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H I G H L I G H T S

• Reinforcement learning can be used to improve injection molding technology.
• Actor-critic algorithms are helpful in setting up an injection molding machine.
• The use of prior knowledge is necessary for self-learning machines.
• Injection molding simulations can be used as prior knowledge for self-learning.
• Our algorithm can compete with a professional through relevant prior knowledge.
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A B S T R A C T

The use of reinforcement learning in the injection molding process is a little-researched area in the era of In-
dustry 4.0. The use of a smart decision-making algorithm is necessary for such a complex production method. 
Therefore, our research aims to extend the knowledge of the practical use of reinforcement learning in injection 
molding. In our study, we examined the effect of the parameters of the Actor-Critic algorithm to give a broader 
picture of the learning process. In addition, we show how to use simulation data, as prior knowledge, to set up 
the injection molding process for the production of an unknown part.

1. Introduction

Nowadays there are many articles on the subject of the fourth in-
dustrial revolution, also known as Industry 4.0 [1–3]. The idea behind 
the revolution is the reduction of human involvement in production 
processes by increasing the communication and connections between 
machines [4]. A way to achieve this is to teach the machines to learn and 
control themselves [5].

The plastics industry, as one of the most important manufacturing 
industry, also uses the concept of Industry 4.0. In some cases, the term 
refers to the collection and processing of data [6], or it relates to 3D 
printing because of the novelty of the new design and production 
method [7]. According to another perspective, 3D printing is part of 
Industry 4.0 due to the possibility of computer control [8]. Oleksy et al. 

[9] argue that improving productivity is an important aspect of Industry 
4.0, therefore using integrated information systems is essential for 
plastics manufacturing companies. Yet another implementation of In-
dustry 4.0 in polymer composite technologies is the application of 
robot-assisted processes [10]. Aminabadi et al. [11] consider the use of 
AI-controlled quality checks for injection molding a criterion of Industry 
4.0.

Injection molding is a relatively complicated mass production pro-
cess, in which several parameters can be adjusted, such as injection rate, 
holding pressure and mold temperature. [12,13]. Due to the complexity 
of the technology, mold design and the material, injection molding is 
still extensively researched [14,15]. In addition, injection molding can 
be used to produce parts of different sizes, which means customers can 
have quite different requirements. The quality of an injection molded 
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product can be defined with a number of parameters, such as surface 
roughness [16], geometrical accuracy [17], or the weight of the part 
[18].

It is not a coincidence that controlling injection molding and the 
mathematical modeling of the process are frequently researched topics. 
For example, Barghash and Alkaabneh [19] made regression models of 
part shrinkage and warpage by analyzing seven injection molding pa-
rameters. Kazmer and Westerdale [20] analyzed seven injection mold-
ing parameters with a factorial design, and from the analysis, they 
defined a model for quality control. Zhang et al. [21] made a model for 
controlling warpage based on principal component analysis. Mirigul 
Altan [22] used the Taguchi design, analysis of variance and a neural 
network to optimize the shrinkage of injection molded parts. It is 
important to mention injection molding simulation, as it is also used in 
many cases to optimize the process [23] or design the mold [24].

Besides modeling, researchers put a lot of effort into analyzing 
different control methods. Chen et al. [25] used strain gauges on the tie 
bars of the injection molding machine to control part weight. In their 
research, they varied the switchover point with a predefined step size 
and in addition to this, they used linear interpolation to fine-tune the 
quality of the product. Gordon et al. [26] suggested quality control using 
a multivariate in-mold sensor because the measurement data can predict 
the nonlinear behavior of tensile stress. To overcome the drawbacks of 
traditional PID controllers, Yang et al. [27] presented an improved PID 
controller that controls the injection speed more accurately. Tsai et al. 
[28] proposed an adaptive machine control strategy based on sensors in 
the injection molding machine, linear interpolation and neural network. 
Kumar et al. [29] presented a rule-based algorithm for avoiding failures 
during injection molding. In their study, Wang et al. [30] described the 
digital twin concept to control the injection molding technology. Su 
et al. [31] suggested a nozzle pressure and clamping force-based adap-
tive system to control the part weight for polymers with different melt 
flow properties. Naturally, the use of artificial neural networks on con-
trol processes is also researched, which can be used to intervene in the 
injection molding process immediately [32,33].

The term “artificial intelligence” is used relatively often and en-
compasses many methods, including machine learning [34]. Colut et al. 
[35] identified machine learning as one of the methods of Industry 4.0. 
Nian et al. [36] divided machine learning into four subgroups based on 
the learning process and data, namely: unsupervised learning, super-
vised learning, semi-supervised learning, and reinforcement learning.

In unsupervised learning, the input data is not labeled; therefore, the 
learning algorithms group the data based on the pattern of the input 
[37]. For injection molding, unsupervised learning can be useful for 
failure detection [38] or indexing the CAD model of molds in a database 
[39]. In supervised learning, the input data is labeled, so the learning 
algorithms try to define the relationship between the input and the label 
[40]. This method is also used for injection molding, thanks to the many 
types of learning algorithms it includes [41]. Supervised learning can be 
promising for product quality classification based on in-mold pressure 
measurement [42,43] or quality regression [44]. Labeling hundreds or 
thousands of data points could be exhausting and time-consuming. 
Therefore, in a mass production process such as injection molding, the 
use of semi-supervised learning can greatly increase efficiency, where 
the algorithm can learn from a mixture of labeled and unlabeled data 
[45].

In reinforcement learning, learning is based on the interaction be-
tween a decision maker (agent) and the environment, while the algo-
rithm masters which actions or states bring it closer to the target state. 
During the process, the agent gets a reward from the environment and 
chooses an action that changes the state of the environment in order to 
maximize the reward. Because of this operation mechanism, reinforce-
ment learning can be particularly suitable for regulation and control 
[46]. These methods are not as stable as traditional systems but work 
much better in new environments [47]. Conventional controllers, such 
as PID controllers, do not use predictions [48] and do not work well if 

there are sudden environmental changes [49]. One great disadvantage 
of reinforcement learning methods is that they require many training 
steps, but these algorithms can be trained offline [36].The number of 
studies on reinforcement learning has significantly increased in recent 
years [50]. However, it is interesting that this trend is not yet significant 
in the field of injection molding. On 13 June 2023, a search of the Web of 
Science for “injection molding” and “reinforcement learning” returned 
10 articles. On the same day, the Scopus database returned 15 docu-
ments for the common intersection of the Title–Abstract–keyword of 
“injection molding” and “reinforcement learning”. After we filtered out 
the duplicates, there were 17 unique documents on the topic. Some of 
these articles, published in recent years, have explored exciting issues. 
Lee et al. [51] investigated the use of reinforcement learning for mold 
scheduling to satisfy the growing needs of customers. Li et al. [52] used 
Q-learning to control the injection molding process in case of actuator 
disturbance. Qin et al. [53] explored the usability of reinforcement 
learning to stabilize the injection molding process in the case of random 
process disturbances. In their study, Guo et al. [54] used the Actor-Critic 
algorithm to optimize ultra-high precision injection molded products 
based on simulation data and compared the results with a Fuzzy infer-
ence system and genetic algorithm.

Unlike the above-mentioned Actor-Critic algorithms, we propose the 
use of an Actor-Critic algorithm that uses state aggregation, temporal 
difference, and average reward. In addition, our algorithm uses a soft-
max policy, which makes it easier to discover even in new environments. 
As a result of these changes, our method is not limited by the accuracy of 
the model which describes the environment, as it is not required for the 
operation of our algorithm. Besides, we believe that injection molding 
should be tuned by optimizing each of the process phases separately, as 
they interact with each other. Therefore, in the present research, we 
show how to use our algorithm for optimizing the quality of a product 
during the holding phase.

The above-mentioned studies are essential to understanding the use 
of reinforcement learning in injection molding. However, these studies 
usually do not aim to explain how to set up the injection molding ma-
chine without prior knowledge. In addition, they usually only examine 
the effect of one or two algorithm parameters, which is insufficient for a 
reader to understand the application of reinforcement learning for in-
jection molding. Therefore, in our research, we investigated the effect of 
several learning parameters for injection molding (state aggregation, 
number of possible actions, reward, etc.). Also, we examined the use of 
prior knowledge only from simulation data to set up the injection 
molding machine without preliminary experience of producing the 
actual part. In our research first, we describe the materials, methods, 
learning algorithm, and equipment used in our experiments. Here, we 
explain how the learning method and algorithm works, show the 
learning datasets and describe the process of analysis and evaluation. 
The results are then presented in two main parts. The first part consists 
of an analysis of the effect of algorithm parameters on the control. The 
second part describes the application of the algorithm to the injection 
molding technology, including the use and effect of prior knowledge.

2. Material and methods

2.1. Injection molding and measurement

To investigate the effects of learning parameters, we carried out in-
jection molding experiments using an Arburg Allrounder 320 C 400–170 
injection molding machine (Arburg GmbH+Co., Loßburg, Germany) and 
a two-cavity mold. The specimens were produced from acrylonitrile 
butadiene styrene (ABS), named Terluran GP-35 (INEOS Styrolution, 
Manchester, United Kingdom). The product was an 80 mm× 80 mm 
square tile-like part with a nominal height of 6 mm (Fig. 1). The mold 
was designed for teaching and research, and therefore the product has a 
complex geometry to illustrate a number of injection molding defects, 
such as weld lines and sink marks. After production, the weight of each 
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part was measured with an Ohaus Explorer analytical balance (OHAUS 
Europe GmbH, Uster, Switzerland). We used weight as a quality 
parameter for optimization and for the algorithm to learn. To investigate 
the use of prior knowledge, we made injection molding simulations of 
the same part with Moldex3D Studio 2022 (Moldex3D, Lecco, Italy) with 
the same setting combinations as for injection molding, and used the 
MATLAB R2021b platform to implement the Actor-Critic algorithm, 
carry out the learning process, and analyze the results. We used the 
Terluran GP-35 ABS material from the Moldex3D database for the 
simulation. The dimensions of the model used for simulation were the 
same as those used for the real injection molded model. The product has 
several features, such as a boss (with a thickness of 1 mm, outer diameter 
of 8.5 mm and a height of 6 mm), a small boss (with a thickness of 1 mm, 
6 mm and a height of 4 mm), a hole (with a diameter of 6 mm), ribs (with 
thicknesses of 0.8, 1, 1.5, 3 and 4 mm, and heights of 2 and 4 mm), and 
wall thickness changes.

Our goal was to investigate if the Actor-Critic algorithm can be used 
to optimize the injection molding process. Injection molding is a cyclic 
technology with several steps and many process parameters which 
should be optimized. One of the most critical step is the holding phase, 
which has a great impact on the quality of the part (part weight, 
shrinkage, etc.). Therefore, we chose to optimize the holding phase. We 
first injection molded with several injection molding parameter com-
binations. The injection molding parameters used and not changed 
during production are shown in Table 1. The process parameters varied 
were holding time (varied between 0 s and 5 s in steps of 0.5 s) and 
holding pressure (varied between 0 bar and 1000 bar in steps of 
100 bar). We injection molded one cycle with each setting combination 
except the setting combinations with 400, 700, and 1000 bar holding 
pressure, with which we produced six specimens each. We used these 
specimens to estimate the variance of part weight. Of course, the algo-
rithm needs boundaries such as the maximum and minimum holding 
pressure and time, which can be set on the machine. We know these 
boundaries from the datasets in our experiments because we have no 

data outside the search space, but we should define them in other cases. 
The maximum holding pressure was 1000 bar, the maximum holding 
time was 5 s, and the minimum value for each was 0 bar and 0 s, 
respectively. If the algorithm chooses an action that would take it out of 
the boundaries, it does not change the holding pressure and holding 
time.

In our experiment, the Actor-Critic algorithm theoretically changes 
the injection molding parameters (holding pressure and holding time) 
during learning and observes the weight of the part produced using the 
dataset. We say “theoretically’’ because we wanted to investigate the 
long-term performance of the algorithm, which, in our case, means 
thousands of injection molding cycles. This would require a lot of time, 
energy, and materials, which would be an unnecessary waste. Therefore, 
we used the results of the measurements and injection molding simu-
lations and defined datasets where we simulated the learning process. 
For our experiments, we used two different datasets: one from injection 
molding and mass measurement, named injection molding dataset (ID), 
and another defined from the injection molding simulation, named 
simulation dataset (SD) (see Fig. 2). With these datasets, we interpolated 
the weight of the product for any holding pressure–holding time com-
bination in the given range of measurement, therefore we were able to 
use smaller steps for the adjustment of settings during learning. With 
this method, we did not have to make thousands of injection moldings, 
and we were still able to use actual injection molding data (or data from 
injection molding simulation). Fig. 2 shows that injection molding and 
simulation give relatively different results due to the lack of optimiza-
tion of the simulation. We did not optimize the simulation because, for a 
new product/mold, engineers work primarily from simulation software 
databases rather than measured material models. For this reason, our 
results show how useful such simple simulations can be for the learning 
algorithm.

2.2. Investigation of the effect of Actor-Critic parameters

2.2.1. The algorithm and its initial parameters
We aimed to use reinforcement learning to control the injection 

molding machine. It is clear from the literature that reinforcement 
learning can be used well in complex environments (like injection 
molding) and it can adapt to new environments. Another advantage is 
that it can also be taught with offline data. For these reasons, our method 
can adapt to adjusting the injection molding machine based on the 
(prior) knowledge obtained from simulation data.

Our first goal was to investigate the effect of the parameters of the 
algorithm on the learning process. For this, we used only the ID. We 
always used 0 bar holding pressure and 0 s holding time as a starting 
point of the learning process. This is the safest way to set the parameters 
if we do not have any information about the mold and the part. From the 
starting point, the algorithm choses an action according to the policy 
and changes the holding pressure and holding time. Then the algorithm 
picks the product weight from the ID due to the new setting combina-
tions and updates its policy and value estimation. If there is no product 
weight for the new setting combination in the dataset, then the 

Fig. 1. The CAD model of the product: (a) top view (b) bottom view.

Table 1 
The unchanged settings of the injection molding.

Process parameter Value

Shot volume [cm3] 30
Circumferential speed [m/min] 25
Back pressure [bar] 60
Decompression [cm3] 3
Injection flow [cm3/s] 30
Switch-over volume [cm3] 9
Injection time [s] 1.04 +/- 0.13
Injection time limit [s] 3
Injection pressure [bar] 939 +/- 14
Injection pressure limit [bar] 1500
Clamping force [kN] 400
Cooling time [s] 10
Cycle time [s] 22,5
Melt temperature [◦C] 220
Mold temperature [◦C] 40

R.D. Párizs and D. Török                                                                                                                                                                                                                     Applied Soft Computing 167 (2024) 112236 

3 



algorithm interpolates the weight of the product from the neighboring 
settings.

The pseudocode of our algorithm can be seen in Fig. 3. The algorithm 
uses two function estimations: one for softmax policy estimation (π(a|s,
θ)), and one for the value function estimation (v̂(s,w)). These functions 
are estimated from the weight vectors (θ and w) and the feature vectors 
(xs and xh) based on the actual state: s (the weight of the product) and 
the chosen action: a (i. e. how to change the technology). The weight 
vector of the value function stores a value for each aggregate state, 
which expresses the goodness of that state. The weight vector of the 
policy function contains a value for each aggregate state–action pair, 
which will determine the probability of choosing a given action in that 
state using the policy function. All values of the weight vectors (θ and w) 
are initially 0.5, i.e., all states and actions appear to be equally good.

For policy estimation, we used the softmax function. With this 
method, the algorithm is able to make greedy decisions after sufficient 
training but can improve this policy in new environments, adapting it to 
changes. The reward (R) is estimated from the difference between the 
target weight (mgoal = 8.75g) and the weight of the part produced. Our 
algorithm uses the average reward (R), as this is a good measure of 
performance for continuous tasks or tasks with many steps. Since the 
algorithm learns through thousands of steps in our experiments, this 
metric is more useful than the discounted reward. We set the initial 
value of the average reward to 0, because it is the optimal value our 
algorithm wanted to achieve. The average reward is updated through 
learning because of the temporal difference error.

The algorithm needs a target state (sgoal) to get a reward (penalty) for 
deviating from it. In this case, the target state is a product with a weight 

of 8.75 g. However, for the algorithm to work, this state can be another 
indicator of product quality, as long as that indicator can be quantified 
in some way (for example, the shrinkage of the product).

The initial state is currently determined by the technological pa-
rameters. Apart from the machine settings, this state depends on the 
material (drying, homogeneity) and the precision of the machine. In our 
experiment, the initial settings are 0 bar holding pressure and 0 s 
holding time. We chose these initial settings because this is the safest 
combination of settings from a technological point of view, without any 
background knowledge. The initial state has a big impact on the 
outcome of learning, which is why an exploring start is often used in 
general. We did not use exploring start because we wanted the algorithm 
to learn to set up the machine as an expert would. We used the same 
initial state value for the learning scenarios to simplify the analysis.

In our experiment, we investigate the use of deterministic and sto-
chastic environments. This can be adjusted with the parameter σ. If σ =

0, the environment is deterministic because there is no random noise on 
the output of injection molding. However, if σ > 0, the weight of the 
product will always get a random noise from a normal distribution with 
a mean of 0 and a standard deviation of σ.

In all cases, we defined the end of learning at the 4000th injection 
molding cycle (i. e. learning step) because, in most cases, this number of 
steps was enough for the algorithm to sufficiently converge to the target 
value. The algorithm could have been stopped earlier if it reached the 
target value, but we did not do so to allow the algorithm to discover and 
act as a continuous control. The pseudocode (Fig. 3) distinguishes three 
learning parameters (αw, αθ, αR), but for simplicity, we used the same 
value for each of them in our experiment. These parameters determine 
the extent to which the temporal difference error should be accounted 
for when updating function weights (θ and w) and the average reward 
(R).

In the learning process, one step corresponds to one injection 
molding cycle. After the initial setup, the algorithm chooses an action to 
perform, observes the quality of the product (i. e., the state) and then 
calculates the temporal difference error (δ) according to the derived 
reward. The algorithm then uses this error to update the weights of the 
functions associated with the former state and state–action pairs. The 
algorithm repeats this task until it reaches the 4000th step. Of course, 
this limit can be changed to suit the task, even as a continuous control 
task.

2.2.2. Investigated parameters and the method of evaluation
In our research, we analyzed how the input parameters affect the 

learning of the algorithm. We investigated the effect of several param-
eters (Table 2). The default values for each parameter are in bold.

To better understand the performance of the Actor-Critic algorithm 

Fig. 2. (a) The injection molding dataset (ID) and (b) the simulation dataset (SD).

Fig. 3. The pseudocode of our Actor-Critic algorithm.
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in different cases, we performed 100 learning scenarios for the chosen 
combinations of algorithm parameters. We illustrated the performance 
of the algorithm by the change in the difference between actual weight 
and the target weight (1) in each case, as this shows when the algorithm 
converges. However, plotting 100 scenarios is not easy because the data 
are already overlapping in the case of 2–3 scenarios (Fig. 4a). In addi-
tion, the choices made during the learning process can vary widely, 
which means great variance in the results. Therefore, we plotted the 
median value of difference from the target value on each learning step 
and the interquartile range from the 100 learning scenarios (Fig. 4b). 
This simplifies the representations of learning and makes it possible to 
show learning with different initial parameters simultaneously. 

E− = −
⃒
⃒mactual − mtarget

⃒
⃒, (1) 

where E− is the negative error, mactual is the weight of the product in-
jection molded in the last cycle and mtarget is the target weight.

2.3. Investigation of the applicability of the Actor-Critic algorithm

2.3.1. Method of applying prior knowledge
The use of a priori knowledge can speed up learning (and thus setting 

up the injection molding machine), which makes it easier to apply the 
algorithm in real-world situations. In our algorithm, prior knowledge 
means that the initial weight vectors (θ and w) are determined from 

previous learning scenarios (the initial parameters of the algorithms 
should be the same except θ and w) instead of using the initial weights, 
which were 0.5 for each element of the weight vectors (see 2.2.1). The 
new initial weights (prior knowledge) were the mean weight values after 
the 4000th learning step from the 100 different learning scenarios.

In the investigation of the use of prior knowledge, we used the ID. 
First, we tested whether prior knowledge can actually accelerate the 
learning process. To do this, we used data from injection molding only to 
generate prior knowledge (pre-learning) and subsequent application 
(post-learning). Pre-learning, in this case, means the form of learning 
described earlier, i.e., 100 different learning scenarios with over 4000 
steps with given initial parameters. Post-learning is very similar, with 
the difference that the initial weight vectors (θ and w) are the values 
determined from pre-learning.

2.3.2. Using data from injection molding simulations
After we examined the application of prior knowledge, we investi-

gated the use of prior knowledge from injection molding simulation. 
Since we run the simulations with the same setup combinations as actual 
injection molding, it can be assumed that learning from the simulation 
data will speed up setting up the machine when it is used in a real in-
jection molding environment. Therefore, we used the search SD to 
generate the prior knowledge during pre-learning, and then used the ID 
for post-learning. In addition, we made learning scenarios where the 
starting point of post-learning was not the usual starting point (0 bar 
holding pressure and 0 s holding time) but 300 bar holding pressure and 
3 s holding time. This setting combination produced product mass 
closest to the target product mass from the simulation results.

3. Results

3.1. The effect of algorithm parameters

In our first experiment, we investigated the effect of the key algo-
rithm parameters, such as the magnitude of the reward, the way of state 
aggregations, the possible actions, etc. To do this, we simulated learning 
scenarios with the algorithm with different initial parameters and 
examined how the error (1) changes.

3.1.1. The magnitude of the reward
During learning, the algorithm compares the output of the actual 

state and the goal. In our case, the goal is to produce a part with a weight 
of 8.75 g. Therefore, a natural reward function might be the following 
(2): 

Table 2 
The investigated algorithm parameters.

Algorithm parameter Values/Methods

Magnitude of the 
reward

R = −
⃒
⃒mactual − mgoal

⃒
⃒ R = − 10 •

⃒
⃒mactual − mgoal

⃒
⃒ R =

− 100 •
⃒
⃒mactual − mgoal

⃒
⃒

Way of state 
aggregation

by-part weight
by-injection molding settings

Number of states 10
50
100

Magnitude of actions Holding pressure: þ/¡25 bar;Holding time: þ/¡0.25 s
Holding pressure: +/− 50 bar Holding time: +/− 0.5 s
Holding pressure: +/− 100 bar; Holding time: +/− 1 s

Number of possible 
actions

3 actions/settings
5 actions/settings
7 actions/settings

Value of learning 
rate

α=0.01
α=0.05
α¼0.1

Environment Deterministic
Stochastic

Fig. 4. (a) Three different learning scenarios with the same parameters. (b) 100 different learning scenarios with the same parameters shown with median and 
interquartile range.
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R = −
⃒
⃒mactual − mgoal

⃒
⃒, (2) 

where R is the reward, mactual is the weight of the part produced with the 
actual setting combination, mgoal = 8.75g is the goal of learning. How-
ever, the magnitude of the reward highly affects the temporal difference 
error, as does the weight vector of the policy function and value func-
tion. Therefore, we made learning scenarios with three different reward 
functions: with the absolute difference, ten times the absolute differ-
ence, and a hundred times the absolute difference. Fig. 5 shows the 
negative error from the target value during the 4000 learning steps. Each 
curve shows the results of 100 learning scenarios from the same starting 
point and with the same initial algorithm parameters except the high-
lighted parameter. The brightly colored line shows the median value, 
and the pale-colored area (with similar color) shows the interquartile 
range of the values. The results clearly indicate that rewards with 
greater magnitude have a significant influence on learning. Learning 
with (1) will converge too slowly to a local optimum which is clear from 
the great variance of the values. The reason behind this phenomenon is 
that the value of the reward is so small that it changes the weights (θ and 
w) to a small extent. In practice, for a larger product, the weight of the 
part and its variation can be significantly more than for the actual task. 
Therefore, it is particularly important to look at the extent to which the 
reward, which seems to come naturally, helps the learning of the 
algorithm.

3.1.2. The effect of learning rate
The learning of the algorithm, therefore, depends on the size of the 

reward. However, the control of weights is not only through the reward, 
but also through another parameter, the learning rate. During learning, 
the Actor-Critic algorithm calculates the temporal difference error (δ) 
from the reward and the value function. After that step, the algorithm 
adjusts the average reward, value function, and policy function pa-
rameters with the temporal difference error weighted by the learning 
rate. Usually, the learning rates for these function parameters and 
average rewards are different. However, in our study, we use the same 
learning rate for each task. We made learning scenarios with three 
different learning rate values (α ∈ {0.01, 0.05, 0.1}) as well. If we use 
too high a learning rate, we may change the parameters too much, and 
we will not find the optimum. The other extremum is when the learning 
rate values are too small, and it takes too many steps for the learning 
process to converge. This latter phenomenon can be seen in Fig. 6. The 
effect of learning rate and reward are similar. However, the learning 
rate, as opposed to the reward, is not information about the product in 
this case. For this reason, learning rates of the same value for products of 
different sizes may have similar effects, while the effect of reward could 
vary.

3.1.3. The type of state aggregation
In our experiment, the Actor-Critic algorithm uses state aggregation 

to generalize between states that provide similar rewards or describe 
similar behavior. However, with state aggregation, the algorithm dis-
criminates these states from all others and handles them differently. In 
Fig. 7, we showed two ways of state aggregation in our dataset. We can 
distinguish states based on the output of learning, in this case, the 
weight of the injection molded part. This can be seen in Fig. 7a, where 
each color represents a state with almost identical product weight, for 10 
states. Another way is to distinguish states based on the injection 
molding parameters (Fig. 7b). With this method, the parts of the search 
space are considered a group with nearly identical holding pressures and 
holding times. In our case, we considered settings almost identical, 
which are within +25/-24.99 bar and +0.25/-0.2499 s of the high-
lighted settings. For example, the setting combination of 175 bar, 3.25 s 
belongs to the 150 bar, 3 s setting. Of course, this means way more states 
because we have 21×11 setting combinations. Therefore, we made a 
state aggregation with 231 states based on product weight.

The results of the two learning scenarios are very similar (Fig. 8). 
Each algorithm improves at the beginning, but later the variance of the 
collected reward increases. With state aggregation performed by set-
tings, the median of the reward had a stable variance, as is the inter-
quartile range. In the other case, the magnitude of variance is far more 
stochastic. The high variance in both cases is probably caused by too 
many states, which can make learning difficult. State aggregation by 
product weight results in a slight improvement after 2000 steps. This 
could mean learning from reward-dependent states is more manageable 
than from setting-dependent states. We think this is because the algo-
rithm can handle state aggregation by product weight more easily than 
state aggregation by settings. The algorithm tries to find the relationship 
between the coordinates in the search space and the goodness of the 
product. State aggregation by product weight is, however, a natural 
indicator of the goodness of the product, and therefore, the algorithm 
finds the relationship somewhat more easily.

3.1.4. The number of states
We also investigated how the number of states with product 

weight–dependent state aggregation affects learning. In Fig. 9 we 
showed how differs the states if the number of discrete states increased 
from 10 to 50.

The results (Fig. 10) clearly indicate that learning is harder if the 
space is divided into several states. More states mean more places to 
discover, and with the increasing number of states, the number of 
function parameters in the weight vectors (w and θ) also increases. 
Therefore, if the number of initial function parameters is great (such as w 
and θ), exploration is all the more forced. This phenomenon could mean 
a slower convergence to the optimal values. From an injection molding Fig. 5. The effect of the magnitude of the reward on learning.

Fig. 6. The effect of the learning rate on learning.
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perspective, this means that we need to look at many more cycles if the 
space is broken down into many parts. Of course, in industry, the 
number of states should be chosen according to the size of the product 
and its tolerance, but the aim should be to use as few states as possible 
without oversimplifying the search space.

3.1.5. The magnitude of actions
When an injection molding parameters are optimized, there is always 

the question of how much to change them. Therefore, knowing or at 
least suspecting how far the settings are from the optimal combination is 
essential. If we are far from the target, we need to use greater changes in 
the settings but close to the target, we should use smaller changes. It is 
also important to investigate the magnitude of actions with which the 

Fig. 7. State aggregation (a) by product weight with ten states (b) by injection molding settings.

Fig. 8. The effect of the type of state aggregation.

Fig. 9. State aggregation (a) with 10 states (b) with 50 states.

Fig. 10. The effect of the number of states.
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algorithm can find the target. We made learning scenarios where the 
algorithm had different magnitudes of action for each parameter. The 
actions are possibilities to change the state, i. e. the weight of the 
product. In our case, the algorithm needs two input arrays, which 
contain the possible changes of holding pressure and holding time. The 
final action will be selected from all combinations of each vector 
element due to the policy function. We used three action sets, and each 
set includes one holding pressure and holding time array, which will not 
change the setting on the injection molding machine (e. g. 0 bar and 0 s). 
The difference between the three sets (small, medium, and large action 
sizes) was the settings that changed the machine settings: the small ac-
tion set had a holding pressure change of +/-25 bar and holding time 
change of +/-0.25 s, the medium action size set contained +/-50 bar 
and +/-0.5 s, and the large action size set had +/- 100 bar and +/-1 s 
holding pressure and holding time change, respectively (Fig. 11a).

Both the first and second sets reached an almost 0 reward, which 
means they found settings with which the desired product quality can be 
achieved (Fig. 11b). However, when the magnitude of the actions was 
100 bar and 1 s, the algorithm could not reach this optimum. This 
phenomenon can be imagined as the algorithm jumping around the 
target value but not reach it.

3.1.6. The effect of the number of possible actions
We saw that when the magnitude of action is great, it can happen 

that the algorithm does not find the local optimum or just in certain 
scenarios. Another possibility is that more possible actions are used, 
which differ in magnitude. With this, the algorithm can learn that if it is 
far from the target, it should use greater steps than near the target. 
Therefore, in our study, we used three action sets with a different 
number of possible actions. The smallest action set (Fig. 12 a) was the 
small action size set (see 3.1.5.) that we used for most of our previous 
investigation. It has three possible steps for holding pressure (-25/0/ 
+25 bar) and holding time (-0.25/0/+0.25 s). The second set (Fig. 12 b) 
contained two additional steps for each setting (+/-50 bar and +/0.5 s 
for holding pressure and time, respectively). The biggest action set 
(Fig. 12c) contained two more steps per setting (+/-100 bar and +/-1 s).

The results of these learning scenarios seem a little controversial 
(Fig. 13). One can expect that the algorithm would converge faster with 
a greater range of possible actions because it can choose actions with 
greater steps far from the optimum and smaller steps near the optimum. 
However, as well as for multiple states, the number of parameters in-
creases for multiple actions. This means more exploration due to the 
starting values and many function parameters. The number of possible 
actions increases with the settings to adjust, which is a great challenge 
for a technology with as many input parameters as injection molding.

3.1.7. The effect of a stochastic environment
In the previous learning scenarios, we used a deterministic envi-

ronment. Therefore, the output of injection molding (the weight of the 
product) was always the same for a given setting combination. However, 
this is not true for injection molding, due to the small inaccuracies of the 
various parts of the machine. We wanted to take into account this 
phenomenon, so we made six samples with three different holding 
pressures (400 bar, 700 bar, and 1000 bar) with all holding times. From 
these datasets, we calculated the standard deviation for each setting 
combination. The mean and median of the standard deviations were σ =

0.0053g and σ̃ = 0.0048g respectively. Hence, we added a normally 
distributed random noise to each output result with a standard deviation 
of 0.005 g. With this change, we created a stochastic environment for 
learning. Fig. 14 a shows the results of learning from stochastic and 
deterministic environments. The convergence of both scenarios is 
similar, but the use of a stochastic environment shows a clear disad-
vantage. The variance of the median reward would not decrease to a 
fixed value even if there were a setting combination for injection 
molding (Fig. 14 b) which produces the part with the preferred weight. 
Due to this, the end of learning is somewhat more difficult to determine. 
However, during injection molding, the weight of the product will vary 
with the same settings due to the noise in the process and environment. 
Therefore, a stochastic environment should be used to simulate the real 
injection molding process better.

3.2. The application of reinforcement learning for injection molding

In our second experiment, we investigated how to use the Actor- 
Critic algorithm with prior knowledge for injection molding. The 
former experiments showed the effect of the algorithm parameters, but 
in each result, we saw that at least 250 steps were needed to achieve the 
desired quality. Therefore, in real-life applications, the algorithm would 
need at least 250 injection molding cycles at best to achieve the desired 
quality (8.75 +/-0.03 g). In practice, this is too many injection molding 
cycles, wasting a lot of material.

In industrial environments, injection molding machines are operated 
by technicians and/or engineers who may not have much information 
about a new mold/product but usually have a lot of experience with the 
technology. In other words, they have a lot of prior knowledge. In the 
previous experiments, the Actor-Critic algorithm had no specific prior 
knowledge/experience, as we used the same values for the weight of the 
value function and policy function of each state at the start of learning. 
The same is true for the policy function parameters. The value function 
estimates the goodness of a state, meaning how good it is for the algo-
rithm to be in that state as a function of the objective. The policy 
function estimates the goodness of each state–action pair from which the 

Fig. 11. (a) The possible steps with different magnitudes of actions in the search space. (b) the effect of the magnitude of actions.
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algorithm calculates the probability of each action for a given state. 
Therefore, we could provide the Actor-Critic algorithm with these 
function weights from a previous learning scenario, thus giving the al-
gorithm a priori knowledge.

3.2.1. The effect of prior knowledge coming from injection molding 
experiments

First, we examined how the injection molding data can be used as 
prior knowledge. Of course, the weight vectors cannot be used directly 

from previous learning if the number of states or actions differs from the 
new learning scenarios because, in this case, the number of function 
weights is different (Fig. 15). Therefore, we used data from previous 
learning containing the same number of states and actions (we used the 
default algorithm settings from Table 2).

In Fig. 15 a, we can see state-value function weights for 10 states. 
Here the third state is the best for the algorithm. However, the value of 
the tenth state is, for some reason, greater than the surrounding states. 
We can see a similar phenomenon when there are 50 states (Fig. 15 b), as 
the first five and last five states appear to remain at the initial values. 
This is because the algorithm does not update the values of these states. 
This is because exploration did not cover these states in most cases or 
averaging smoothed them out.

To understand the effect of prior knowledge, we compared the 
learning scenarios with and without prior knowledge (Fig. 16 a). It is 
clear from the results that prior knowledge makes learning much faster. 
If we take the median curve, the algorithm crosses the acceptance limit 
after only 26 steps. It is important to take into account that this many 
steps are needed because the algorithm changed the injection molding 
parameters by 25 bar and 0.25 s (small action size). When we let the 
algorithm to choose from more actions (and thus from even greater 
actions), the algorithm will be faster, and the median curve reaches the 
limit from 17 steps (Fig. 16 b). This is a very important result because it 
shows the effectiveness of the Actor-Critic algorithm. Suppose we can 
use prior knowledge where the algorithm learned the use of many 
possible actions (and the convergence to the target value has been 
achieved in this prior knowledge). This can give us a significant 
advantage in the application because the algorithm can choose actions 

Fig. 12. (a) 9 possible actions (b) 25 possible actions (c) 49 possible actions.

Fig. 13. The effect of the number of possible actions.
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far from the target, which makes larger steps toward the target.

3.2.2. The effect of prior knowledge from simulation
However, determining prior knowledge from injection molding is 

material- and energy-intensive. One way to do this is to experiment with 

many injection molding parameter combinations and make learning 
scenarios from the dataset (as we did in our analysis). The other way is to 
have the algorithm handle the machine and train it with real-time data 
until it produces stably in the optimal range. The results of the first 
experiment (3.1) show that this usually takes thousands of injection 

Fig. 14. The effect of different types of environments (a) during full learning. (b) at the convergence to the target.

Fig. 15. The mean of the value function parameters after 4000 learning steps. (a) with 10 discrete states, (b) with 50 discrete states.

Fig. 16. (a) The effect of learning from prior knowledge (from injection molding) (b) the effect of possible actions on the post-learning.
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molding cycles depending on state aggregation, actions, etc. Either way, 
both methods require a lot of time and material, which, under industrial 
conditions, do not always fit in with production.

Because of these drawbacks, we used a different approach. We 
collected prior knowledge from injection molding simulations. For this, 
we made injection molding simulations using the same combinations of 
injection molding settings. Of course, simulations will not capture real 
injection molding perfectly without the optimized simulation parame-
ters (such as material properties, cooling system, and so on). However, 
our goal was not to adjust the simulation to reality but to get prior 
knowledge from roughly accurate simulations and give this to the Actor- 
Critic algorithm. If this were possible, the injection molding machine 
capacity and material waste could be minimized.

The probability distribution of part weight and the dataset from 
simulation (SD) and injection molding (ID) can be seen in Fig. 15. It is 
clear that there is a significant difference between the two datasets. The 
probability density function of simulation is narrower than the proba-
bility density function of injection molding (Fig. 15 a). In Fig. 15 b, we 
can see the reason for this. In simulations, the effect of holding pressure 
and holding time is smaller than in injection molding, and because of 
that, the change in part weight is smaller too. However, even though the 
magnitude of process parameters is smaller, the mechanism of change is 
similar; for example, we can see a saturation effect as a function of 
holding time. Interestingly, the saturation effect (due to holding time) 
appears in the simulations with 0 bar holding pressure, although no such 
effect is visible in reality. This saturation effect increases with holding 
pressure in the ID, but the same increase is significantly smaller in the 
SD. In our case, we wanted to use simplified simulations without the 
accurate simulation of mold deformation. In addition, we did not specify 
the cooling circuits of the mold or the coolant flowing in them in order to 
reduce the calculation time of these simulations. Other differences may 
be caused by the fact that we have not specified the thermal behavior of 
the material based on real measurements. Instead, we used the data 
provided the Moldex3D database. However, our aim was to make it 
possible to use a priori knowledge without these extra measurements.

If we want to use this method with different datasets (such as ID and 
SD), we can reconsider the method of state aggregation from two sides. 
On the one hand, the simulation space can be viewed as being driven by 
a similar mechanism on a different scale. This implies that we need a 
similar policy to reach the goal. For example, if we want to go from the 
origin [0,0] to coordinate [3,400], we should use the same policy in each 
dataset. Because of this line of thought, it would be logical to use state 
aggregation with rescaling (from the SD to the ID after pre-learning). We 
call this method dataset-dependent state aggregation in our research.

On the other hand, our goal is to produce a part with a specific part 

weight (8.75+/-0.03 g). Since the scale of the two datasets significantly 
differs (Fig. 17), the location of the optimal values will be different in 
each dataset. Therefore, for example, in simulation, the optimal values 
could be in the second state, but in the real-life injection molding 
dataset, these optimal values would be located in the fifth state. So, 
another way could be to use state aggregation independently of the 
datasets. Another method would be to use global state aggregation, 
where the weight of a given product is in the same state for both data 
sets. We call this method dataset-independent state aggregation in our 
research.

Therefore, we investigated the learning of prior knowledge (pre- 
learning) from the SD with both state aggregation, and then, the algo-
rithm used this knowledge with the ID dataset (post-learning). Fig. 18
shows the results of the two post-learning scenarios (pre-learning 
reached stable production in both cases). The algorithm finds setting 
combinations with the needed part weight much faster with dataset- 
independent state aggregation. Of course, dataset-dependent state ag-
gregation can be useful when the relative location of the goal is the same 
in each dataset. However, this requires relatively accurate simulations, 
the drawbacks of which have been described earlier.

3.2.3. The effect of the initial starting point obtained from the simulation
The learning process can be accelerated if the initial setting combi-

nation is changed for a setting combination possibly nearer the target 
combination. Up to this point, learning started in each scenario with the 
initial injection molding settings of a holding pressure of 0 bar and a 

Fig. 17. Difference between the simulation and injection molding datasets. (a) probability density function (b) measured data in the search space.

Fig. 18. The effect of dataset dependence of state aggregation on post-learning.
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holding time 0 s. However, from an injection molding simulation, we 
can get information about what setting combinations give the best re-
sults, and give those to the algorithm as initial values. Learning will look 
very different in this case. Fig. 19 a shows that the algorithm will start 
from a better state because the absolute error will be smaller at the first 
step. Therefore, the algorithm will produce acceptable parts with fewer 
steps (fewer injection molding cycles). However, it is important to 
highlight that the algorithm will make non-acceptable products after 
that because it adjusts its policy for the new search space. A good so-
lution could be to stop the algorithm as soon it reaches the target value 
and produce parts with the same settings until production steps out of 
the tolerance due to some noise or anomaly, at which point the algo-
rithm would be restarted. After the 8th setting adjustment, the algorithm 
already produces an acceptable product in more than 50 % of learning 
scenarios (Fig. 19 b).

3.2.4. Guidelines for adequate prior knowledge
Our results show that using prior knowledge significantly improves 

the performance of the algorithm. To obtain useful prior knowledge for 
the application, we should consider the following aspects.

In injection molding simulations, the geometry of the product must 
be accurately modeled to ensure that the filling of the product closely 
approximates filling in real injection molding. This may mean relatively 
little work compared to refining the simulation or measuring the 
behavior of the material, but it is important for the needed policy. For 
prior knowledge, having a clear picture about the search space is 
important. Therefore, a series of injection molding simulations are 
needed, so we recommend a dense mesh for the simulation. In our case, 
the mesh parameter was 1 mm for the given product. We made relatively 
simple simulations (the simulations ran for about 40 minutes on 
average). This is important because the simulation and real results will 
differ to some extent, but the amount of work invested remains rela-
tively small.

After that, with the simulation results, pre-learning is needed. The 
number of steps during pre-learning should be long enough for the al-
gorithm to stabilize and reach the target. The state aggregation used 
during pre-learning should also be used with post-learning. In this way, 
the corresponding elements of the weight vectors will refer to the same 
aggregated state during both learning processes. Our results confirmed 
that a global, dataset-independent state aggregation is more useful than 
dividing the datasets into a similar number of states. We recommend the 
use of multiple pre-learning scenarios (in our case, we did 100 learning 
scenarios) to ensure that the algorithm gathers enough experience due to 
its stochastic behavior. Of course, for the algorithm to work correctly, 
the number and value of the actions that the algorithm can select must 
be the same during pre- and post-learning.

Considering these guidelines, we believe that a prior knowledge 
suitable for learning can be obtained from the weight vectors available 
at the end of pre-learning. We also showed that the optimal technolog-
ical settings found during pre-learning can also be interpreted as part of 
the prior knowledge.

4. Conclusion

In our study, we examined the usability of the Actor-Critic algorithm 
for injection molding. Our investigation is based on two parts. In the first 
part, we discussed how the algorithm parameters affect learning in this 
environment. We analyzed the effect of state aggregation, the reward 
function, learning rate, possible actions, and the impact of the stochastic 
environment.

The increase in learning rate and reward will make the learning of 
the algorithm faster. On the other hand, increasing the number of states 
reduces the speed of learning, as does increasing the number of actions, 
which increases the number of parameters to be discovered. We used a 
deterministic environment for most of our investigation, but showed 
that the algorithm will learn similarly with a stochastic environment. Of 
course, the reward will change in that case after each step. State ag-
gregation by weight performed slightly better than state aggregation by 
technology, but the difference was relatively small. We concluded from 
the investigation that the practical use of an Actor-Critic algorithm 
needs improvement because the algorithm requires too many learning 
steps (e.g., injection molding cycles) and information to produce good 
parts.

Therefore, in the second half of the study, we discuss how prior 
knowledge can be used to improve the performance of this algorithm. 
We performed injection molding simulations to get prior knowledge 
about the process and used this knowledge for the Actor-Critic algo-
rithm. As a result, the algorithm found the ideal settings more than 50 
times out of practically 100 times after only 9 injection molding cycles. 
We proved that the Actor-Critic algorithm we used produces acceptable 
products much faster (with fewer injection molding cycles) if we use 
prior knowledge from simulation. With this method, the algorithm could 
compete with the work of a professional. This indicates that reinforce-
ment learning and especially the Actor-Critic algorithm could set up the 
injection molding machine with the right initial settings. In the future, 
we will analyze the effect of the experimental design for prior knowl-
edge and plan to validate our method by testing it in industrial 
applications.
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Fig. 19. (a) The effect of initial setting combinations for injection molding (b) the distribution of error from the target value after the 8th setting adjustment.
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KFT., LENZKES GMBH and PIOVAN HUNGARY KFT. for the accessories.

References

[1] A.C. Pereira, F. Romero, A review of the meanings and the implications of the 
Industry 4.0 concept, Procedia Manuf. 13 (2014) 1206–1214, https://doi.org/ 
10.1016/j.promfg.2017.09.032).

[2] S. Vaidya, P. Ambad, S. Bhosle, Industry 4.0 – a glimpse, in: Procedia 
Manufacturing, 20, 2018, pp. 233–238, https://doi.org/10.1016/j. 
promfg.2017.09.032).

[3] D. Guo, M. Li, Z. Lyu, K. Kang, W. Wu, R.Y. Zhong, G.Q. Huang, Synchroperation in 
industry 4.0 manufacturing, Int. J. Prod. Econ. 238 (2021) 108171, https://doi. 
org/10.1016/j.ijpe.2021.108171).

[4] M. Ghobakhloo, Industry 4.0, digitization, and opportunities for sustainability, 
J. Clean. Prod. 252 (2020) 119869, https://doi.org/10.1016/j. 
jclepro.2019.119869).

[5] H. Lasi, P. Fettke, H.G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Bus. Inf. Syst. 
Eng. 6 (2014) 239–242 (https://doi.org/10.1007/s12599-014-0334-4).
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numerical approach, Teh. čki Glas. 15 (2) (2021) 258–266, https://doi.org/ 
10.31803/tg-20210531204548).
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