
in the networks, as shown in Table 2: 120 kV, 220 kV, 380 kV. The
boundaries between these categories are defined as the arithmetic mean
of two neighboring voltage levels. A link will have the characteristic
parameters of the category it is closest to. That is, every link below
120 kV is part of the first category, having the parameters of the 120 kV
 P
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Table 2
Characteristic values of relevant physical quantities in the modeled European power
grids.

Voltage [kV] Rc [Ω∕km] Xc [Ω∕km] Cc [nF∕km] Pc [MW]

120 0.0293 0.1964 9.4 170
220 0.0293 0.2085 9.0 360
380/400 0.0286 0.3384 10.8 1300

lines. Every line above 380 kV is part of the 380 kV class. The category
for rest of the links will be decided based on the closeness to the above-
defined boundaries. Section 2.B shows that the voltage levels with the
biggest population (220 kV and 380−400 kV) represent approx. 90% of
the lines.

Having decided the voltage class of a line, the relevant quantities
are computed:

𝑅𝑖𝑗 =
(

𝑈𝑐
𝑈𝑖𝑗

)2
⋅ 𝐿𝑖𝑗 ⋅ 𝑅𝑐𝑘 (15)

𝑖𝑗 =
(

𝑈𝑐
𝑈𝑖𝑗

)2
⋅ 𝐿𝑖𝑗 ⋅𝑋𝑐𝑘 (16)

𝑖𝑗 = 𝑃𝑐𝑘 , (17)

here 𝑅𝑐𝑘 , 𝑋𝑐𝑘 are characteristic values belonging to level 𝑘 and 𝑈𝑐 =
220 kV is the most common level for the European grid. The weight of
the link from node 𝑖 to 𝑗 is defined as:

𝑊𝑖𝑗 =
𝑃𝑖𝑗

𝑋𝑖𝑗

/⟨ 𝑃
𝑋

⟩

, (18)

where 𝑃𝑖𝑗 is the nominal power of the link on its voltage level, and 𝑋𝑖𝑗
is its impedance. The normalization factor has been chosen to be the
average value of this fraction calculated for the whole network.

PDFs of admittances of the European EU16 grid, and for com-
parison, those of the US16 North-American power-grid [69,81] have
been calculated. The data was obtained by the same data completion
method as described above. With this extension, in the case of the
2016 North-American network, 9527 (45%) new links were estimated.
For the 2016 European and 2022 European networks, 5167 (28%) and
40 (0.3%) new links with admittances were estimated, respectively.
Fig. 13 demonstrates that the US16 and EU16 grids exhibit very similar
heavy tails. These can be fitted by PL-s of the form 𝑝(𝑌 ) ∝ 𝑌 −𝑥 in
he region: 102 < 𝑌 < 104 [1/ohms], characterized by the exponents:
𝐸𝑈16 = 2.03(3), 𝑥𝑈𝑆16 = 2.05(5).

Furthermore, a Lomax-II [82], related to Pareto distribution in the
orm:

(𝑌 ) = 𝐴
𝛬

[

1 + 𝑌
𝛬

]−(𝐴+1)
, 𝑌 ≥ 0, (19)

an describe even the low 𝑌 range, with a high goodness factor: 𝑅2 =
.987 for EU16, and 𝑅2 = 0.994 for US16 as shown in the inset of Fig. 13.
owever, in case of the EU22 data, a different behavior is detected

n the intermediate 𝑌 range. This is probably the consequence of the
ncomplete data-set. We have not tried to apply a numerical tail fit.

These heavy tails of lines with larger admittances are the conse-
uence of very short edge lengths in the databases, which can take
alues of a few meters. In the case of the EU22 data-set, the same
ehavior was not identified. The reason might be that it does not
ontain all HV links. The incompleteness of the EU22 graph is obvious,
ecause it contains only 10298 edges, as compered to the EU16 case,
hich has 18393 edges. This is so, even though the EU22 grid includes

erritories of North Africa and the Middle East as well, see Fig. 11.
To investigate this further, the cable lengths of the 2016 SciGRID

ata bases were analyzed. Fig. 14 shows the PDF-s of 𝑙max∕𝑙, which
ould be proportional to the admittances if cables were uniform with

he same characteristic resistances. The distributions are very similar.
ut the tails break down more rapidly than for the admittance distribu-
ions, suggesting a stretched exponential. The right inset, showing the

DF of lengths in meters, exhibits larger curvatures on the log–log plot.

https://www.power.scigrid.de/pages/downloads.html
https://pypsa-eur.readthedocs.io/en/latest/


B. Hartmann et al. Sustainable Energy, Grids and Networks 39 (2024) 101491 
Fig. 13. Probability distributions of the calculated admittances of the 2016 European
(bullets), North-American (boxes) SciGRID and the 2022 EU (stars) networks. Dashed
line: least squares PL fit to the EU16, dotted line: for the US16, in the region:
[100..10000] 1/ohm. The inset shows the same data, fitted with the form Eq. (19),
which works well down to the 10 [1/ohm] region.

Fig. 14. Probability distributions of the inverse of cable lengths of the European and
North-American SciGRID networks. Left inset: the same data plotted on the − ln(𝑝)
scale to compare with the stretched exponential assumption that would correspond to
a straight line tail. Right inset: probability distributions of the line lengths in meters.

3.2. Frustrated synchronization, Chimeras in modules of the European
power-grid

Heterogeneity is known to cause so-called frustrated synchroniza-
tion [34,36], such that for a given control parameter set certain do-
mains exhibit (at least partial) synchronization, while others do not.
This is also related to the so-called Chimera states [38,83], in which
subsets of an ensemble of identical, interacting oscillators exhibit dis-
tinct dynamical states: such as a group of synchronized oscillators and
a group of desynchronized ones [84]. First chimeras were defined in
systems of identical oscillators [84,85]. In this case, a non-zero phase
lag term is essential for partial synchronization to occur. Realistic
models, however, require oscillators to be heterogeneous and chimera-
like states have also been reported in complex networks [83,86–88],
in human [89–91], as well as in C-elegans [92] neural networks. By
focusing on power-system networks, this study follows the second line
of chimera definition for heterogeneous systems.
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Fig. 15. Community dependence of 𝑅 for different 𝐾-s at 𝛼 = 0.4 in the EU22
network shows different phase synchronizations, corresponding to ‘‘Chimera’’ states.
The thick black curve denotes the synchronization of the whole system, which grows
the slowest by increasing 𝐾. Inset: Fluctuations of the same data, showing different
synchronization points. The thick black curve, representing the whole system does not
exhibit the rightmost peak, as for the EU16 power-grid [91], instead the community
2, corresponding to the Nordic power-grid.

The main criterion to call partially synchronized states as chimera-
like stated in [87] is ‘‘the coexistence of coherent and incoherent
domains in space’’. The second significant feature of chimera-like states
is the difference of averaged oscillator frequencies. Usually, the oscil-
lators belonging to the coherent domains have identical frequencies;
while oscillators from incoherent domains are characterized by higher
or lower mean frequencies.

To show the appearance of this phenomenon, we calculate 𝑅(𝑡 → ∞)
and the variance 𝜎(𝑅) in the communities determined before. In the
first step, 𝑖 = 1,… , 12 community decomposition was used and 𝑅𝑖(𝑡 →
∞) was determined. Then it was averaged over the numerical solution
of 100 independent self-frequency samples and for 1200 < 𝑡 ≤ 𝑡max =
2000 time steps in the steady state, following an initialization from fully
phase synchronized states. As Fig. 15 shows, 𝑅𝑖(𝑡 → ∞) values increase
as the value of 𝐾 grows in a different way in different communities.
The curves exhibit distinct fluctuation peaks, shown in the inset. That
means for a given 𝐾, some communities are synchronized at least
partially, while others are not. Note that in the EU16 network, for the
communities 3, 6, 7 the Kuramoto order-parameter remains close to 1,
and there is no peak in 𝜎(𝑅) [91]. This is a consequence of having only
a small number of nodes within the communities (see Table 2), which
shows synchronization for very small 𝐾s.

On the other hand, in the case of the EU22 graph, communities
1, 2 synchronize at higher 𝐾-s than the whole system. Therefore,
the simple size dependence law, which is valid for independent finite
graphs [93], does not seem to hold. But non-trivial topological features
of the EU22 graph cause that the Turkish and the Nordic region are less
synchronized for a given 𝐾. This has also been found to be true with a
larger damping factor 𝛼 = 3 in the solution of the Kuramoto equation.

In the case of disordered initial conditions, the fluctuation peaks
shift to the right with respect to the above results. Also, the steady state
values are lower than those of the global order parameter, which ex-
hibits a hysteresis and meta-stable states near the crossover point [25].

Similar results were found for the frequency spread order parameter
𝛺, without a peak in the variances 𝜎(𝛺) as in previous publications [25,
93].
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Table 3
Summary of fitted data for the power grids. 𝑑 denotes the graph dimension (11), 𝑄
(at different 𝛤 values) is the modularity quotient (10), ⟨𝑘⟩ is the average degree, 𝛾 is
the decay exponent of the exponential of the degree distribution (9), 𝛽 is the power
capacitance exponent of the generators (8), 𝑥 is the admittance decay exponent.

Network 𝑑 Q (1) Q (10−4) ⟨𝑘⟩ 𝛾 𝛽 𝑥

USNW 2.3(1) 0.929 – 2.67 0.55 – –
EU16 2.6(1) 0.927 0.829 2.729 0.49 0.25 2.03(3)
US16 2.4(1) 0.925 0.734 2.785 0.49 0.25 2.05(5)
EU22 1.8(2) 0.933 0.693 2.779 0.56 – –

4. Discussion

In summary, similar graph and electrical characteristics were ob-
tained for the North American and European power-grids. The relevant
graph dimensions are: 𝑑, modularity: 𝑄, average degree: ⟨𝑘⟩, coefficient
of the exponential degree form: 𝛾, capacitance stretched exponent of
the generators: 𝛽, and the PL exponent of cable admittances: 𝑥 as
summarized in Table 3. The agreement is remarkable, although the
EU22 values are a bit off, due to the incomplete data-set. These findings
strengthen the hypothesis that both continent-sized power grids will
behave similarly, when studying their stability.

There is an interesting deviation in the community level synchro-
nization behavior of EU22 from the EU16 [91] results and expectations,
based on synchronization of the second order Kuramoto model on
lattices. Namely, the Turkish and Nordic communities synchronize
at higher global couplings than the whole system, in contrast with
expectations by the synchronization crossover size dependence of inde-
pendent, lattice systems [93]. This is related to the special topological
connections of these regions in the EU22 power-grid network. It also
strengthens the necessity to simulate power-grids carefully, by checking
approximations in the interactions.

Besides, a good agreement was found between the frequency fluc-
tuation analysis of the Hungarian MAVIR data 𝑞 ≃ 1.1 (entropic index)
and the results for the Nordic power-grid see Ref. [51].

The above discussed findings confirm that (i) heterogeneity of the
models is substantial to create realistic dynamical simulations, and that
(ii) the size of the grid under study does affect the outcomes of these
simulations, despite the existence of underlying universalities.

5. Conclusions

This study described the detailed analysis of the European and North
American power-grids on the network topological and topographi-
cal level. In addition, the dynamical solution of the swing equation
was provided. It was shown that when having augmented databases,
weights could be assigned to capacities to emulate the heterogene-
ity of real networks. These weights could be fed as additional input
into the simulations. This represents an important enhancement com-
pared to previous results, where only the network’s topology was
considered [25].

The similarities in the graph topological electrical measures be-
tween the power-grids of the two continents, especially the cable length
distributions, suggest a universality hypothesis. It breaks down as we
go towards the lower level sub-systems or as the consequence of under-
sampling, like subsets of real data. The latter can very well be observed
for the obviously incomplete EU22 power-grid case, which provides
results resembling smaller regions. An example is the USNW, corre-
sponding to the North-West states of the US. In general, universality
is expected to occur in the infinite system size limit, according to
statistical physics [94] and the behavior in smaller systems can deviate
from it. Our extensive, continent-sized analysis provides an opportunity
to observe this phenomenon.

Our non-perturbative analysis goes beyond linear approximations or
DC models. It reflects a non-trivial relation of heterogeneity and syn-

chronization stability. Community structure decomposition, followed

11 
by the solution of equations of motion, do not only reveal frustrated
synchronization patterns, but also the non-trivial topological effects on
the synchronization stability.

A frequency fluctuation analysis of Hungarian data was also pre-
sented. These fluctuations can be described by similar super-statistics
and 𝑞 exponent, as the ones published for the Nordic grid region [59,
60]. This finding also strengthens the universality hypothesis we ad-
vance in this paper.

While the findings of this study reveal the importance of prop-
erly modeling the heterogeneity of grid parameters, it is also debated
(e.g. in [95]), whether the previously introduced order parameters
capture all transitions. In our ongoing studies we extend the details of
the models presented in this paper to reveal the shortcomings of various
order parameters

Our future work will focus on the extension of the Kuramoto model
with the amplitude of nodal voltages, which would allow a more
accurate calculation in case of networks consisting of multiple voltage
levels. We expect this development to open up new research questions,
e.g. the involvement of LV distribution networks, the analysis of hybrid
AC–DC systems and the search for network bottlenecks (i.e. Braess’
paradox).
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