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In fair division problems, we are given a set 𝑆 of 𝑚 items and a set 𝑁 of 𝑛 agents with individual 
preferences, and the goal is to find an allocation of items among agents so that each agent finds 
the allocation fair. There are several established fairness concepts and envy-freeness is one of the 
most extensively studied ones. However envy-free allocations do not always exist when items are 
indivisible and this has motivated relaxations of envy-freeness: envy-freeness up to one item (EF1) 
and envy-freeness up to any item (EFX) are two well-studied relaxations. We consider the problem 
of finding EF1 and EFX allocations for utility functions that are not necessarily monotone, and 
propose four possible extensions of different strength to this setting.
In particular, we present a polynomial time algorithm for finding an EF1 allocation for two 
agents with arbitrary utility functions. An example is given showing that EFX allocations need 
not exist for two agents with non-monotone, non-additive, identical utility functions. However, 
when all agents have monotone (not necessarily additive) identical utility functions, we give a 
pseudo-polynomial time algorithm that always finds an EFX allocation of chores. As a step toward 
understanding the general case, we discuss two subclasses of utility functions: Boolean utilities 
that are {0, +1}-valued functions, and negative Boolean utilities that are {0, −1}-valued functions. 
For the latter, we give a polynomial time algorithm that finds an EFX allocation when the utility 
functions are identical.

1. Introduction

Fair division of items among competing agents is an important and well-studied problem in Economics and Computer Science. 
There is a set 𝑆 of 𝑚 indivisible items and a set 𝑁 of 𝑛 agents with individual preferences, and the goal is to find an allocation 
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of items among agents so that each agent finds the allocation fair. There are several fairness concepts in the literature that use 
different metrics to measure the degree of equity or fairness. Among them, the possibly most compelling one is envy-freeness (EF), 
introduced by Foley [28] and Varian [42]. Every agent has a utility value for each subset of items: the 𝑖-th agent has a utility 
function 𝑢𝑖 ∶ 2𝑆 → ℝ. An allocation is envy-free if each agent finds the utility of her bundle at least as much as that of any other 
agent. Although envy-freeness provides a very natural criterion for the fairness of an allocation, such a solution does not always exist 
as shown by the following simple example: just consider an instance with two agents and a single item having positive utility for 
both of them. In order to circumvent the possible non-existence of envy-free allocations, two natural relaxations of envy-freeness 
have been studied.

In the setting where all utilities are non-negative (items are called goods in such a case) Lipton et al. [37] and Budish [19]
introduced the notion of envy-freeness up to one good (EF1) which allows the presence of envies between agents – however any 
envy must be removable by deleting some good from the envied agent’s bundle. Note that no good is really removed from the envied 
agent’s bundle, this is just a thought experiment to measure the amount of envy the envious agent has towards the envied agent.

EF1 may seem too weak as a relaxation of envy-freeness. Consider the simple example given below where there are three goods 
𝑎, 𝑏, 𝑐 and two agents with additive1 utilities. Both agents value 𝑐 three times as much as 𝑎 or 𝑏. The allocation where agent 1 gets 
{𝑎} and agent 2 gets {𝑏, 𝑐} is EF1 – however this allocation does not seem fair towards agent 1 since, e.g., item 𝑏 could be also given 
to agent 1.

𝑎 𝑏 𝑐

𝐴𝑔𝑒𝑛𝑡 1 1 1 3
𝐴𝑔𝑒𝑛𝑡 2 1 1 3

As a less permissive relaxation, Caragiannis et al. [22] proposed envy-freeness up to any good (EFX), which requires that an 
agent’s envy towards another bundle can be eliminated by removing any good from the envied bundle. Observe the subtle difference 
between the above definitions: when utility functions are additive, EF1 requires that for any pair of agents 𝑖, 𝑗, agent 𝑖’s envy towards 
agent 𝑗 can be eliminated by removing agent 𝑖’s most valued good from agent 𝑗 ’s bundle, while EFX requires that the same should 
hold even after removing agent 𝑖’s least valued good from agent 𝑗 ’s bundle. In the example given above, the allocation where one 
agent gets {𝑎, 𝑏} and the other agent gets {𝑐} is the only EFX allocation. Thus EFX, though strictly weaker than EF, is strictly stronger 
than EF1. As remarked in [20]: “Arguably, EFX is the best fairness analog of envy-freeness of indivisible items”.

Most works on fair division focused on allocation of ‘goods’, i.e., utilities are always non-negative and monotone: the utility of any 
set is at least as much as each of its subsets. However, in practice, it might easily happen that an item is a chore, i.e., this is a task or 
responsibility that all agents find cumbersome, so the utility of a chore is zero or negative – hence utilities are no longer monotone. 
We can also have mixed items: so an item has positive utility for some agent and negative for another agent. Furthermore, the utility 
functions are not necessarily additive, hence the utility of a subset of items might be completely independent of the utilities of the 
individual items within.

Our work continues the study of fair allocations in the setting of having both indivisible goods and chores, and aims at discovering 
this direction by showing the existence or non-existence of fair solutions in various settings. We also focus on the setting where all 
items are chores: so all utilities are non-positive here. As in the case of goods, envy-free allocations of chores need not exist. Consider 
the simple example with two agents and a single chore that neither agent wants to do: one of the agents has to be assigned this chore 
and she envies the other agent who is assigned no chore.

We formally define EF1 and EFX allocations in the generalized setting of goods and chores in Section 2. Roughly speaking, an 
allocation 𝜋 = ⟨𝜋(1), … , 𝜋(𝑛)⟩ is EF1 if for any pair of agents 𝑖, 𝑗: either (1) 𝑖 does not envy 𝑗 ’s bundle, or (2) there is some item 
𝑠 ∈ 𝜋(𝑖) ∪ 𝜋(𝑗) such that 𝑖 likes 𝜋(𝑖) − 𝑠 at least as much as 𝜋(𝑗) − 𝑠. Similarly, 𝜋 is EFX if for any pair of agents 𝑖, 𝑗: (1) 𝑖 does not 
envy 𝑗 ’s bundle, or (2) 𝑖 likes 𝜋(𝑖) at least as much as 𝜋(𝑗) − 𝑠 for any ‘good’ 𝑠 ∈ 𝜋(𝑗) and 𝑖 likes 𝜋(𝑖) − 𝑠 at least as much as 𝜋(𝑗)
for any ‘chore’ 𝑠 ∈ 𝜋(𝑖). Note that in the general case, whether an item 𝑠 is a good or chore in 𝑋 ⊆ 𝑆 is determined by the marginal 
utility that 𝑠 brings to the set 𝑋 − 𝑠. We refer to Section 2 for details.

1.1. Previous work

We only discuss works that are closely related to our results, for a detailed survey of the fair division literature we refer the reader 
to [3,4,9,38,43]. Further related work appears in Section 1.4.

EF1 allocations Envy-freeness and its relaxations were mainly considered for monotone additive utility functions. The idea of envy-
freeness up to one good (EF1) implicitly appeared in the paper of Lipton et al. [37], and then was explicitly introduced and analyzed 
by Budish [19].

When allocating divisible goods, the maximum Nash welfare solution selects an allocation that maximizes the product of utilities 
and it is known to have strong fairness guarantees; moreover it also satisfies Pareto optimality.2 Caragiannis et al. [22] showed that 
the maximum Nash welfare solution is fair in the indivisible setting as well – in the sense that it forms an EF1 allocation. In [12], 

1 For additive utilities, the utility of a subset 𝑋 of items is the sum of utilities of items in 𝑋.
2

2 An allocation is Pareto optimal if there is no other allocation which makes some agent strictly better off while making no agent worse off.



Theoretical Computer Science 1002 (2024) 114596K. Bérczi, E.R. Bérczi-Kovács, E. Boros et al.

Table 1

Landscape of results on EF1 allocations, where bold letters represent the results obtained in the 
present paper. A utility function 𝑢 is called Boolean if 𝑢(𝑋) ∈ {0, 1} for every 𝑋 ⊆ 𝑆 , and negative 
Boolean if −𝑢 is Boolean.

Utilities
Additive Non-additive

Monotone Non-monotone Monotone Non-monotone

Identical

Exists [7] Exists [7]
Exists [37]

(goods)

Open
Double monotonic [16]
𝒏= 𝟐 (Theorem 1)

Boolean (Theorem 7)

Neg. Boolean (Theorem 9)

Non-identical

Open
Double monotonic [16]
𝒏= 𝟐 (Theorem 1)

Boolean (Theorem 7)

Barman et al. developed a pseudo-polynomial3 time algorithm for finding EF1 allocations of goods that are also Pareto optimal, and 
showed that there always exists an allocation that is EF1 and fractionally Pareto optimal.

Much less is known when the utility functions are non-additive or non-monotone. Caragiannis et al. [21] considered allocation 
problems in which a set of divisible or indivisible goods or chores has to be allocated among several agents. Aziz et al. [6] focused 
on additive cardinal utility functions, and presented computational hardness results as well as polynomial-time algorithms for testing 
Pareto optimality for subclasses of utility functions. Barman and Krishnamurthy [11] considered additive and submodular utilities for 
goods, and provided fairness guarantees in terms of the maximin share, i.e., the maximum value that an agent can ensure for herself 
by partitioning the goods into 𝑛 bundles, and receiving a minimum valued bundle. Benabbou et al. [13] considered the allocation 
of indivisible goods to agents that have monotone, submodular, non-additive utility functions. They showed that utilitarian socially 
optimal (hence Pareto optimal), leximin, and maximum Nash welfare allocations are all EF1 if in addition the utility functions have 
binary marginal gain.

Bogomolnaia et al. [17] compared the performance of the Competitive and the Egalitarian division rules for problems involving 
divisible goods and chores. Aziz et al. [7] proposed a similar scenario in the indivisible setting, and gave a generalization of the 
decentralized round robin algorithm that finds an EF1 allocation when the utilities are additive. Bhaskar et al. [16] showed that an 
EF1 allocation exists for the so-called doubly monotonic utilities,4 that is, each agent 𝑖 can partition 𝑆 into sets 𝐺𝑖 and 𝐶𝑖 such that 
for any 𝑋 ⊆𝑆 , we have 𝑢𝑖(𝑋) ≤ 𝑢𝑖(𝑋 + 𝑠) for 𝑠 ∈𝐺𝑖 and 𝑢𝑖(𝑋) ≥ 𝑢𝑖(𝑋 + 𝑠) for 𝑠 ∈ 𝐶𝑖. Garg et al. [32] considered EF1 allocations with 
the notion of Pareto-optimality, and gave a strongly polynomial-time algorithm for computing an EF1+PO allocation when agents 
have at most two utility values for the chores. Nevertheless, the existence of an EF1 allocation in the non-monotone, non-additive 
setting is still open even for identical utility functions. For a brief summary of results on EF1 allocations, see Table 1.

EFX allocations Caragiannis et al. [22] introduced envy-freeness up to any good (EFX) as a strictly stronger fairness criterion 
than EF1, and provided a connection to pairwise maximum share guarantee for additive utilities over indivisible goods. Plaut and 
Roughgarden [40] investigated a stronger variant of EFX, referred to as EFX0 in [35], for monotone utilities in the setting of goods.5

They proved that an EFX0 solution always exists when the utility functions are identical. This result yields a protocol that produces an 
EFX0 allocation of goods for two players with general and possibly distinct utilities. Barman and Krishnamurthy [11] extended their 
result by proving the existence of EFX0 allocations for additive utility functions when all agents have the same preference toward 
goods. Chaudhury et al. [23] verified the existence of an EFX0 solution for three agents with monotone, additive, non-identical 
utilities. For monotone submodular utilities with binary marginal gains, Benabbou et al. [13] noted that EF1 implies EFX, thus their 
results guarantee the existence of EFX allocations (that are Pareto optimal as well) for any such instance. However, they showed 
that even an EF1 and utilitarian optimal allocation may violate the EFX0 condition. Amanatidis et al. [5] studied 2-value instances, 
that is, when there are at most two possible values for the goods, and proved that any allocation that maximizes the Nash welfare 
is EFX0. They proposed an algorithm called Match & Freeze for finding an EFX0 solution that is based on repeatedly computing 
maximum matchings and freezing certain agents. Furthermore, they gave an algorithm for instances where the utilities of each agent 
take values in an interval such that the ratio between the maximum and the minimum value is at most 2. Mahara [39] verified the 
existence of EFX allocations when each agent has one of two additive utilities. Berger et al. [14] extended the result of [23] for the 
case of nice-cancelable utilities. The case of three agents with two general monotone utilities and one MMS-feasible utility, which 
generalizes nice-cancelable utilities, was settled by Akrami et al. [1].

In general, most of the results on EFX0 allocations of goods cannot be straightforwardly translated into analogous results on 
allocations of chores. Therefore only a few results are known for the setting of mixed items when both goods and chores are present. 
A utility function is tertiary if 𝑢(𝑠) ∈ {−1, 0, +1} for every 𝑠 ∈ 𝑆 . It is not difficult to see that for tertiary utilities EF1 implies EFX, thus 
the Double Round Robin Algorithm of [7] provides such a solution. For the same setting, a different algorithm that provides a solution 

3 A pseudo-polynomial time algorithm has running time polynomial in the numeric value but not necessarily in the length of the input.
4 Double monotonic utilities are also referred to as separable or itemwise monotone in the literature.
5 EFX0 differs from EFX in requiring that any envy should disappear even when leaving out an item with utility 0 from the envied agent’s bundle. In other words, 
3

agent 𝑖 cannot envy agent 𝑗 if there exists 𝑠 ∈ 𝜋(𝑗) with 𝑢𝑖(𝑠) = 0.
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Table 2

Landscape of results on different variants of EFX allocations, where bold letters represent the results obtained in the 
present paper. A utility function 𝑢 is called Boolean if 𝑢(𝑋) ∈ {0, 1} for every 𝑋 ⊆ 𝑆 , and negative Boolean if −𝑢 is 
Boolean.

Utilities
Additive Non-additive

Monotone Non-monotone Monotone Non-monotone

Identical

Exists [40]
(goods)

Exists [30]
(chores)

Exists [30,33]
Exists [40] (goods)
Exists (Theorem 4)

(chores)

Not exists (Theorem 2)

Boolean (Theorem 7)

Neg. Boolean (Theorem 9)

Non-identical
Open

𝑛 = 3 [23] (goods)
Tertiary [7]

Open
𝑛 = 2 [30,33]
Tertiary [7]

Open
𝑛 = 2 [40] (goods)
(0,1)-SUB [13]

𝒏= 𝟐 (Corollary 6)

(chores)

Not exists (Theorem 2)

Boolean (Theorem 7)

which is Pareto optimal as well was given by Alexandrov and Walsh [2]. They also showed that an EFX allocation can be found in 
polynomial time for identical additive utilities. However, these results seem to be difficult to extend to the EFX0 case. Chen and Liu 
[25] analyzed the fairness of leximin solutions in allocation of indivisible chores. Their model contained itemwise monotone utility 
functions, a concept which is equivalent to the double monotonic setting discussed earlier. They verified that a leximin solution 
is EFX for combinations of goods and chores for agents with identical itemwise monotone utilities. However, their notion of EFX 
solutions is slightly different from ours.6

Gourvès et al. [33] and Freeman et al. [29] studied equitable (EQ) allocations7 and their relaxations, equitable up to one good

(EQ1) and equitable up to any good (EQX). Freeman et al. [30] introduced analogous notions of (approximate) equitability of chores. 
By combining the results of [33] and [30], an algorithm for finding an EQX allocation of mixed items for additive utilities is at 
hand. When agents have identical utilities, an allocation satisfies EFX if and only if it satisfies EQX, thus this immediately implies 
the existence of an EFX allocation of mixed items for additive identical utilities. By the protocol in [40], this result guarantees EFX 
allocations of mixed items for two agents with additive (not necessarily identical) utilities. Li et al. [36] showed that EFX allocations 
always exist when the agents’ utilities share an identical ordering of chores. Gafni et al. [31] proved an analogous result for leveled 
utilities, that is, when a set of chores with a higher cardinality is always more burdensome than a set with a lower cardinality. Yin 
and Mehta [44] studied the existence of EFX allocation of chores for three agents when two of them have additive utilities with 
further restrictions, while the third agent has a general monotone utility function.

Despite all the efforts made, the existence of an EFX/EFX0 allocation remains an intriguing open question for at least four agents 
with distinct, monotone, additive utility functions. For a summary of results on EFX allocations, see Table 2.

1.2. Our results

We study the existence or non-existence of EF1 and EFX allocations for non-monotone utility functions. Our first main result 
(Theorem 1) is a polynomial-time algorithm that finds an EF1 allocation for two agents with arbitrary (i.e., non-monotone, non-
additive, non-identical) utility functions.

Prior work on EFX/EFX0 allocations has mainly concentrated on the cases when all items are either goods or chores and accord-
ingly, the notion of EFX solutions was not defined for the mixed setting. Such utility functions appear naturally in applications. As 
an example, consider a conference where items correspond to submissions, and agents correspond to possible reviewers. A reviewer 
might prefer to check certain papers over other papers, and possibly to avoid writing a report on some of them. Even more, the 
preferences of the reviewers can be completely different: while checking a submission could be a nightmare for one, another might 
be happy to read it.

It turns out that finding the right generalization for non-additive, non-monotone utility functions is not straightforward. In 
Section 2, we propose four possible extensions possessing different characteristics, called EFX0

0, EFX0
−, EFX+

0 , and EFX+
−

8; here EFX0
0

implies both EFX0
− and EFX+

0 , and both EFX0
− and EFX+

0 imply EFX+
−. The definitions differ in whether items with a marginal value of 

0 are taken into account or not, both on the side of the envious and the envied agents. Unfortunately, Theorem 1 does not generalize 
even to EFX+

− allocations. We show that this is so even when the utility functions are identical (Theorem 2).
In the setting of goods (all utilities are non-negative), it is known [40] that EFX0 allocations always exist for monotone identical 

utility functions. Equitable allocations (EQ) and relaxations (EQ1 and EQX) of chores were studied in [30]. It was shown there that 
when all utilities are additive and identical then EFX+

− allocations always exist. We strengthen these results by showing that, in 
the setting of chores as well, EFX+

0 allocations always exist for monotone identical utility functions (Theorem 4), and that such an 
allocation can be computed in pseudo-polynomial time. By using the cut-and-choose-based protocol of Plaut and Roughgarden [40], 

6 In [25], an allocation 𝜋 is called EFX if for any pair 𝑖, 𝑗 of agents such that 𝑖 envies 𝑗, 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗) − 𝑠) for all 𝑠 ∈ 𝜋(𝑗) ∩𝐺𝑖 and 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗) + 𝑠) for all 
𝑠 ∈ 𝜋(𝑖) ∩𝐶𝑖 . It is worth mentioning that for additive utilities, this definition is closely related to our notion of EFX-ness.

7 An allocation 𝜋 is equitable if 𝑢𝑖(𝜋(𝑖)) = 𝑢𝑗 (𝜋(𝑗)) for all agents 𝑖, 𝑗.
4

8 We remark that EFX+
− and EFX0

− , when restricted to monotone, additive utilities, correspond to the usual notion of EFX and EFX0 solutions, respectively.
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our result guarantees an EFX+
0 allocation of chores for two agents with monotone non-identical utility functions (Corollary 6). Note 

that a monotone utility function 𝑢 in the setting of chores is monotone non-increasing, i.e., 𝑋 ⊆ 𝑌 implies 𝑢(𝑋) ≥ 𝑢(𝑌 ).
As a further step towards understanding the general case, we consider special subclasses of utility functions: Boolean and negative 

Boolean utilities. Boolean utilities are non-monotone, non-additive {0, 1}-valued functions, while a function 𝑢 is negative Boolean if 
−𝑢 is Boolean. In other words, one can think of Boolean functions as yes/no functions for bundles of items, not only for single items. 
Such utility functions are particularly interesting as they model simple yes/no preferences for goods and chores, respectively. The 
two classes share a lot of similarities, but the proofs of the corresponding results are significantly different: while the Boolean case 
is an easy observation (Theorem 7), the negative Boolean case requires a careful approach that only works for the case of identical 
utility functions (Theorem 9).

1.3. Techniques: old and new

EF1 allocations In the setting of goods and monotone utilities, EF1 allocations always exist [37]. The algorithm in [37] assigns goods 
to bundles one-by-one, while maintaining the property that the partial allocation constructed so far is EF1. At a general step of the 
algorithm, if no unenvied agent exists, then there exists a cycle of envy among agents, and bundles are shifted along such cycles 
until no cycle of envy remains. Otherwise the next good is added to the bundle of an unenvied agent. The key observation is that 
although such a step might result in new envies, those can be eliminated by removing the good she just received, so the resulting 
partial allocation remains EF1.

In Section 3.1, we prove that EF1 allocations always exist for 𝑛 = 2 with arbitrary utilities. Our approach resembles the standard 
moving-knife procedure. More specifically, we show that for any ordering 𝑠1, … , 𝑠𝑚 of all the items in the entire set 𝑆 , there is an EF1 
allocation 𝜋 = ⟨𝜋(1), 𝜋(2)⟩ such that {𝜋(1), 𝜋(2)} = {{𝑠1, … , 𝑠𝑡}, {𝑠𝑡+1, … , 𝑠𝑚}} for some 0 ≤ 𝑡 ≤ 𝑚. This is shown by a combinatorial 
argument on prefixes and suffixes of the ordered set ⟨𝑠1, … , 𝑠𝑚⟩. We show an example in Section 3.2 that an EFX allocation need not 
exist for 2 agents with non-monotone, non-additive utilities - even when the utility functions are identical.

EFX allocations As mentioned earlier, Plaut and Roughgarden [40] showed the existence of EFX0 allocations for monotone (non-
decreasing) utilities in the setting of goods and identical utility functions. They construct such an allocation using the so-called 
leximin++ solution that selects the allocation which maximizes the minimum utility, and subject to this, maximizes the size of the 
bundle with minimum utility, subject to this, maximizes the second minimum utility, subject to this, maximizes the size of the bundle 
with the second minimum bundle, and so on. Our proof of existence of EFX+

0 allocations for monotone (non-increasing) utilities in 
the setting of chores is different from this and is similar to the method used in [24] where another proof of the above result from 
[40] was given - this method also leads to a pseudo-polynomial time algorithm to find an EFX+

0 allocation.
Our construction resembles the one in [37] to show the existence of EF1 allocations. Interestingly, the construction in [37] never 

breaks up any bundle obtained in a partial allocation whereas the construction in [24] and ours may need to – this is because we need 
to maintain an EFX allocation which is more demanding than an EF1 allocation. Thus items allocated to agents in earlier rounds may 
go back to the pool of unallocated items in some later round. However we show a potential function (same as the one in [24]) that 
improves as our algorithm progresses – thus our algorithm always converges. This result is given in Section 4.

The solutions for Boolean and negative Boolean utilities are based on different approaches. While the Boolean case is an easy 
observation but the resulting algorithm is not efficient, the negative Boolean case is solved via a non-trivial improvement step. Our 
results for these special cases are given in Sections 5.1 and 5.2, respectively. We hope that the tools used for these special cases will 
prove useful in other situations as well. Finally, the main results and the most important open problems are summarized in Section 6.

1.4. Other related work

Let us further mention several results that are closely related to fair divisions of indivisible items. Aziz et al. [8] considered 
an assignment problem in which agents have ordinal preferences over objects and these objects are allocated to the agents in a 
fair manner. They introduced several proportionality and envy-freeness concepts for discrete assignments, and gave polynomial-
time algorithms to check whether a fair assignment exists for several of these fairness notions. In [18], Brams et al. discussed a 
problem setting with two agents who have strict rankings over an even number of indivisible items. They proposed algorithms to 
find balanced allocations of these items that maximize the minimum rank of the items that the agents receive, and are envy-free 
and Pareto optimal, if such allocations exist. In [41], Plaut and Roughgarden provided a thorough description of the communication 
complexity of computing a fair allocation with indivisible goods for every combination of fairness notion, utility function class, and 
number of players.

Another line of research considered group envy-freeness instead of pairs of agents. Berliant et al. [15] generalized envy-freeness 
for equal-sized groups of agents. Conitzer et al. [26] introduced the concept of group fairness, which implies most existing notions of 
individual fairness. They further proposed two relaxations similar to EF1, and showed that certain local optima of the Nash welfare 
function satisfy both relaxations and can be computed in pseudo-polynomial time by local search. However, [26] assumed that all 
the items are goods, that is, items for which agents have positive utility. While the notion of group fairness and group envy-freeness 
can be extended to the case when chores are also present, the same does not hold for the relaxations. Aziz et al. [7] proposed fairness 
concepts that are suitable to handle the case of goods and for chores as well. In the same spirit, Aziz and Rey [10] defined several 
5

variants and relaxations of group fairness and group envy-freeness when both goods and chores are present.
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2. Preliminaries

2.1. Basic notation

Throughout the paper, 𝑁 denotes a set of 𝑛 agents and 𝑆 denotes a set of 𝑚 indivisible items. For simplicity, we will denote a 
subset of items by simply enumerating its elements without separating them, e.g. 124 stands for the set {1, 2, 4}.

Each agent 𝑖 ∈𝑁 has a utility function 𝑢𝑖 ∶ 2𝑆 → ℝ that represents agent 𝑖’s preferences over the subsets of items. We assume 
that the utility functions are given with evaluation oracles which, for any input set 𝑋 ⊆ 𝑆 , output 𝑢𝑖(𝑋). The complexity of an 
algorithm is then measured by the total number of oracle calls and conventional elementary steps. We always assume that the empty 
set has value 0, that is, 𝑢𝑖(∅) = 0 for 𝑖 ∈ 𝑁 . We say that the utility functions are identical if 𝑢𝑖(𝑋) = 𝑢𝑗 (𝑋) for every 𝑋 ⊆ 𝑆 and 
𝑖, 𝑗 ∈𝑁 , and non-identical if this condition does not necessarily hold. A utility function 𝑢 is called additive if 𝑢(𝑋) =

∑
𝑠∈𝑋 𝑢(𝑠) for 

every subset 𝑋 ⊆ 𝑆 , and it is monotonely non-decreasing if 𝑢(𝑋) ≤ 𝑢(𝑌 ) whenever 𝑋 ⊆ 𝑌 ; similarly, it is monotonely non-increasing if 
𝑢(𝑋) ≥ 𝑢(𝑌 ) whenever 𝑋 ⊆ 𝑌 . For simplicity, we will use non-additive and non-monotone as a shorthand for not necessarily additive

and not necessarily monotone, respectively.
The marginal utility of an item 𝑠 ∈ 𝑆 ⧵𝑋 towards a subset 𝑋 ⊆ 𝑆 is denoted by 𝑢(𝑠|𝑋) and is defined as 𝑢(𝑠|𝑋) = 𝑢(𝑠 +𝑋) − 𝑢(𝑋). 

For a set 𝑋 ⊆ 𝑆 and agent 𝑖, we denote by 𝑆+
𝑖
(𝑋) = {𝑠 ∈𝑋 ∣ 𝑢𝑖(𝑠|𝑋 − 𝑠) > 0}, 𝑆−

𝑖
(𝑋) = {𝑠 ∈𝑋 ∣ 𝑢𝑖(𝑠|𝑋 − 𝑠) < 0}, and 𝑆0

𝑖
(𝑋) = {𝑠 ∈

𝑋 ∣ 𝑢𝑖(𝑠|𝑋 − 𝑠) = 0} the sets of items in 𝑋 whose deletion decreases, increases, and does not change the utility of agent 𝑖 on set 𝑋, 
respectively. We omit the index 𝑖 when the utility functions are identical.

An allocation of 𝑆 is a function 𝜋 ∶𝑁 → 2𝑆 assigning to each agent a (possibly empty) subset of items that altogether give a 
partition of 𝑆 , that is, 𝜋(𝑖) ∩𝜋(𝑗) = ∅ for distinct 𝑖, 𝑗 ∈𝑁 and 

⋃
𝑖∈𝑁 𝜋(𝑖) = 𝑆 . It is worth emphasizing that all items must be allocated. 

We will refer to the set 𝜋(𝑖) as the bundle of agent 𝑖. Agent 𝑖 envies agent 𝑗 if 𝑢𝑖(𝜋(𝑖)) < 𝑢𝑖(𝜋(𝑗)).

2.2. Fairness in the non-monotone, non-additive setting

There are several ways to characterize fairness, probably the most natural one being envy-freeness, that requires that no agent 
envies another agent:

(EF) For any 𝑖, 𝑗 ∈𝑁 inequality 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗)) holds.

Budish [19] provided a relaxation of envy-freeness by introducing the concept of envy-freeness up to one good in the context of 
monotone allocations. Aziz et al. [7] extended the definition to the non-monotone case by requiring that an agent’s envy can be 
eliminated by removing some item either from her own bundle or the envied one:

(EF1) For any 𝑖, 𝑗 ∈𝑁 at least one of the following holds:

(i) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗))
(ii) 𝑢𝑖(𝜋(𝑖) − 𝑠) ≥ 𝑢𝑖(𝜋(𝑗) − 𝑠) for some 𝑠 ∈ 𝜋(𝑖) ∪ 𝜋(𝑗).

Note that EF1 is strictly weaker than EF.
As a less permissive relaxation of envy-freeness, Caragiannis et al. [22] introduced the notion of envy-freeness up to any good in 

the context of goods and monotone utilities. According to their definition, an allocation is EFX if for any pair 𝑖, 𝑗 of agents, agent 𝑖
may envy agent 𝑗, however this envy would vanish upon removing any good from 𝑗 ’s bundle which is positively valued by agent 𝑖:

(EFX) For any 𝑖, 𝑗 ∈𝑁 at least one of the following holds:

(i) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗))
(ii) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗) − 𝑠) for all 𝑠 ∈ 𝑆+

𝑖
(𝜋(𝑗)).

Plaut and Roughgarden [40] introduced a stronger variant called EFX0, where the envy should vanish upon removing any good 
from 𝑆+

𝑖
(𝜋(𝑗)) ∪ 𝑆0

𝑖
(𝜋(𝑗)). For non-monotone, additive utility functions with goods and chores Aziz et al. [7] proposed to call an 

allocation EFX if for any pair 𝑖, 𝑗 of agents, 𝑢𝑖(𝜋(𝑖) − 𝑠) ≥ 𝑢𝑖(𝜋(𝑗) − 𝑠) for any 𝑠 ∈ 𝑆+
𝑖
(𝜋(𝑗)) ∪ 𝑆−

𝑖
(𝜋(𝑖)). Note that the latter definition 

does not require anything to hold for items 𝑠 ∈ 𝑆 with 0 marginal utility value.
Extending the definition to non-monotone, non-additive utilities is not immediate. We introduce four variants called EFX0

0 , EFX0
−, 

EFX+
0 , and EFX+

−. Here EFX0
0 implies both EFX0

− and EFX+
0 , and both EFX0

− and EFX+
0 imply EFX+

−. That is, EFX0
− and EFX+

0 are 
independent in some sense.

(EFX0
0) For any 𝑖, 𝑗 ∈𝑁 at least one of the following holds:

(i) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗))
(ii) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗) − 𝑠) for every 𝑠 ∈ 𝑆+

𝑖
(𝜋(𝑗)) ∪ 𝑆0

𝑖
(𝜋(𝑗)),
6

𝑢𝑖(𝜋(𝑖) − 𝑠) ≥ 𝑢𝑖(𝜋(𝑗)) for every 𝑠 ∈ 𝑆−
𝑖
(𝜋(𝑖)) ∪ 𝑆0

𝑖
(𝜋(𝑖)), and 𝑆+

𝑖
(𝜋(𝑗)) ∪ 𝑆0

𝑖
(𝜋(𝑗)) ∪ 𝑆−

𝑖
(𝜋(𝑖)) ∪ 𝑆0

𝑖
(𝜋(𝑖)) ≠ ∅.
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It is not difficult to see that EFX0
0 is strictly weaker than EF, but it is strictly stronger than EF1. However, EFX0

0 is too much to ask 
for: with such a definition, the simple example with two agents and two goods with identical additive utilities 𝑢(1) = 1 and 𝑢(2) = 0
has no EFX0

0 allocation. Thus we introduce two, slightly weaker variants.

(EFX0
−) For any 𝑖, 𝑗 ∈𝑁 at least one of the following holds:

(i) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗))
(ii) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗) − 𝑠) for every 𝑠 ∈ 𝑆+

𝑖
(𝜋(𝑗)) ∪𝑆0

𝑖
(𝜋(𝑗)), 𝑢𝑖(𝜋(𝑖) − 𝑠) ≥ 𝑢𝑖(𝜋(𝑗)) for every 𝑠 ∈ 𝑆−

𝑖
(𝜋(𝑖)), and 𝑆+

𝑖
(𝜋(𝑗)) ∪

𝑆0
𝑖
(𝜋(𝑗)) ∪ 𝑆−

𝑖
(𝜋(𝑖)) ≠ ∅.

(EFX+
0 ) For any 𝑖, 𝑗 ∈𝑁 at least one of the following holds:

(i) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗))
(ii) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗) − 𝑠) for every 𝑠 ∈ 𝑆+

𝑖
(𝜋(𝑗)), 𝑢𝑖(𝜋(𝑖) − 𝑠) ≥ 𝑢𝑖(𝜋(𝑗)) for every 𝑠 ∈ 𝑆−

𝑖
(𝜋(𝑖)) ∪𝑆0

𝑖
(𝜋(𝑖)), and 𝑆+

𝑖
(𝜋(𝑗)) ∪

𝑆−
𝑖
(𝜋(𝑖)) ∪ 𝑆0

𝑖
(𝜋(𝑖)) ≠ ∅.

EFX0
− and EFX+

0 are symmetric, therefore these definitions represent in a certain sense dual concepts. Nevertheless, we will see that 
results for one of them do not automatically carry over to the other. Note that EFX0

0 implies both EFX0
− and EFX+

0 .
Finally, let us introduce a further weaker condition that is the easiest to work with.

(EFX+
−) For any 𝑖, 𝑗 ∈𝑁 at least one of the following holds:

(i) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗))
(ii) 𝑢𝑖(𝜋(𝑖)) ≥ 𝑢𝑖(𝜋(𝑗) − 𝑠) for every 𝑠 ∈ 𝑆+

𝑖
(𝜋(𝑗)), 𝑢𝑖(𝜋(𝑖) − 𝑠) ≥ 𝑢𝑖(𝜋(𝑗)) for every 𝑠 ∈ 𝑆−

𝑖
(𝜋(𝑖)), and 𝑆+

𝑖
(𝜋(𝑗)) ∪𝑆−

𝑖
(𝜋(𝑖)) ≠

∅.

Clearly, EFX+
− is implied by both EFX0

− and EFX+
0 . For additive, monotone utility functions, EFX introduced in [22] and EFX0

introduced in [40] are identical to EFX+
− and EFX0

−, respectively. We further note that if 𝑠 ∈ 𝑆0
𝑖
(𝑋) then 𝑢𝑖(𝑋 − 𝑠) = 𝑢𝑖(𝑋). Therefore 

agent 𝑖 cannot envy agent 𝑗 in an EFX0
0 or EFX0

− allocation if 𝑆0
𝑖
(𝜋(𝑗)) ≠ ∅, and similarly, agent 𝑖 cannot envy agent 𝑗 in an EFX0

0 or 
EFX+

0 allocation if 𝑆0
𝑖
(𝜋(𝑖)) ≠ ∅. In this sense, parts (𝑖) and (𝑖𝑖) of definitions EFX0

0, EFX0
−, and EFX+

0 describe non-disjoint situations.
In any of the above cases, if agent 𝑖 envies agent 𝑗 with respect to allocation 𝜋, i.e., 𝑢𝑖(𝜋(𝑖)) < 𝑢𝑖(𝜋(𝑗)), then we refer to this envy 

as an EFX envy if 𝑖 and 𝑗 satisfy condition (ii) of the corresponding definition, otherwise it is called a non-EFX envy.

2.3. Relation to EFX and EFX0

Although the notion of EFX0
0 allocations seems to be reasonable, such an allocation does not necessarily exist even in very simple 

examples. EFX0
− allocations provide a natural extension of the EFX0 property, and EFX+

0 serves as a symmetric counterpart. Finally, 
EFX+

− provides a generalization of EFX allocations.
Let us explain why the non-emptiness condition in the (𝑖𝑖) part of the definitions is necessary. Consider an example with two 

agents and two items with identical utilities, namely 𝑢(∅) = 0, 𝑢(1) = 𝑢(2) = 2 and 𝑢(12) = 1. Then for the allocation 𝜋(1) = ∅ and 
𝜋(2) = 12, agent 1 envies agent 2. Then all of the sets 𝑆−

1 (𝜋(1)), 𝑆
0
1 (𝜋(1)), 𝑆

0
1 (𝜋(2)), and 𝑆+

1 (𝜋(2)) are empty, thus condition (𝑖𝑖)
without the non-emptiness assumption is a tautology in all cases. Nevertheless, the allocation does not seem to be fair towards agent 
1 in any way.

The peculiar conditions for the non-emptiness of the corresponding sets have not arisen in previous works for two reasons. On 
the one hand, earlier results mainly focused on monotone (non decreasing) utilities. But most importantly, they mostly considered 
additive utilities, and in such cases the non-emptiness conditions are redundant. Indeed, if 𝑢𝑖(𝜋(𝑖)) < 𝑢𝑖(𝜋(𝑗)) and 𝑢𝑖 is additive, then 
at least one of the sets 𝑆−

𝑖
(𝜋(𝑖)) and 𝑆+

𝑖
(𝜋(𝑗)) is non-empty.

3. Non-monotone and non-additive utilities

In this section we consider arbitrary utilities. Somewhat surprisingly, EF1 allocations always exist for two agents and can be found 
in polynomial time even in this general setting; our algorithm is presented in Section 3.1. The existence of an EFX allocation with 
arbitrary but identical utilities is discussed in Section 3.2.

3.1. EF1 allocations

So far, the existence of an EF1 allocation for general (i.e., non-monotone, non-additive) utility functions is still open, even for 
identical utilities. Our first result answers this question positively for the special case of two agents – the case of three of more agents 
7

remains an intriguing open problem.
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Fig. 1. Illustration of Theorem 2. The lattice of subsets of 𝑆 = {1,2,3}, together with the corresponding utility value (in parentheses).

Theorem 1. There always exists an EF1 allocation for two agents with arbitrary (not necessarily monotone or additive) utility functions. 
Such an allocation can be computed in linear time, assuming that both utility functions are given by an evaluation oracle.

Proof. For an arbitrary ordering 1, … , 𝑚 of the items, let 𝐹𝑖 = {1 … 𝑖} and 𝐿𝑖 = {𝑖 + 1 … 𝑚} denote the sets of the first 𝑖 and last 
𝑚 − 𝑖 items, respectively, for 𝑖 = 0, … , 𝑚, where 𝐹0 =𝐿𝑚 = ∅.

Assume that 𝑢𝑖(𝐹𝑗 ) = 𝑢𝑖(𝐿𝑗 ) for some 𝑖 ∈ {1, 2} and 𝑗 ∈ {0, … , 𝑚}. If 𝑢3−𝑖(𝐹𝑗 ) ≤ 𝑢3−𝑖(𝐿𝑗 ), then let 𝜋(𝑖) = 𝐹𝑗 and 𝜋(3 − 𝑖) = 𝐿𝑗 , 
else let 𝜋(𝑖) = 𝐿𝑗 and 𝜋(3 − 𝑖) = 𝐹𝑗 . By the assumption 𝑢𝑖(𝐹𝑗 ) = 𝑢𝑖(𝐿𝑗 ), 𝜋 is an envy-free allocation. Similarly, if there exists an 
index 𝑗 ∈ {0, … , 𝑚} such that 𝑢𝑖(𝐹𝑗 ) ≥ 𝑢𝑖(𝐿𝑗 ) and 𝑢3−𝑖(𝐹𝑗 ) ≤ 𝑢3−𝑖(𝐿𝑗 ) for some 𝑖 ∈ {1, 2}, then 𝜋(𝑖) = 𝐹𝑗 , 𝜋(3 − 𝑖) =𝐿𝑗 is an envy-free 
allocation again.

From now on we assume that neither of the above two cases holds. Thus 𝑢1(𝑆) ≠ 0 where 𝑆 is the entire set of 𝑚 items. We 
distinguish two cases.

Case 1. 𝑢1(𝑆) > 0.
As 𝑢1(𝐹0) = 𝑢1(𝐿𝑚) = 𝑢1(∅) = 0 and 𝑢1(𝐹𝑚) = 𝑢1(𝐿0) = 𝑢1(𝑆) > 0, there exists an index 𝑗 ∈ {0, … , 𝑚 − 1} such that 𝑢1(𝐹𝑗 ) < 𝑢1(𝐿𝑗 )

and 𝑢1(𝐹𝑗+1) > 𝑢1(𝐿𝑗+1). By our assumption, 𝑢2(𝐹𝑗 ) < 𝑢2(𝐿𝑗 ) and 𝑢2(𝐹𝑗+1) > 𝑢2(𝐿𝑗+1) also hold.

Subcase 1.1 𝑢1(𝐹𝑗 ) ≤ 𝑢1(𝐿𝑗+1): set 𝜋(1) =𝐿𝑗+1 and 𝜋(2) = 𝐹𝑗+1.

Subcase 1.2 𝑢1(𝐹𝑗 ) > 𝑢1(𝐿𝑗+1): set 𝜋(1) = 𝐹𝑗 and 𝜋(2) =𝐿𝑗
In both subcase 1.1 and subcase 1.2, agent 1 envies agent 2’s bundle, but this envy can be eliminated by deleting the (𝑗 + 1)-th 

item from agent 2’s bundle. This is because 𝑢1(𝐿𝑗+1) ≥ 𝑢1(𝐹𝑗 ) in subcase 1.1 and 𝑢1(𝐹𝑗 ) > 𝑢1(𝐿𝑗+1) in subcase 1.2.

Case 2. 𝑢1(𝑆) < 0.
As 𝑢1(𝐹0) = 𝑢1(𝐿𝑚) = 𝑢1(∅) = 0 and 𝑢1(𝐿0) = 𝑢1(𝐹𝑚) = 𝑢1(𝑆) < 0, there exists an index 𝑗 ∈ {0, … , 𝑚 − 1} such that 𝑢1(𝐹𝑗 ) > 𝑢1(𝐿𝑗 )

and 𝑢1(𝐹𝑗+1) < 𝑢1(𝐿𝑗+1). By our assumption, 𝑢2(𝐹𝑗 ) > 𝑢2(𝐿𝑗 ) and 𝑢2(𝐹𝑗+1) < 𝑢2(𝐿𝑗+1) also hold.

Subcase 2.1 𝑢1(𝐹𝑗 ) ≥ 𝑢1(𝐿𝑗+1): set 𝜋(1) = 𝐹𝑗+1 and 𝜋(2) =𝐿𝑗+1.

Subcase 2.2 𝑢1(𝐹𝑗 ) < 𝑢1(𝐿𝑗+1): set 𝜋(1) =𝐿𝑗 and 𝜋(2) = 𝐹𝑗 .
In both subcase 2.1 and subcase 2.2, agent 1 envies agent 2’s bundle, but this envy can be eliminated by deleting the (𝑗 + 1)-th 

item from agent 1’s bundle. This is because 𝑢1(𝐹𝑗 ) ≥ 𝑢1(𝐿𝑗+1) in subcase 2.1 and 𝑢1(𝐿𝑗+1) > 𝑢1(𝐹𝑗 ) in subcase 2.2.

This concludes the proof of the theorem. □

3.2. An interesting example

The difference between EF1 and EFX allocations is well illustrated by the fact that, in contrast to the EF1 case, an EFX+
− allocation 

might not exist even for two agents with identical utilities.

Theorem 2. There need not exist an EFX+
− allocation for two agents with non-monotone, non-additive, identical utility functions.

Proof. Let 𝑆 = {1, 2, 3} be a set of three items and let 𝑢 ∶ 2𝑆 → ℝ be defined by 𝑢(∅) = 0, 𝑢(1) = 1, 𝑢(2) = 2, 𝑢(3) = 0, 𝑢(12) = 3, 
𝑢(13) = 0, 𝑢(23) = 3, and 𝑢(123) = 4 (see Fig. 1). We claim that there is no EFX+

− allocation for two agents.
As the utility functions are identical, we may assume that the first agent receives more items. If all the items are allocated to agent 

1, then 𝑢1(𝜋(1)) = 𝑢(123) = 4 and 𝑢2(𝜋(2)) = 𝑢(∅) = 0, hence agent 2 envies agent 1. However, this is a non-EFX envy as 1, 3 ∈ 𝑆+(123), 
but deleting either item 1 or 3 from 123 results in a set with positive utility value.

If 𝜋(1) = 12 and 𝜋(2) = 3, then 𝑢1(𝜋(1)) = 𝑢(12) = 3 and 𝑢2(𝜋(2)) = 𝑢(3) = 0, hence agent 2 envies agent 1. This is a non-EFX envy as 
1 ∈ 𝑆+(12), but 2 = 𝑢(2) > 𝑢(3) = 0. If 𝜋(1) = 23 and 𝜋(2) = 1, then 𝑢1(𝜋(1)) = 𝑢(23) = 3 and 𝑢2(𝜋(2)) = 𝑢(1) = 1, hence agent 2 envies 
agent 1. This is a non-EFX envy as 3 ∈ 𝑆+(23), but 2 = 𝑢(2) > 𝑢(1) = 1. Finally, if 𝜋(1) = 13 and 𝜋(2) = 2, then 𝑢1(𝜋(1)) = 𝑢(13) = 0
and 𝑢2(𝜋(2)) = 𝑢(2) = 2, hence agent 1 envies agent 2. This is a non-EFX envy as 3 ∈ 𝑆−(13), but 1 = 𝑢(1) < 𝑢(2) = 2. □

Remark 3. Although the utility function defined in the proof of Theorem 2 is non-monotone, it is as close to being monotone as 
possible in the sense that it can be made monotone by increasing its value on a single set (namely 13) by one. Note that an EF1 
8

allocation exists: just set 𝜋(1) = 13 and 𝜋(2) = 2, then the envy of agent 1 can be eliminated by deleting 2 from 𝜋(2).
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Algorithm 1 Finding an EFX+
0 allocation of chores for monotone, identical utility functions.

Input: Set 𝑁 of agents, set 𝑆 of items, monotone utility function 𝑢 ∶ 2𝑆 →ℝ− .
Output: An EFX+

0 allocation.
1: Let 𝑃 ∶= 𝑆 .
2: Set 𝜋(𝑖) ∶= ∅ for all 𝑖 ∈𝑁 .
3: while 𝑃 is not empty do

4: Pick an unallocated chore 𝑠 ∈ 𝑃 .
5: Pick a happiest agent 𝑘.
6: if (𝜋(1), … , 𝜋(𝑘) + 𝑠, … , 𝜋(𝑛)) is EFX+

0 then

7: 𝜋(𝑘) ← 𝜋(𝑘) + 𝑠
8: 𝑃 ← 𝑃 − 𝑠
9: else

10: Let 𝑍 ⊂ 𝜋(𝑘) + 𝑠 be inclusionwise minimal s.t. 𝑢(𝑍) < 𝑢(𝜋(𝓁)) for some 𝓁 ∈𝑁 .
11: 𝜋(𝑘) ←𝑍

12: 𝑃 ← 𝑃 ∪ (𝜋(𝑘) + 𝑠) ⧵𝑍
13: return 𝜋.

4. EFX+
𝟎 allocations of chores with identical utilities

Envy-freeness and its relaxations have been extensively studied in the setting of indivisible goods. A closely related problem is the 
fair division of indivisible chores. In this section, by ‘chores’ we mean monotone non-increasing utility functions, i.e., 𝑋 ⊆ 𝑌 implies 
𝑢𝑖(𝑋) ≥ 𝑢𝑖(𝑌 ).

Our goal is to find an EFX+
0 allocation 𝜋 of 𝑆 . Note that for monotone non-increasing utilities, this requires that

(⋆) for any pair of agents 𝑖, 𝑗, 𝑢𝑖(𝜋(𝑖) − 𝑠) ≥ 𝑢𝑖(𝜋(𝑗)) for all 𝑠 ∈ 𝜋(𝑖).

We now show that such an allocation of chores always exists when (i) 𝑛 = 2 or (ii) all 𝑛 agents have identical utilities. First we show 
the following result.

Theorem 4. When all agents have monotone (not necessarily additive) identical utility functions, an EFX+
0 allocation of chores always exists. 

Such an allocation can be computed with pseudo-polynomial number of utility queries.

Proof. We present Algorithm 1 that constructs an EFX+
0 allocation of the set 𝑆 of chores. The joint utility function of the agents is 

denoted by 𝑢. The algorithm runs in rounds and maintains a pool 𝑃 of unallocated chores and an allocation that is EFX+
0 on 𝑆 ⧵ 𝑃 . 

Initially, we set 𝑃 = 𝑆 . Interestingly, chores once allocated to some agent may go back to the pool 𝑃 in a later round.
Consider any round and let 𝜋 = ⟨𝜋(1), … , 𝜋(𝑛)⟩ be the EFX+

0 allocation at the start of this round and let 𝜋′ = ⟨𝜋′(1), … , 𝜋′(𝑛)⟩ be 
the EFX+

0 allocation at the end of this round. Let 𝑃 (resp., 𝑃 ′) be the set of unallocated chores at the start (resp., end) of this round. 
We will ensure that at least one of the following two conditions is satisfied:

(i) |𝑃 ′| < |𝑃 | and 
∑
𝑖∈𝑁 𝑢(𝜋′(𝑖)) ≤

∑
𝑖∈𝑁 𝑢(𝜋(𝑖))), i.e., the number of allocated chores increases in this round and utilitarian welfare

(sum of utilities of all agents) does not increase,
(ii)

∑
𝑖∈𝑁 𝑢(𝜋′(𝑖)) <

∑
𝑖∈𝑁 𝑢(𝜋(𝑖))), i.e., utilitarian welfare strictly decreases in this round.

In other words, in each round of our algorithm, we either decrease utilitarian welfare or we increase the number of allocated chores 
without increasing utilitarian welfare. This will allow us to show that our algorithm always terminates. We now describe a single 
round in detail.

Since all agents have the same utilities, the agents can be ordered in terms of the utilities of their bundles. So at any point in 
time, there is at least one agent who can be called a happiest agent: one who does not envy any other agent. In each round, we pick 
any unallocated chore 𝑠 and add 𝑠 to the bundle of a happiest agent (call this agent 𝑘). There are two cases:

Case 1. Suppose ⟨𝜋(1), … , 𝜋(𝑘) + 𝑠, … , 𝜋(𝑛)⟩ is EFX+
0 . Then set 𝜋′(𝑘) = 𝜋(𝑘) + 𝑠 and 𝜋′(𝑖) = 𝜋(𝑖) for 𝑖 ≠ 𝑘. Observe that the allocation 

𝜋′ = ⟨𝜋′(1), … , 𝜋′(𝑛)⟩ satisfies condition (i) given above.

Case 2. Suppose ⟨𝜋(1), … , 𝜋(𝑘) + 𝑠, … , 𝜋(𝑛)⟩ is not EFX+
0 . By observation (⋆), 𝑢(𝜋(𝑘) + 𝑠 − 𝑠′) < 𝑢(𝜋(𝓁)) for some 𝑠′ ∈ 𝜋(𝑘) + 𝑠 and 

𝓁 ∈𝑁 . Thus we can find an inclusionwise minimal subset 𝜋′(𝑘) ⊂ 𝜋(𝑘) +𝑠 such that 𝜋′(𝑘) is an envious bundle, i.e., 𝑢(𝜋′(𝑘)) < 𝑢(𝜋(𝓁))
for some 𝓁 ∈𝑁 . Since 𝜋′(𝑘) is a minimal envious subset of 𝜋(𝑘) + 𝑠, for every 𝑋 ⊂ 𝜋′(𝑘), we have 𝑢(𝑋) ≥ 𝑢(𝜋(𝑖)) for all 𝑖 ∈𝑁 .

Now the chores in (𝜋(𝑘) + 𝑠) ⧵ 𝜋′(𝑘) are thrown back into the pool 𝑃 , i.e., 𝑃 ′ = 𝑃 ∪ (𝜋(𝑘) + 𝑠) ⧵ 𝜋′(𝑘). Let 𝜋′(𝑖) = 𝜋(𝑖) for all 𝑖 ≠ 𝑘.

Claim 5. The allocation 𝜋′ = ⟨𝜋′(1), … , 𝜋′(𝑛)⟩ is an EFX+
0 allocation.

Proof. We need to show that 𝑢(𝜋′(𝑖) − 𝑟) ≥ 𝑢(𝜋′(𝑗)) for all 𝑖, 𝑗 ∈𝑁 and 𝑟 ∈ 𝜋′(𝑖). Since 𝜋′(𝑡) = 𝜋(𝑡) for all 𝑡 ≠ 𝑘 and 𝜋 is EFX+
0 , for all 
9

𝑖, 𝑗 such that neither 𝑖 nor 𝑗 is 𝑘, this holds.
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When 𝑖 = 𝑘: Since 𝜋′(𝑘) is a minimal envious subset of 𝜋(𝑘) + 𝑠, we have 𝑢(𝜋′(𝑘) − 𝑟) ≥ 𝑢(𝜋(𝑗)) = 𝑢(𝜋′(𝑗)) for all 𝑟 ∈ 𝜋′(𝑘) and 
𝑗 ≠ 𝑘.

When 𝑗 = 𝑘: We claim that 𝑢(𝜋′(𝑘)) < 𝑢(𝜋(𝑘)). Indeed, 𝑢(𝜋′(𝑘)) < 𝑢(𝜋(𝓁)) for some 𝓁 ∈ [𝑛] since 𝜋′(𝑘) is envious, and 𝑢(𝜋(𝓁)) ≤
𝑢(𝜋(𝑘)) for all 𝓁 ∈ [𝑛] since 𝑘 is a happiest agent in 𝜋. Thus for any 𝑖 ≠ 𝑘, we have:

𝑢(𝜋′(𝑖) − 𝑟) = 𝑢(𝜋(𝑖) − 𝑟) ≥ 𝑢(𝜋(𝑘)) > 𝑢(𝜋′(𝑘)) ∀𝑟 ∈ 𝜋′(𝑖),

where the inequality 𝑢(𝜋(𝑖) − 𝑟) ≥ 𝑢(𝜋(𝑘)) follows from 𝜋 being EFX+
0 . □

Since 𝑢(𝜋′(𝑘)) < 𝑢(𝜋(𝑘)) and 𝜋′(𝑡) = 𝜋(𝑡) for all 𝑡 ≠ 𝑘, 
∑
𝑖∈[𝑛] 𝑢(𝜋′(𝑖)) <

∑
𝑖∈[𝑛] 𝑢(𝜋(𝑖))). Thus the allocation 𝜋′ = ⟨𝜋′(1), … , 𝜋′(𝑛)⟩

satisfies condition (ii) given above.
Note that there can be at most 𝑚 consecutive rounds where condition (i) holds. After that, either all chores are allocated or 

there is a round where condition (ii) holds, i.e., utilitarian welfare strictly decreases and this cannot reduce beyond −𝑛 ⋅ 𝑢(𝑆). Let 
Δ =min{|𝑢(𝑋) − 𝑢(𝑌 )| ∣𝑋, 𝑌 ⊆ 𝑆 and 𝑢(𝑋) ≠ 𝑢(𝑌 )} be the minimum difference between distinct utilities. After 𝑚𝑛|𝑢(𝑆)|∕Δ rounds, 
the utilitarian welfare has to be −𝑛 ⋅ 𝑢(𝑆) and within the subsequent 𝑚 rounds, all chores have to get allocated. Hence our algorithm 
always terminates. Thus an EFX+

0 allocation of chores always exists when all agents have monotone identical utility functions.
Let us now bound the number of utility queries made in each round. Let 𝓁 be the second happiest agent with respect to the 

allocation 𝜋, i.e., 𝑢(𝜋(𝓁)) is the largest in {𝑢(𝜋(𝑖)) ∣ 𝑖 ∈𝑁 ⧵ {𝑘}}. In order to test if (𝜋(1), … , 𝜋(𝑘) + 𝑠, … , 𝜋(𝑛)) is EFX+
0 or not, we 

need to check if 𝑢(𝜋(𝑘) + 𝑠 − 𝑠′) ≥ 𝑢(𝜋(𝓁)) for all 𝑠′ ∈ 𝜋(𝑘). We do this as follows: start with 𝑍 = 𝜋(𝑘) + 𝑠. For every 𝑠′ ∈𝑍 do:

• if 𝑢(𝑍 − 𝑠′) ≥ 𝑢(𝜋(𝓁)) then 𝑍 remains the same; else update 𝑍 =𝑍 − 𝑠′.

Thus whenever we find a chore 𝑠′ ∈ 𝑍 that satisfies 𝑢(𝑍 − 𝑠′) < 𝑢(𝜋(𝓁)), we update 𝑍 = 𝑍 − 𝑠′. If 𝑍 gets updated, then the 
monotonicity of 𝑢 implies that for every 𝑠′ in the final set 𝑍 , we have 𝑢(𝑍 − 𝑠′) ≥ 𝑢(𝜋(𝓁)).

Since we query exactly once for each 𝑠′ ∈ 𝜋(𝑘) + 𝑠 to check if 𝑢(𝑍 − 𝑠′) ≥ 𝑢(𝜋(𝓁)) or not, the number of utility queries made in 
each round is at most 𝑚. So either (𝜋(1), … , 𝜋(𝑘) + 𝑠, … , 𝜋(𝑛)) is EFX+

0 or we find an inclusionwise minimal subset 𝑍 of 𝜋(𝑘) + 𝑠 such 
that 𝑢(𝑍) < 𝑢(𝜋(𝓁)). The total number of utility queries made during the entire algorithm is 𝑂(𝑚2𝑛|𝑢(𝑆)|∕Δ). Assuming there is an 
oracle to answer utility queries in unit time, our algorithm runs in pseudo-polynomial time. □

The cut-and-choose protocol of Plaut and Roughgarden [40] implies the following corollary.

Corollary 6. There always exists an EFX+
0 allocation of chores for two agents with monotone (not necessarily additive) utility functions.

Proof. Let 𝑢1 and 𝑢2 be the utility functions of agent 1 and agent 2, respectively. By Theorem 4, there exists an EFX+
0 allocation 

when the utility function of both agents is 𝑢1. Take such an allocation; this defines a partition of 𝑆 into two parts 𝑆1 and 𝑆2. Now let 
the second agent choose among 𝑆1 and 𝑆2 based on her preferences. Clearly, agent 2 will have no envy as she chooses the set with 
better utility with respect to 𝑢2. On the other hand, even if agent 1 envies agent 2, this is an EFX+

0 envy due to the construction of 
the allocation. □

5. Boolean and negative Boolean utility functions

In this section we consider special cases of non-identical utility functions: Boolean and negative Boolean utilities.

5.1. Boolean utilities

Recall that a utility function 𝑢 is called Boolean if 𝑢(𝑋) ∈ {0, 1} for 𝑋 ⊆𝑆 .

Theorem 7. When all agents have Boolean utility functions, EFX0
− allocations always exist.

Proof. We construct an EFX0
− solution by assigning bundles to agents one-by-one using Algorithm 2. After each step, we will refer 

to unassigned items and to agents without bundles as remaining items and agents, respectively.
At a general step of the algorithm, we take an inclusionwise minimal subset 𝑋 of the remaining items that has utility value 1

for at least one of the remaining agents, and we assign 𝑋 to one of the agents 𝑖 with 𝑢𝑖(𝑋) = 1. If no such set exists, then we pick 
an arbitrary agent 𝑖 and set 𝑋 to be the empty set. Then we delete the members of 𝑋 from 𝑆 and 𝑖 from 𝑁 . When only one agent 
remains, we assign the remaining set of items to her.

We claim that the solution thus obtained is an EFX0
− allocation. We may assume that the order of the agents in which their 

bundles get fixed is 1, … , 𝑛. Note that the sequence 𝑢1(𝜋(1)), … , 𝑢𝑛(𝜋(𝑛)) is monotone decreasing, that is, it consists of a sequence of 
1’s followed by a sequence of 0’s (any of these two parts can be empty). Therefore if agent 𝑖 envies 𝑗, then 𝑗 < 𝑖, 𝑢𝑖(𝜋(𝑗)) = 1, and 
𝑢𝑖(𝜋(𝑖)) = 0. However, by the choice of 𝜋(𝑗) in Step 3 of the algorithm, 𝑢𝑖(𝜋(𝑗) − 𝑠) = 0 for every 𝑠 ∈ 𝜋(𝑗). Moreover, 𝑆+

𝑖
(𝜋(𝑗)) ≠ ∅
10

and the statement follows. □
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Algorithm 2 Finding an EFX0
− allocation for Boolean utility functions.

Input: Set 𝑁 of agents, set 𝑆 of items, utility functions 𝑢𝑖 ∶ 2𝑆 → {0, +1}.
Output: An EFX0

− allocation.
1: while |𝑁| ≥ 2 do

2: if there exist 𝑖 ∈𝑁 and 𝑋 ⊆ 𝑆 s.t. 𝑢𝑖(𝑋) = 1 then

3: Let 𝑋 ⊆𝑆 be inclusionwise minimal s.t. 𝑢𝑖(𝑋) = 1 for some 𝑖 ∈𝑁 . Let 𝑖 be an agent with 𝑢𝑖(𝑋) = 1. Set 𝜋(𝑖) ∶=𝑋.
4: 𝑁 ←𝑁 − 𝑖
5: 𝑆← 𝑆 −𝑋
6: else

7: Arbitrarily pick 𝑁 ′ ⊆𝑁 with |𝑁 ′| = |𝑁| − 1 and set 𝜋(𝑖) ∶= ∅ for each 𝑖 ∈𝑁 ′ .
8: 𝑁 ←𝑁 ⧵𝑁 ′

9: For the single remaining agent 𝑗 in 𝑁 , set 𝜋(𝑗) ∶= 𝑆 .
10: return 𝜋

Note that an EFX+
0 allocation does not necessarily exist for Boolean allocations. To see this, consider the instance with three items 

and two agents with identical utilities defined as follows: 𝑢(𝑋) = 0 if |𝑋| ≤ 1 and 𝑢(𝑋) = 1 otherwise. It is not difficult to verify that 
no allocation satisfies the conditions of EFX+

0 .

Remark 8. The proof of Theorem 7 leads to a construction that is not efficient, as Step 3 of Algorithm 2 asks for an inclusionwise 
minimal set with utility value 1 for at least one of the remaining agents. The complexity of finding such a set depends on how the 
utility functions are given, but the difficulty is well illustrated by the fact that the problem is equivalent to determining a satisfying 
assignment of a Boolean function using a minimum number of true variables. Therefore the proposed algorithm does not work for 
finding an EFX0

− allocation. Showing a lower bound on the complexity of finding an EFX0
− allocation in this setting remains an 

interesting open problem.
One of the most common representations of Boolean functions are conjunctive normal forms (CNFs), the conjunctions of clauses 

which are elementary disjunctions of literals. A CNF is called pure Horn if every clause in it contains exactly one positive literal, 
and a Boolean function is pure Horn if it admits a pure Horn CNF representation. Pure Horn functions form a fundamental subclass 
of Boolean functions admitting interesting structural and computational properties. Among others, SAT is solvable for this class in 
linear time [27].

If each utility function 𝑢𝑖 is represented by a pure Horn CNF, then a set 𝑋 satisfying the conditions of Step 3 can be determined in 
polynomial time with the help of the so-called forward chaining procedure. For further details, we refer the interested reader to [34].

5.2. Negative Boolean utilities

Recall that a utility function 𝑢 is called negative Boolean if −𝑢 is Boolean. Somewhat surprisingly, Boolean and negative Boolean 
show a different behavior, though at first sight one would expect those to be identical up to translation by +1 or multiplication by 
−1. This breakdown of duality is caused by the fact that negative Boolean utilities represent chores, for which standard techniques 
(such as the round-robin or envy-cycle elimination algorithms) are no longer applicable; see the recent survey by Liu et al. [38] for 
further explanation.

Theorem 9. When all agents have identical negative Boolean utility functions, EFX+
0 allocations always exist. Such an allocation can be 

computed in polynomial time, assuming that the utility function is given by an evaluation oracle.

Proof. The algorithm is presented as Algorithm 3. The joint utility function of the agents is denoted by 𝑢. We start with an arbitrary 
allocation, say, 𝜋(1) = 𝑆 and 𝜋(𝑖) = ∅ otherwise. In a general step of the algorithm, we pick a pair 𝑖, 𝑗 ∈𝑁 of agents such that there 
is a non-EFX envy from 𝑖 to 𝑗. As we are considering EFX+

0 allocations and the utility function is negative Boolean, this means that 
there exists an item 𝑠 ∈ 𝜋(𝑖) such that −1 = 𝑢(𝜋(𝑖)) = 𝑢(𝜋(𝑖) − 𝑠) < 𝑢(𝜋(𝑗)) = 0. The algorithm moves such an item from the bundle of 
agent 𝑖 to that of agent 𝑗.

It suffices to show that the algorithm terminates after a polynomial number of steps. Recall that the numbers of agents and items 
are denoted by 𝑛 and 𝑚, respectively. Define

𝜑(𝜋) =𝑚 ⋅
∑
𝑖∈𝑁

𝑢(𝜋(𝑖))=−1

1 +
∑
𝑖∈𝑁

𝑢(𝜋(𝑖))=0

|𝜋(𝑖)|.

In other words, 𝜑 counts 𝑚 times the number of agents with utility value −1, plus the total number of items in bundles having utility 
value 0.

Claim 10. 𝜑(𝜋) strictly increases throughout the algorithm.

Proof. Let 𝜋′ denote the allocation obtained from 𝜋 by moving 𝑠 from 𝜋(𝑖) to 𝜋(𝑗), that is, 𝜋′(𝑖) = 𝜋(𝑖) − 𝑠, 𝜋′(𝑗) = 𝜋(𝑗) + 𝑠, 
11

𝜋′(𝑘) = 𝜋(𝑘) otherwise. By 𝑢(𝜋(𝑖)) = −1, we have 𝜋(𝑖) ≠ ∅ and so |𝜋(𝑗)| ≤𝑚 − 1.



Theoretical Computer Science 1002 (2024) 114596K. Bérczi, E.R. Bérczi-Kovács, E. Boros et al.

Algorithm 3 Finding an EFX+
0 allocation for identical negative Boolean utility functions.

Input: Set 𝑁 of agents, set 𝑆 of items, utility function 𝑢 ∶ 2𝑆 → {0, −1}.
Output: An EFX+

0 allocation.
1: Set 𝜋(1) ∶= 𝑆 and 𝜋(𝑖) = ∅ for all 𝑖 > 1.
2: while 𝜋 is not EFX+

0 do

3: Let 𝑖, 𝑗 ∈𝑁 s.t. 𝑢(𝜋(𝑖)) < 𝑢(𝜋(𝑗)) and the envy is non-EFX.
4: Choose 𝑠 ∈ 𝜋(𝑖) such that 𝑢(𝜋(𝑖) − 𝑠) < 𝑢(𝜋(𝑗)).
5: 𝜋(𝑖) ← 𝜋(𝑖) − 𝑠
6: 𝜋(𝑗) ← 𝜋(𝑗) + 𝑠
7: return 𝜋

If 𝑢(𝜋′(𝑗)) = −1, then

𝜑(𝜋′) =𝑚 ⋅
∑
𝑖∈𝑁

𝑢(𝜋′(𝑖))=−1

1 +
∑
𝑖∈𝑁

𝑢(𝜋′(𝑖))=0

|𝜋′(𝑖)|

≥𝑚 ⋅

⎛⎜⎜⎜⎝

⎛⎜⎜⎜⎝
∑
𝑖∈𝑁

𝑢(𝜋(𝑖))=−1

1
⎞⎟⎟⎟⎠
+ 1

⎞⎟⎟⎟⎠
+
⎛⎜⎜⎜⎝

∑
𝑖∈𝑁

𝑢(𝜋(𝑖))=0

|𝜋(𝑖)|− (𝑚− 1)
⎞⎟⎟⎟⎠

=𝑚 ⋅
∑
𝑖∈𝑁

𝑢(𝜋(𝑖))=−1

1 +
∑
𝑖∈𝑁

𝑢(𝜋(𝑖))=0

|𝜋(𝑖)|+ 1

= 𝜑(𝜋) + 1,

while if 𝑢(𝜋′(𝑗)) = 0, then

𝜑(𝜋′) =𝑚 ⋅
∑
𝑖∈𝑁

𝑢(𝜋′(𝑖))=−1

1 +
∑
𝑖∈𝑁

𝑢(𝜋′(𝑖))=0

|𝜋′(𝑖)|

=𝑚 ⋅
∑
𝑖∈𝑁

𝑢(𝜋(𝑖))=−1

1 +
∑
𝑖∈𝑁

𝑢(𝜋(𝑖))=0

|𝜋(𝑖)|+ 1

= 𝜑(𝜋) + 1.

This concludes the proof of the claim. □

As 𝜑 takes integer values upper bounded by 𝑚 ⋅ 𝑛, Claim 10 implies that the algorithm terminates after a polynomial number of 
steps, and the theorem follows. □

Note that an EFX0
− allocation does not necessarily exist for negative Boolean allocations. To see this, consider the instance with 

three items and two agents with identical utilities defined as follows: 𝑢(𝑋) = 0 if |𝑋| ≤ 1 and 𝑢(𝑋) = −1 otherwise. It is not difficult 
to verify that no allocation satisfies the conditions of EFX0

− .

Remark 11. A natural adaptation of Algorithm 2 to the negative Boolean setting would be to always choose an inclusionwise 
minimal subset of the remaining items in Step 3 that has −1 utility value. However, such an approach has no control over the set 
that is allocated to the last agent, and so a non-EFX envy might be present.

6. Conclusions

The present paper focused on the concept of envy-freeness and its relaxations, envy-freeness up to one item and envy-freeness 
up to any item. Concerning EF1 allocations, we presented a polynomial-time algorithm for finding one for two agents with arbitrary 
utility functions. We extended the notion of EFX allocations to non-monotone, non-additive utilities, and settled the existence or non-
existence of such solutions in various settings. We showed that an EFX+

0 allocation of chores always exists for monotone identical 
utility functions. For the classes of Boolean and identical negative Boolean utilities, we verified the existence of EFX0

− and EFX+
0

allocations, respectively.
Tables 1 and 2 show that the existence or non-existence of a fair solution is still open in many cases. Among them, we would like 

to draw attention to the following open problems that seem to be particularly interesting.

Question 12. Does there always exist an EF1 allocation for an arbitrary number of agents with non-monotone, non-additive, identical utility 
12

functions?
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Question 13. Does there always exist an EFX+
− allocation for an arbitrary number of agents with monotone, additive, non-identical utility 

functions?

Question 14. Does there always exist an EFX+
0 allocation for an arbitrary number of agents with monotone (not necessarily identical) utility 

functions?

Question 15. Does there always exist an EFX0
− allocation for an arbitrary number of agents with monotone identical utility functions?

Question 16. Does there always exist an EFX+
0 allocation for an arbitrary number of agents with (not necessarily identical) negative Boolean 

utility functions?
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