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Abstract
Augmented Reality (AR) applications can reshape our society enabling novel ways 
of interactions and immersive experiences in many fields. However, multi-user and 
collaborative AR applications pose several challenges. The expected user experience 
requires accurate position and orientation information for each device and precise 
synchronization of the respective coordinate systems in real-time. Unlike mobile 
phones or AR glasses running on battery with constrained resource capacity, cloud 
and edge platforms can provide the computing power for the core functions under 
the hood. In this paper, we propose a novel edge cloud based platform for multi-user 
AR applications realizing an essential coordination service among the users. The 
latency critical, computation intensive Simultaneous Localization And Mapping 
(SLAM) function is offloaded from the device to the edge cloud infrastructure. Our 
solution is built on open-source SLAM libraries and the Robot Operating System 
(ROS). Our contribution is threefold. First, we propose an extensible, edge cloud 
based AR architecture. Second, we develop a proof-of-concept prototype supporting 
multiple devices and building on an AI-based SLAM selection component. Third, 
a dedicated measurement methodology is described, including energy consump-
tion aspects as well, and the overall performance of the system is evaluated via real 
experiments.
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1  Introduction

Extended Reality (XR) applications, including Augmented Reality (AR), Mixed 
Reality (MR) and Virtual Reality (VR), were launched from science fiction and have 
already landed in “reality”. These applications can reshape our society enabling 
novel services, new ways of interactions and immersive experiences in many fields. 
Online gaming [1], Industry 4.0 [2], healthcare [3] and architecture [4] are just high-
lighted examples with special importance and business potential. The features and 
requirements of the use cases vary widely, however, the systems under the hood and 
the applied concepts share common components and properties.

One of the key components mainly affecting the user experience is the AR 
device, including the AR glasses (e.g., Microsoft HoloLens 2, Magic Leap 1) or 
head-mounted VR displays (e.g., Oculus Quest 2, Sony PlayStation VR, HTC 
Vive Cosmos) or AR-capable mobile phones (e.g., iPhone 12 Pro, Samsung 
S10). The other essential constituents are the special purpose, compute-intensive 
functions, running in the background, which enable the real-time operation. For 
example, 3D rendering, simulation of the virtual 3D environment, continuous 
localization of the devices, detecting and tracking of objects, users, gestures are 
crucial tasks, and the performance characteristics of the respective implementa-
tions significantly affect the quality of the immersive experience. The heterogene-
ity of these services indicates different hardware requirements [5], and we have 
multiple options where to run the corresponding tasks. A straightforward strategy 
is to implement all functions in the device itself. For example, HoloLens 2 fol-
lows this approach and encompasses a “gamer PC” in the device with the needed 
GPU/CPU capacity and the versatile software stack. As a result, these glasses are 
very expensive ones. Another option is to split the rendering function from the 
headset and deploy to a local PC. VR headsets usually follow this approach and 
require dedicated connection to a local rendering engine.

But why should we stop there? Today, several providers operate cloud based 
remote rendering platforms and the customers can rent the resources on demand 
instead of buying expensive hardware devices. Of course, this setup requires sta-
ble, high speed and low latency network connections. These services are often 
combined with online gaming offerings, such as in NVIDIA GeForce Now or 
PlayStation Now. Furthermore, we can make more steps towards more utilization 
of cloud platforms. Other functions can also be offloaded to the cloud if the end-
to-end latency is controlled carefully and kept within a predefined bound. Edge 
computing is an emerging concept bringing compute resources closer to the users 
and end devices. Thus, it provides a suitable platform and execution environment 
for the backend components of latency sensitive and compute intensive applica-
tions, and it can help a lot with the energy consumption of mobile AR devices. 
If we manage to offload XR functions, the battery life can be multiplied. Fortu-
nately, the networking requirements are (or more precisely, will be) fulfilled by 
5G systems or a new generation of WiFi networks [6].

In an earlier version of this work [7] we presented a novel edge cloud based 
AR platform for running distributed, multi-user AR applications. We investigated 
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the benefits and also the limits of the approach and evaluated the performance of 
a proof-of-concept prototype which offloads the Simultaneous Localization And 
Mapping (SLAM) function.

In this paper, we extend that work with study of collaboration of multiple AR 
devices, energy consumption measurements and feasibility check. Furthermore, we 
improved the DNN-based SLAM selector module (SIA), which selects the best from 
the results of different SLAMs according to the current conditions.

The rest of the paper is organized as follows. In Sect. 2, the related works are pre-
sented. Section 3 is devoted to the architecture including the main design goals and 
concepts. Section 4 describes the relevant implementation details and the revealed 
issues. Section 5 presents our measurement methodology, while in Sect. 6, we evalu-
ate the performance of the overall system and summarize our main findings. Finally, 
Sect. 7 concludes the paper.

2 � Related Work

In this section, the relevant SLAM algorithms and the challenges of collaboration 
among the participant devices are summarized. In addition, the research works on 
offloading the SLAM functions to cloud or edge infrastructures are also presented.

2.1 � SLAM Algorithms

Image-based camera localization is a key task in many of today’s hot research fields, 
such as robotics [8], autonomous vehicles [8] and also virtual and augmented reality 
[9]. During the last decades, several methods and approaches have been proposed 
by researches to determine the pose, i.e., position and orientation, of the camera in 
real time (called visual odometry) and to build the map of the discovered environ-
ment. Such algorithms, called Simultaneous Localization and Mapping (SLAM), 
aim at creating the map of the surrounding environment and locating the device 
within them. The performance of visual SLAM algorithms heavily relies on the sen-
sors exploited for tracking the devices. The most important one is the basic camera 
providing RGB color information for image processing purposes, and the advanced 
RGB-D camera extending the data with per-pixel depth information [10, 11]. Cam-
era state acquisition can be refined in other steps of the algorithms based on addi-
tional sensors. Inertial Measurement Unit (IMU) is the source of augmented data 
for visual-inertial SLAMs [12], which consists of the gyroscope measuring angu-
lar velocity and orientation, and the accelerometer that is in charge of tracking the 
change of linear acceleration.

The majority of existing techniques rely on visual geometric models, called 
model-based SLAM methods [13]. On the one hand, monocular SLAM algo-
rithms, using a single camera, implicitly estimate camera ego-motion, while 
incrementally building the map of the environment. In [9] a novel benchmarking 
method is defined for this type of algorithms and several proposals are evalu-
ated quantitatively. On the other hand, multi-ocular SLAM methods, use two 
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or more cameras in order to acquire the color and depth information, as well 
[14]. Model-based solutions can be divided into i) feature-based algorithms that 
aim to find certain features or key points of the environment, making use of 
e.g. filtering techniques, and compute the camera pose information and the map 
based on these observations and ii) direct SLAM methods that use image inten-
sities to estimate the location and surroundings [15]. For example, ROVIOLI 
[16] is a feature-based algorithm, while LSD-SLAM [17] is a direct method. 
Furthermore, keyframe-based SLAM approaches separate localization and map-
ping steps [18, 19]: camera localization takes place on regular frames over the 
subset of the map, while optimization takes place on certain keyframes. Dif-
ferent techniques can also be combined in hybrid algorithms to achieve better 
performance (see e.g., ORB-SLAM3 [20–24]). Besides the model-based SLAM 
techniques, data-driven, deep learning based methods have also been proposed 
in recent years [25–30].

2.2 � Collaboration

Other challenges arise when multiple AR devices are collaborating [31] and the 
research community has just recently targeted this field [32–35]. For example, 
when multiple AR devices collaborate in the same physical environment, a joint 
coordinate system for the virtual 3D world has to be shared among the users. 
There are known methods for coordinate system synchronization, such as mech-
anisms based on well-known points (e.g., QR code), anchor-based synchroniza-
tion (e.g., ARAnchor) and distributed SLAM algorithms [35–37]. Well-known 
points and anchor-based methods are typically capable of only offline synchro-
nization and during the online operation the device local SLAMs and the local 
maps are used. Distributed SLAM algorithms follow a distributed approach to 
build a Global Map where the map data is shared among the devices and the 
server side. However, this operation can raise severe security issues because 
each AR device can access data recorded by the camera of any other AR devices.

In [38] a novel collaborative SLAM system is proposed where autonomous 
agents run visual-inertial odometry algorithms locally on the devices while 
sharing map information with a central server which is responsible for merging 
and optimizing the global map. The solution works only with keyframe-based 
VIO systems. Another client–server based collaborative SLAM framework is 
proposed for service robots in [39]. Tracking and local mapping take place on 
the devices (clients) and after processing, filtered data (keyframes and land-
marks) are exchanged with the server which is in charge of the loop detection 
and map merging. Based on the client’s movement, selected part of the global 
map is sent to the client on-demand. Both solutions [38, 39] require process-
ing on the devices and lack a full remote SLAM at the server side. In contrast, 
our proposal offloads the full SLAM stack to the edge infrastructure, it supports 
arbitrary SLAM algorithms and additional AR services as the camera and IMU 
data are available at the edge cloud.
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2.3 � Offloading to Edge/Cloud

Computation-intensive algorithms in SLAM systems require proper equipment and 
fast, reliable processing solutions. Embedded systems, such as smartphones and 
smart glasses are poorly equipped in the long run as they are still dependent on bat-
tery constraints. Edge and Cloud Computing offer the possibility to offload exces-
sive computational tasks, e.g., the SLAM algorithm, from the devices to a server in 
the cloud or at the edge of the network close to the user in terms of latency [40–43]. 
Thus, future augmented and mixed reality (AR/MR) applications can leverage the 
additional resources and dedicated hardware support (GPU) provided by cloud/edge 
servers for improved SLAM services, such as enhanced localization scalability and 
performance [44], improved response time based on parallel processing [45], col-
laborative localization by a globally synchronized map [46] or multi-user support 
[47], along with reduced power consumption of the AR device. Besides the SLAM 
service, other AR functions can also be offloaded to the cloud/edge infrastructure, 
including e.g., the rendering [48] or object tracking [49] functions. Of course, the 
capabilities and the characteristics of the underlying networks significantly impact 
the feasibility of these techniques.

We have two options how to offload the SLAM algorithms from the devices: 
partially or fully. For example, CloudSLAM, proposed in [50], partitions different 
workflows of ORB-SLAM and as a result, tracking and local mapping are executed 
on the device (vechicle) and loop closure is executed on the edge. Similarly, authors 
of [51] proposes a functional split of the ORB-SLAM2 architecture between the 
edge and the mobile device. Their solution keeps the tracking computation on the 
device and moves the rest, i.e., local mapping and loop closure, to the edge. Both 
proposals are tightly coupled to ORB-SLAM. In addition, the modifications of the 
original algorithms are needed. On the other hand, our framework supports arbi-
trary off-the-shelf SLAM algorithms which can be incorporated into the system and 
combined during the operation. In [52], the impact of processing power of different 
edge cloud systems on odometry and map generation is analyzed in detail. In this 
scenarios, the device executes only tasks related to camera data processing. Authors 
of [53] address fully remote SLAMs and present a novel buffering method to miti-
gate the impact of data losses in unreliable networks. ORBBuf optimizes the perfor-
mance of the SLAM module by discarding frames with the least impact on SLAM’s 
quality.

2.4 � Edge/Cloud Platforms and 5G/6G

Different cloud platforms with several relevant services are available today delivering 
the computing infrastructure for future XR applications. On the one hand, the three 
giants operating the leading public cloud platforms, i.e., Amazon Web Services [54], 
Google Cloud Platform [55], Microsoft Azure [56], provide services in a wide range. 
At the end of the day, developers and application providers can compose and run vir-
tual machines or software containers implementing the business logic, while the burden 
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of operational tasks, including resource management, on demand resource scaling or 
fault management, is delegated to the cloud providers. On the other hand, open-source 
technologies are also available to establish private cloud or edge platforms provisioning 
“arbitrary” amount of virtual resources on demand For example, OpenStack [57] and 
Kubernetes [58] are de facto industry standards for virtual machine and container man-
agement, respectively. These platforms and services together with emerging network 
technologies, such as beyond 5G and 6G systems, enable a novel architecture support-
ing both cloud and edge based deployments of AR applications where the computation 
intensive functions can be offloaded from the devices.

3 � Proposed Architecture

This section is devoted to the main goals driving our architecture design and to the 
details of the relevant components of the proposed system. In addition, the feasibility of 
the concept is also discussed.

3.1 � Design Goals

We target a novel edge cloud based AR platform supporting the coordination of multi-
ple users in a common geographical space. The user experience requires precise pose 
(position and orientation) information to be calculated for each AR device in real-time. 
Moreover, due to the joint space, the coordinate systems of different users/devices 
need to be synchronized continuously in order to display the virtual objects in the right 
place on each device during the whole game. To meet these requirements, we propose 
an edge cloud based solution, where the camera images and sensor data are streamed 
towards a dedicated coordination service. The SLAM function is offloaded from the 
device and arbitrary algorithms can be invoked in the remote environment (even in par-
allel). By these means, we can prolong the battery life of the AR devices. In order to 
enable the coordination among the users, the per-device coordinate systems have to be 
synchronized which requires to build and use a joint global map. This is a core task 
of the coordination service and the details are hidden from the users. For example, 
they cannot access images sent from other devices. Built-in local SLAM algorithms 
of current AR devices (e.g., ARKit [59], ARCore [60]) operate with proprietary map 
formats which cannot be shared among different devices. Making use of open-source 
SLAM libraries, we can provide cross-platform solutions. Another important goal of 
our design is the extensibility. As we stream raw data to the edge cloud system, other 
AR services can easily be added as distinct software components. Real-time detection 
and tracking of objects, users and gestures are important examples which can be imple-
mented atop the platform.

3.2 � Main Components

The architecture of the proposed system is depicted in Fig.  1. Currently, we 
assume mobile phones as AR devices but the concept is valid for AR glasses 
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as well. On the devices, camera images and IMU data are collected and sent 
to the coordination service. Since the user experience is greatly affected by the 
response time of the SLAM function, it is crucial to have a proper network con-
nection between the devices and the edge cloud infrastructure. It is worth noting 
that local SLAM algorithms can also be run on the devices optionally. Follow-
ing this scenario, for example, the faster but not coordinated local operation can 
be improved periodically based on the remote service.

At the cloud side, each device has its own service instance including one or 
multiple SLAM modules and a selector component. SLAM modules with differ-
ent approaches can achieve different results regarding accuracy and robustness. 
Moreover, the performance is also affected by the surrounding environment and 
the user behavior in a diverse way. Therefore, we run several SLAM algorithms 
side by side, so that we can choose the best regarding mapping and tracking 
results. This is done by the SLAM selector module, which decides which algo-
rithm to use based on the camera image data and the availability of pose estima-
tions. Analyzing different SLAM algorithms in different environments, we can 
construct policies to choose the appropriate algorithm dynamically during the 
operation.

The core component of the coordination service is the global map which is 
constructed on-the-fly based on the received information from the connected 
devices. Making use of the global map, novel AR applications can be realized 
that are not possible with the current technologies. Furthermore, the platform 
can be extended with additional AR services (e.g., object detection and tracking) 
enriching the feature set provided to developers and customers.

Fig. 1   Proposed architecture
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3.3 � Feasibility

The feasibility of the design concept is mainly determined by the capabilities 
of the underlying network infrastructure and the specific bandwidth and latency 
requirements of the proposed platform. On the one hand, the delay bound stems 
from the characteristics of the applications and the used AR devices. Assum-
ing mobile (handheld) AR, the video content on the display is typically delayed 
with a few (e.g. three) frames which yields a well-defined, manageable upper 
bound. Head-mounted displays realizing video pass-through technology (similar 
concept to mobile AR) also allow a slight offset in projection but the head-pose 
cannot be delayed. In contrast, optical see-through devices pose more stringent 
latency limits and call for additional mechanisms, such as precise prediction on 
the movements. On the other hand, the bandwidth requirement of a client pri-
marily depends on the parameters of the camera stream, such as the resolution, 
FPS and the encoding bitrate. In our framework, the targeted bitrate of the video 
encoder is a configuration parameter that controls the ultimate bandwidth usage. 
According to our preliminary analysis, HD video with 30 FPS frame rate encoded 
into 3.5 Mbps or 7 Mbps video streams result in similar and acceptable SLAM’s 
accuracy. The architecture supports automatic rate adaptation as well which is an 
essential feature in bandwidth constrained radio network environments adjusting 
the targeted bitrate according to the varying network characteristics.

The available bandwidth of a cell in the Radio Access Network of a 5G (later 
6G) network depends on multiple parameters, configuration settings and geo-
graphical properties. Assuming 3–7 Mbps upstream load per user, current systems 
can support several (but of course not hundreds of) AR clients which is a good 
starting point e.g. for multi-player gaming scenarios. But, we van expect much 
more uplink capacity from future radio networks [6]. We believe that besides 
cloud-based gaming scenarios, cloud-based multi-user AR applications will also 
be important ones in the “5G timescale” and will become a killer application dur-
ing the era of 6G. Today’s online gaming platforms typically require minimum 
2–3 Mbps downlink and 0.5–2 Mbps uplink speeds, but with remote rendering the 
downstream easily jumps up to 10–15 Mbps. We argue that it is crucial to under-
stand the specific requirements (uplink/downlink bandwidth, delay, jitter) of dif-
ferent AR related services and based on the assessments we can provide input for 
beyond 5G and 6G design and standardization activities.

4 � Implementation

To validate our approach and the proposed architecture, we have created a proof-
of-concept prototype including the relevant components. This section presents the 
details of the implemented system in two steps: first, the client side is discussed 
and second, the main parts of the platform are reviewed. The overall system is 
depicted in Fig. 2.
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4.1 � Client Side: AR Application

We have implemented a multi-player AR application (game) making use of our 
edge cloud based coordination service. As it is shown in Fig. 2, the game is built 
on the Unity 3D engine [61], which is a widely used game engine for develop-
ing AR applications. In addition, we have implemented a native library in C++ 
i) to stream the camera images, ii) to stream the IMU data, and iii) to render the 
camera image to a Unity texture. On the one hand, this solution makes it easier 
to reuse our program code in other projects, and on the other hand, it is an effi-
cient solution providing fast operation due to the C++ implementation. We have 
addressed two different mobile platforms, namely, Android and iOS platforms, 
with slightly different implementation details.

On the one hand, the streaming of the camera images is implemented in the 
same way on the two platforms. Invoking a listener, we get the images continu-
ously in a callback method. The images are then passed to a H.264 encoder run-
ning in a separate thread. The targeted bitrate of the H.264 encoder is a con-
figuration parameter, and in our experiments we used 3.5 Mbps and 7 Mbps, 
respectively. When encoding is complete, the original camera image is forwarded 
for rendering, and the encoded image is sent in a separate thread to the remote 
service. On the other hand, IMU data is sent differently on the two platforms. 
Both cases are shown in Fig. 2, where the components corresponding to the iOS 
implementation are indicated by purple boxes, while the Android related elements 
are shown by green boxes. In case of the Android implementation, a dedicated 
module, called Rosbridge [62], is used for data transmission over a websocket. 
In contrast, on iOS, the IMU data is sent in a raw UDP stream. (This difference 
stems from a dependency issue of Rosbridge.) We use the same client time for 
timestamping both the IMU data and video frames and they are synchronized at 
the server side. The IMU data is sent at a higher frequency (100 or 200 Hz in our 
experiments, depending on the device capability) and the image frame is com-
bined with the closest one which has been received.

Fig. 2   Proof-of-concept prototype. Clients implemented on Android and iOS (left); Coordination plat-
form (right)
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Our main focus was on an application which uses only the remote SLAM service 
for positioning, but we have also created a hybrid solution on both platforms. In 
this scenario, a local SLAM function also runs on the device, which is ARKit and 
ARCore, respectively, in our case, and the final pose information is calculated based 
on the local and the remote data. This solution requires the transformation between 
the local coordinate system and the one used by the global map in the platform. Fol-
lowing this approach, the positioning of the application is not fully lost during net-
work errors because the local service can provide data continuously, and the coordi-
nation service can be used to improve the accuracy.

4.2 � Platform Side: Coordination Service

Our coordination service has been implemented on top of the Robot Operating Sys-
tem (ROS) [63] and the components are packaged into distinct software containers. 
Building on ROS is beneficial for several reasons. First, most open source SLAM 
implementations run with ROS so these modules can be changed easily. Second, 
the topic based communication in ROS following the publish/subscribe model pro-
vides an efficient messaging bus where extra components, implementing additional 
AR features (e.g., object detection), can be connected to. The required input data, 
such as the image stream, or IMU can easily be broadcast to the involved entities. A 
dedicated stream receiver is in charge of receiving the UDP stream from the phone, 
decoding the camera images, and publishing it to the corresponding ROS topic. For 
each AR device, a new module is created which is responsible for receiving and 
sending the raw data and the calculated pose estimations and map. With ROS and 
Docker containers this can be managed in a flexible way. As we have made use of 
available open-source components, the global map is currently built on ROVIOLI 
and maplab [16], and the map is built based on explicitly merged dedicated mis-
sions. Later, additional algorithms and map handlers can be added.

As described in Sect. 3, multiple SLAM instances are running in parallel. Each mod-
ule is subscribed to the incoming camera image messages and the IMU messages (if the 
latter is also required by the algorithm). In the current configuration, we have incorpo-
rated two different open-source SLAM libraries: ROVIOLI [16] and LSD-SLAM [17]. 
Additional implementations can easily be added later. The output of the SLAMs is 
monitored by the SLAM selector component and the “better” (or faster) pose response 
is selected for transmission towards the device. The coordinate systems are transformed 
accordingly. In our proof-of-concept prototype, a Deep Neural Network (DNN) model 
was constructed and trained with the publicly available EuRoC benchmark dataset [64] 
which includes the ground truth values as baselines. The model learned the accuracy of 
the selected SLAM modules for different environments and movement sequences and 
it is able to predict which algorithm will provide the more accurate pose value for the 
subsequent series of frames. The module is called SLAM Image Analyzer (SIA) and 
it is able to switch between SLAM outputs making use of different heuristics (e.g., it 
checks periodically the accuracy and changes if the predicted deviation exceeds a given 
threshold). For example, environments with varying light conditions or motion blur 
typically impact the accuracy of tracking, and particular techniques (e.g., feature-based 
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and direct SLAM algorithms) react differently which we can exploit during the online 
operation.

For the SIA module, different types of neural networks, prediction horizon param-
eters, and target error metrics were systematically examined for each SLAM implemen-
tation to find the best-performing model configuration and hyperparameters. The intrin-
sic problem of SLAM’s accuracy prediction has been formulated as a regression that 
relies on a specific blur metric of received image frames combined with synchronized 
(closest received) IMU values as the main input. The Variance of Laplacian (VoL) [65] 
value is leveraged as the blur metric, which can be calculated quickly and it is efficient 
in characterizing the quality of an image frame regarding either the number of feasible 
feature points or the pixel intensity’s distribution [66]. For the model’s target, the rela-
tive pose error (RPE) has been chosen that is calculated for the range between poses 
of the current and one following frame according to the prediction horizon, i.e., for 
consecutive frames the model needs to look ahead and infer a prediction. This local 
error metric is suitable to our problem since it can be calculated for each frame in a 
flexible manner and does not depend on previously calculated error values as it is the 
case of cumulative metrics, such as the absolute trajectory error (ATE). Moreover, 
these predicted RPE values can be easily utilized to specify the magnitude of expected 
drifts suffered in the trajectories of the different SLAMs, despite the absence of ground 
truth data. Beside the standard deep neural network, recurrent neural models were also 
trained and evaluated to tackle the occurring hidden correlations between the pose 
errors of consecutive frames by taking the time factor into consideration. Two different 
recurrent structures were examined: a stacked Long Short-Term Memory (LSTM) [67] 
based model with two stacked layers and an encoder-decoder model [68] that applies 
an LSTM layer for both the encoding and decoding parts along with a single hidden 
layer for the output calculation.

For the model training and evaluation steps, prerecorded measurements of the 
EuRoC MH 01-04 missions were used with randomized shuffling and cross-valida-
tion, while the evo [69] tool was used for calculating the pose errors. Our automated 
training and tuning processes ultimately resulted that the simpler DNN model has 
superior performance over the tested recurrent models, using a 10-frame prediction 
horizon. The best result is provided by a two-layer DNN that we have incorporated 
into our prototype implementation. It consists of two hidden layers, each with 512 
neurons and the rectified linear unit (ReLU) activation function. To avoid overfit-
ting, L2 bias regularizers ( l2 = 0.2 ) are defined for each layer along with a separate 
dropout layers with a 30 % drop rate. For the model training, the Adam optimizer 
[70] is used with reduced learning rate ( 1e − 4 ) and the specific Huber loss [71] that 
can robustly handle target values with frequent changes by behaving quadratically 
for small residuals and linearly for large residuals.

5 � Measurement and Evaluation Methodology

In regular AR application, the pose information is provided by the local SLAM 
(e.g., ARCore or ARKit) periodically at certain time instants, estimating how far 
the device moved from the position since the application started. The quality of 
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the user experience is significantly affected by the accuracy of this estimation. 
This holds for remote SLAM solutions, as well. In order to measure the accu-
racy of a SLAM algorithm, we need to know the real physical position for each 
time instant, which is called the ground truth in the literature [72–74]. This is a 
baseline trajectory for measuring the accuracy of a SLAM. There are some open-
source databases [64, 75, 76] that contain the camera images for each timestamp 
and also include the ground truth for the datasets. However, this tool set cannot 
be used to characterize our own application in our physical environment includ-
ing also the network infrastructure. Therefore, a novel measurement methodology 
is required to be able to analyze the impact of all components and mechanisms.

5.1 � Baseline Trajectory

We have elaborated an appropriate measurement methodology which can lever-
age a wide range of baseline trajectories. We use a robotic arm to move the AR 
device on preliminary defined 3D trajectories. The real physical position is cap-
tured from the robot software and it can be used as a ground truth value.

This methodology is capable of providing high precision ground truth data 
series, however, the size of the trajectories is limited by the moving range of 
the robotic arm. In our measurements, we used an Universal Robot 5E robotic 
arm (shown in Fig. 3) with a mounted mobile device. Within the range, arbitrary 
trajectories can be configured with programmable velocity and acceleration. 
Recording the ground truth and the estimated positions provided by the SLAM 
algorithms (of course, both with timestamps), we can easily compare how close 
the estimated position is to reality.

Fig. 3   Measurement setup with 
an UR5e robotic arm
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5.2 � Evaluation Method

A crucial step of the evaluation is the synchronization of the coordinate systems 
of the robotic arm and the AR device. SLAMs measure the distance and the rota-
tion from the AR application’s starting point, which is the origin of that coordinate 
system. In contrast, the ground truth is defined in the robotic arm’s coordinate sys-
tem where the origin is at the base of the robot stand. Furthermore, some SLAM 
algorithms use right-handed coordinate systems (e.g. ARCore), but others assume 
left-handed ones. Therefore, we need to apply shifting and matrix multiplication to 
synchronize the two worlds. The magnitude of the shifting is calculated in the start-
ing position and applied throughout the measurement. The positions obtained in this 
way and the ground truth values are shown together in the plots in the next section 
allowing a visual comparison. Besides, we use objective metrics to characterize the 
targeted SLAM algorithms, such as Absolute Trajectory Error (ATE) and Relative 
Pose Error (RPE) [75, 77]. The RPE shows the drift of the trajectory over a fixed 
time interval and the ATE measures the global difference compared to the baseline 
trajectory.

Another important aspect which should be considered, especially in case of a 
remote SLAM, is the response time of the service. If the latency is too large, the 
provided pose is outdated and unusable. During the measurements, we put a times-
tamp on each image as soon as we get it from the camera of the mobile phone and 
we also put a timestamp when we get back the estimated pose for that image from 
the SLAM. Hence, we specifically measure end-to-end latency which includes 
image encoding, network latency, image decoding, SLAM runtime, and all platform 
overheads.

Besides the robotic tests, we addressed human motion experiments as well, where 
the trajectory is not limited. Inside our office building, we have accomplished sev-
eral missions with different complexities. The recorded datasets can be replayed for 
the platform running with chosen configurations. Here, the exact ground truth is 
not available, however, the results of the local SLAM algorithms can be captured 
and used as an approximation for the baseline. This approach is validated by our 
measurements and ARCore and ARKit follow the real trajectories with acceptable 
precision.

6 � Evaluation

This section is devoted to the evaluation of our proof-of-concept prototype following 
the methodology described in the previous section. In our experiments, the coordi-
nation service platform was established both in an AWS cloud region (Frankfurt, 
eu-central-1) and in the local premises (edge setup), while the robotic arm and the 
AR devices were operated from the local premises connected via a WiFi network. 
The average round-trip time between the device and the coordination platform was 
26 ms and 2 ms, respectively. We targeted experiments where the network was not a 
bottleneck of the system and the number of clients was limited. Our testbed environ-
ment encompassed WiFi and wired networks connecting the AR devices to the edge/



	 Journal of Network and Systems Management (2024) 32:40

1 3

40  Page 14 of 24

cloud services, while the interference in the radio channels was minimized. By these 
means, we analyzed the limits of the approach and revealed the performance charac-
teristics under unconstrained network capacity.

6.1 � Latency Characteristics

We conduct experiments to measure the runtime of each component in order to ana-
lyze the usability of the system and to reveal potential bottlenecks. Both Android 
(Huawei P30 Pro) and iOS (iPhone 12 Pro) phones are tested with the coordination 
service. Detailed analysis has been carried out for a wide range of scenarios and as 
an illustration, a selected cloud setup and an edge scenario is presented here, respec-
tively. In the chosen cloud experiment, the coordination service uses ROVIOLI as 
the SLAM module (shown in Fig. 4), while the edge scenario is equipped with LSD-
SLAM (presented in Fig. 5). We use HD videos (Huawei P30 Pro: 1280x960, iPhone 
12 Pro: 1280x720 resolution) with 30 FPS encoded into streams targeting 3.5 Mbps 
bitrate. Four separate operation phases are measured: the camera image encoding 
time and the streaming time on the phone, the processing time of the given SLAM 
module (including queueing delay if it appears), and the network delay together with 
all platform overheads (e.g., ROS based communication, virtualization overhead).

Experiments have shown that the streaming time of a frame on a phone is most 
significantly affected by the phone’s encoder. In case of Android, the transcod-
ing time of a frame (1280x960 pixels) takes around 72 ms yielding an average 
total transmission time of 76 ms (including the encoder and streamer threads). 
This large encoding time cannot be reduced due to the limitation of the available 
libraries (and the underlying drivers) which do not allow to enforce individual 
frame processing (instead three subsequent frames are handled together). For 
iOS devices, the encoding function shows much better performance due to per-
frame processing and it needs around 7.27  ms to encode an image (1280x720 

Fig. 4   Performance of the coordination service with Rovioli running in AWS
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pixels). Approximately, additional 7.5  ms is required by the streamer thread 
which yields around 15  ms as the total streaming time. The response time of 
the SLAM modules show the same characteristics for both devices. The aver-
age runtime of ROVIOLI, including the queuing delays, is above 80  ms with 
large variance, while LSD-SLAM exhibits much better performance calculating 
the pose within 7.5 ms in all scenarios. The network delays and also the over-
heads are different for the cloud and edge scenarios depending on the underlying 
hardware architecture, the used network technologies and the physical distance 
between the platform and the AR devices. The average delay is tolerable for our 
test scenarios, however the results show significant jitter which can have impact 
on the user experience. We expect that moving to 5G (and 6G) environment will 
result in reduced jitter and more deterministic delays in the network part. How-
ever, in order to mitigate the jitter introduced by the edge/cloud platforms, addi-
tional mechanisms are needed.

We also present the total end-to-end (E2E) latency in Figs. 4) and 5) which 
measures the time between grabbing the camera image and the arrival of the 
pose. Besides, Fig. 6 summarizes the E2E statistics for all scenarios in a violin 
plot. On the one hand, in case of Android, the E2E delay is above 200 ms with 
ROVIOLI even in edge scenarios, which unfortunately has a noticeable effect on 
the user experience. With LSD-SLAM, a slightly better operation is achieved 
(above 100 ms but with large deviation) which also has an impact on the experi-
ence. On the other hand, the results with iOS (iPhone 12 Pro) are very promis-
ing, especially together with LSD-SLAM. In case of the edge setup, the average 
E2E latency is kept around 50 ms which means that the pose information can be 
updated within 2-frame delay for most of the frames (assuming 30  FPS frame 
rate).

Fig. 5   Performance of the coordination service with LSD running at the edge site
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6.2 � Accuracy

Besides the strict latency characteristics which is essential for the real-time opera-
tion, accuracy is the other dimension which directly impacts the user experience. 
The accuracy of our coordination service is affected by the incorporated SLAM 
libraries and also the distributed operation of the overall system. We have conducted 
several experiments to assess the performance characteristics, here we highlight 
some relevant results. The results of the robotic accuracy measurements are shown 
in Fig. 7 and Fig. 8 for two different trajectories. The first one is a simple one lifting 

Fig. 6   End-to-end latency statistics

Fig. 7   The performance of different SLAMs using simple trajectory (top view)
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the AR device and following an arc there and back. In Fig. 7, the top view of the tra-
jectory is plotted presenting the results for different SLAMs. The black curve indi-
cates the ground truth, and as baselines, the results of ARCore and ARKit are also 
depicted. Besides single SLAMs, we show the results of our ensemble module (SIA) 
combining ROVIOLI and LSD-SLAM. ARCore and ARKit outperform the open-
source methods, however, the errors are not extreme and in certain applications, this 
performance can be accepted (position coordinates are in millimeters).

The second experiment applies a complex trajectory, where the robotic arm 
makes several changes of direction and draws the shape of a house after a syn-
chronization phase (bottom center part of Fig. 8 which shows the top view of the 
movements). Here, ARCore and ARKit strictly follow the ground truth values but 
the accuracy of the remote SLAMs shows non-negligible divergence. They follow 
straight movements very well, but the turning angles are often incorrect. Although 
sometimes the remote SLAMs make corrections and these cause some minor jumps 
in the estimated positions. Moreover, at the corners of the “house”, the altitude val-
ues also show deviation.

The third type of experiments addresses human movements. The result of a 
selected mission using ROVIOLI is shown in Fig. 9. Here, we use the trajectory of 
ARCore or ARKit as the ground truth. For this complex human motion, the accu-
racy of the remote service is very close to the performance of the local solutions and 
it can provide acceptable user experience. As quantitative metrics, ATE and RPE 
values are also calculated and shown in Table 1 for selected representative experi-
ments from each test group. LSD-SLAM shows better performance than ROVIOLI, 
while the ensemble solution is able to outperform both SLAMs in terms of the abso-
lute error (ATE). However, the relative drift (RPE) indicates performance issues for 
SIA which can be the result of sudden changes in pose values at switching events. 
This is an important future research to identify the trade-off between sudden correc-
tions vs. slowly accumulated drifts when we optimize for the experience.

To sum up, the revealed and experienced accuracy is acceptable for simple 
games, however it is currently not enough for critical applications, such as a remote 

Fig. 8   The performance of different SLAMs using complex trajectory (top view)
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surgery support system. If we target high-quality AR experiences, the coordination 
service has to be combined with local enhancements (e.g., sophisticated predictions 
or filtering mechanisms). But we think that the platform can be extended towards 
this direction.

6.3 � Energy Consumption

It is also important to consider the power consumption for client devices used in the 
system because as already mentioned, the battery life of a mobile AR device can 
be multiplied by offloading certain XR functions [6]. We have conducted several 
experiments to compare the consumption of a baseline application invoking local 
AR libraries with a novel application using our coordination service. The measured 
energy consumption of the device while running the application for 15 minutes, 

Fig. 9   The performance using ROVIOLI in a human motion experiment inside the office building

Table 1   ATE and RPE for 
different SLAMs [m]

ARCore ARKit Rovioli LSD SIA

ATE Rob. 1 0.104 0.104 0.198 0.220 0.198
Rob. 2 0.109 0.102 0.368 0.360 0.355
Hum – – 0.430 0.393 0.372

RPE Rob. 1 0.008 0.007 0.013 0.014 0.012
Rob. 2 0.004 0.004 0.012 0.009 0.016
Hum – – 0.017 0.016 0.021
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respectively, is shown in Table 2. In case of iPhone 12 Pro, the energy consumption 
is reduced with 30% when the coordination service is invoked, which is an important 
advantage of this approach. However, in case of Android platform, the results do not 
show that gain. This stems from an implementation issue; currently our rendering 
codes are not optimized and some tasks are implemented in CPU instead of GPU.

7 � Conclusion

In this paper, we have proposed a novel edge cloud based coordination platform for 
multi-user AR applications. An extensible architecture has been described and a 
proof-of-concept prototype were developed. We have focused on the latency sensi-
tive and computation intensive Simultaneous Localization And Mapping function 
which was offloaded from the device to the edge cloud infrastructure. Our solu-
tion has been built on open-source SLAM libraries and the Robot Operating Sys-
tem (ROS) and it inherently supports further extensions, including additional AR 
services, such as object/face detection and tracking, semantic understanding of the 
environment or remote rendering. In order to be able to evaluate the concept, we 
have defined a dedicated measurement methodology providing the necessary ground 
truth information. Following the methodology, we analyzed the latency character-
istics and the accuracy of the platform via real experiments. The current version of 
the proof-of-concept prototype provides sufficient services for simple AR games or 
applications, however further improvements and additional components are required 
to enable high-quality AR experiences.

Challenging future works have also been identified. We are working on an exten-
sion to the encoder/streamer part which supports automatic rate adaptation. It is cru-
cial in bandwidth-constrained radio network environments to be able to adjust the 
targeted bitrate of the encoder dynamically to follow the varying characteristics of 
the radio network. Besides, the trade-off between the encoder’s bitrate and SLAM’s 
accuracy for different SLAM implementations is also an interesting research ques-
tion. Our future work addresses the migration to an internal experimental 5G testbed 
where the full system is under our control and dedicated experiments with our plat-
form can be carried out. And finally, we target performance enhancements in two 
parallel tracks. On the one hand, more recent SLAM libraries (e.g., ORB-SLAM3), 
will be added to the framework. On the other hand, novel mechanisms, such as pre-
cise movement prediction and filtering algorithms will be integrated into the plat-
form in order to mitigate delay and jitter issues.

Table 2   Energy consumption 
for different SLAMs

iPhone 12 Pro ARKit 223 mAh
Remote SLAM 159 mAh

Huawei P30 Pro ARCore 252 mAh
Remote SLAM 248 mAh
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