
An experimental study on the application of reinforcement learning in
injection molding in the spirit of Industry 4.0

Richárd Dominik Párizs a, Dániel Török a,b,*

a Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest H-1111,
Hungary
b MTA-BME Lendület Lightweight Polymer Composites Research Group, Műegyetem rkp. 3, Budapest H-1111, Hungary

H I G H L I G H T S

• Reinforcement learning can be used to improve injection molding technology.
• Actor-critic algorithms are helpful in setting up an injection molding machine.
• The use of prior knowledge is necessary for self-learning machines.
• Injection molding simulations can be used as prior knowledge for self-learning.
• Our algorithm can compete with a professional through relevant prior knowledge.

A R T I C L E I N F O

Keywords:
Injection molding
Reinforcement learning
Actor-critic algorithm
Industry 4.0
Self-adjustment

A B S T R A C T

The use of reinforcement learning in the injection molding process is a little-researched area in the era of In-
dustry 4.0. The use of a smart decision-making algorithm is necessary for such a complex production method.
Therefore, our research aims to extend the knowledge of the practical use of reinforcement learning in injection
molding. In our study, we examined the effect of the parameters of the Actor-Critic algorithm to give a broader
picture of the learning process. In addition, we show how to use simulation data, as prior knowledge, to set up
the injection molding process for the production of an unknown part.

1. Introduction

Nowadays there are many articles on the subject of the fourth in-
dustrial revolution, also known as Industry 4.0 [1–3]. The idea behind
the revolution is the reduction of human involvement in production
processes by increasing the communication and connections between
machines [4]. A way to achieve this is to teach the machines to learn and
control themselves [5].

The plastics industry, as one of the most important manufacturing
industry, also uses the concept of Industry 4.0. In some cases, the term
refers to the collection and processing of data [6], or it relates to 3D
printing because of the novelty of the new design and production
method [7]. According to another perspective, 3D printing is part of
Industry 4.0 due to the possibility of computer control [8]. Oleksy et al.

[9] argue that improving productivity is an important aspect of Industry
4.0, therefore using integrated information systems is essential for
plastics manufacturing companies. Yet another implementation of In-
dustry 4.0 in polymer composite technologies is the application of
robot-assisted processes [10]. Aminabadi et al. [11] consider the use of
AI-controlled quality checks for injection molding a criterion of Industry
4.0.

Injection molding is a relatively complicated mass production pro-
cess, in which several parameters can be adjusted, such as injection rate,
holding pressure and mold temperature. [12,13]. Due to the complexity
of the technology, mold design and the material, injection molding is
still extensively researched [14,15]. In addition, injection molding can
be used to produce parts of different sizes, which means customers can
have quite different requirements. The quality of an injection molded

Abbreviations: ABS, Acrylonitrile butadiene styrene; CAD, Computer Aided Designing; ID, Injection molding dataset; SD, Simulation dataset.
* Corresponding author at: Department of Polymer Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics,

Műegyetem rkp. 3, Budapest H-1111, Hungary.
E-mail address: torok@pt.bme.hu (D. Török).

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsevier.com/locate/asoc

https://doi.org/10.1016/j.asoc.2024.112236
Received 8 September 2023; Received in revised form 26 August 2024; Accepted 3 September 2024

Applied Soft Computing Journal 167 (2024) 112236

Available online 14 September 2024
1568-4946/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

mailto:torok@pt.bme.hu
www.sciencedirect.com/science/journal/15684946
https://www.elsevier.com/locate/asoc
https://doi.org/10.1016/j.asoc.2024.112236
https://doi.org/10.1016/j.asoc.2024.112236
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

product can be defined with a number of parameters, such as surface
roughness [16], geometrical accuracy [17], or the weight of the part
[18].

It is not a coincidence that controlling injection molding and the
mathematical modeling of the process are frequently researched topics.
For example, Barghash and Alkaabneh [19] made regression models of
part shrinkage and warpage by analyzing seven injection molding pa-
rameters. Kazmer and Westerdale [20] analyzed seven injection mold-
ing parameters with a factorial design, and from the analysis, they
defined a model for quality control. Zhang et al. [21] made a model for
controlling warpage based on principal component analysis. Mirigul
Altan [22] used the Taguchi design, analysis of variance and a neural
network to optimize the shrinkage of injection molded parts. It is
important to mention injection molding simulation, as it is also used in
many cases to optimize the process [23] or design the mold [24].

Besides modeling, researchers put a lot of effort into analyzing
different control methods. Chen et al. [25] used strain gauges on the tie
bars of the injection molding machine to control part weight. In their
research, they varied the switchover point with a predefined step size
and in addition to this, they used linear interpolation to fine-tune the
quality of the product. Gordon et al. [26] suggested quality control using
a multivariate in-mold sensor because the measurement data can predict
the nonlinear behavior of tensile stress. To overcome the drawbacks of
traditional PID controllers, Yang et al. [27] presented an improved PID
controller that controls the injection speed more accurately. Tsai et al.
[28] proposed an adaptive machine control strategy based on sensors in
the injection molding machine, linear interpolation and neural network.
Kumar et al. [29] presented a rule-based algorithm for avoiding failures
during injection molding. In their study, Wang et al. [30] described the
digital twin concept to control the injection molding technology. Su
et al. [31] suggested a nozzle pressure and clamping force-based adap-
tive system to control the part weight for polymers with different melt
flow properties. Naturally, the use of artificial neural networks on con-
trol processes is also researched, which can be used to intervene in the
injection molding process immediately [32,33].

The term “artificial intelligence” is used relatively often and en-
compasses many methods, including machine learning [34]. Colut et al.
[35] identified machine learning as one of the methods of Industry 4.0.
Nian et al. [36] divided machine learning into four subgroups based on
the learning process and data, namely: unsupervised learning, super-
vised learning, semi-supervised learning, and reinforcement learning.

In unsupervised learning, the input data is not labeled; therefore, the
learning algorithms group the data based on the pattern of the input
[37]. For injection molding, unsupervised learning can be useful for
failure detection [38] or indexing the CAD model of molds in a database
[39]. In supervised learning, the input data is labeled, so the learning
algorithms try to define the relationship between the input and the label
[40]. This method is also used for injection molding, thanks to the many
types of learning algorithms it includes [41]. Supervised learning can be
promising for product quality classification based on in-mold pressure
measurement [42,43] or quality regression [44]. Labeling hundreds or
thousands of data points could be exhausting and time-consuming.
Therefore, in a mass production process such as injection molding, the
use of semi-supervised learning can greatly increase efficiency, where
the algorithm can learn from a mixture of labeled and unlabeled data
[45].

In reinforcement learning, learning is based on the interaction be-
tween a decision maker (agent) and the environment, while the algo-
rithm masters which actions or states bring it closer to the target state.
During the process, the agent gets a reward from the environment and
chooses an action that changes the state of the environment in order to
maximize the reward. Because of this operation mechanism, reinforce-
ment learning can be particularly suitable for regulation and control
[46]. These methods are not as stable as traditional systems but work
much better in new environments [47]. Conventional controllers, such
as PID controllers, do not use predictions [48] and do not work well if

there are sudden environmental changes [49]. One great disadvantage
of reinforcement learning methods is that they require many training
steps, but these algorithms can be trained offline [36].The number of
studies on reinforcement learning has significantly increased in recent
years [50]. However, it is interesting that this trend is not yet significant
in the field of injection molding. On 13 June 2023, a search of the Web of
Science for “injection molding” and “reinforcement learning” returned
10 articles. On the same day, the Scopus database returned 15 docu-
ments for the common intersection of the Title–Abstract–keyword of
“injection molding” and “reinforcement learning”. After we filtered out
the duplicates, there were 17 unique documents on the topic. Some of
these articles, published in recent years, have explored exciting issues.
Lee et al. [51] investigated the use of reinforcement learning for mold
scheduling to satisfy the growing needs of customers. Li et al. [52] used
Q-learning to control the injection molding process in case of actuator
disturbance. Qin et al. [53] explored the usability of reinforcement
learning to stabilize the injection molding process in the case of random
process disturbances. In their study, Guo et al. [54] used the Actor-Critic
algorithm to optimize ultra-high precision injection molded products
based on simulation data and compared the results with a Fuzzy infer-
ence system and genetic algorithm.

Unlike the above-mentioned Actor-Critic algorithms, we propose the
use of an Actor-Critic algorithm that uses state aggregation, temporal
difference, and average reward. In addition, our algorithm uses a soft-
max policy, which makes it easier to discover even in new environments.
As a result of these changes, our method is not limited by the accuracy of
the model which describes the environment, as it is not required for the
operation of our algorithm. Besides, we believe that injection molding
should be tuned by optimizing each of the process phases separately, as
they interact with each other. Therefore, in the present research, we
show how to use our algorithm for optimizing the quality of a product
during the holding phase.

The above-mentioned studies are essential to understanding the use
of reinforcement learning in injection molding. However, these studies
usually do not aim to explain how to set up the injection molding ma-
chine without prior knowledge. In addition, they usually only examine
the effect of one or two algorithm parameters, which is insufficient for a
reader to understand the application of reinforcement learning for in-
jection molding. Therefore, in our research, we investigated the effect of
several learning parameters for injection molding (state aggregation,
number of possible actions, reward, etc.). Also, we examined the use of
prior knowledge only from simulation data to set up the injection
molding machine without preliminary experience of producing the
actual part. In our research first, we describe the materials, methods,
learning algorithm, and equipment used in our experiments. Here, we
explain how the learning method and algorithm works, show the
learning datasets and describe the process of analysis and evaluation.
The results are then presented in two main parts. The first part consists
of an analysis of the effect of algorithm parameters on the control. The
second part describes the application of the algorithm to the injection
molding technology, including the use and effect of prior knowledge.

2. Material and methods

2.1. Injection molding and measurement

To investigate the effects of learning parameters, we carried out in-
jection molding experiments using an Arburg Allrounder 320 C 400–170
injection molding machine (Arburg GmbH+Co., Loßburg, Germany) and
a two-cavity mold. The specimens were produced from acrylonitrile
butadiene styrene (ABS), named Terluran GP-35 (INEOS Styrolution,
Manchester, United Kingdom). The product was an 80 mm× 80 mm
square tile-like part with a nominal height of 6 mm (Fig. 1). The mold
was designed for teaching and research, and therefore the product has a
complex geometry to illustrate a number of injection molding defects,
such as weld lines and sink marks. After production, the weight of each

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

2

part was measured with an Ohaus Explorer analytical balance (OHAUS
Europe GmbH, Uster, Switzerland). We used weight as a quality
parameter for optimization and for the algorithm to learn. To investigate
the use of prior knowledge, we made injection molding simulations of
the same part with Moldex3D Studio 2022 (Moldex3D, Lecco, Italy) with
the same setting combinations as for injection molding, and used the
MATLAB R2021b platform to implement the Actor-Critic algorithm,
carry out the learning process, and analyze the results. We used the
Terluran GP-35 ABS material from the Moldex3D database for the
simulation. The dimensions of the model used for simulation were the
same as those used for the real injection molded model. The product has
several features, such as a boss (with a thickness of 1 mm, outer diameter
of 8.5 mm and a height of 6 mm), a small boss (with a thickness of 1 mm,
6 mm and a height of 4 mm), a hole (with a diameter of 6 mm), ribs (with
thicknesses of 0.8, 1, 1.5, 3 and 4 mm, and heights of 2 and 4 mm), and
wall thickness changes.

Our goal was to investigate if the Actor-Critic algorithm can be used
to optimize the injection molding process. Injection molding is a cyclic
technology with several steps and many process parameters which
should be optimized. One of the most critical step is the holding phase,
which has a great impact on the quality of the part (part weight,
shrinkage, etc.). Therefore, we chose to optimize the holding phase. We
first injection molded with several injection molding parameter com-
binations. The injection molding parameters used and not changed
during production are shown in Table 1. The process parameters varied
were holding time (varied between 0 s and 5 s in steps of 0.5 s) and
holding pressure (varied between 0 bar and 1000 bar in steps of
100 bar). We injection molded one cycle with each setting combination
except the setting combinations with 400, 700, and 1000 bar holding
pressure, with which we produced six specimens each. We used these
specimens to estimate the variance of part weight. Of course, the algo-
rithm needs boundaries such as the maximum and minimum holding
pressure and time, which can be set on the machine. We know these
boundaries from the datasets in our experiments because we have no

data outside the search space, but we should define them in other cases.
The maximum holding pressure was 1000 bar, the maximum holding
time was 5 s, and the minimum value for each was 0 bar and 0 s,
respectively. If the algorithm chooses an action that would take it out of
the boundaries, it does not change the holding pressure and holding
time.

In our experiment, the Actor-Critic algorithm theoretically changes
the injection molding parameters (holding pressure and holding time)
during learning and observes the weight of the part produced using the
dataset. We say “theoretically’’ because we wanted to investigate the
long-term performance of the algorithm, which, in our case, means
thousands of injection molding cycles. This would require a lot of time,
energy, and materials, which would be an unnecessary waste. Therefore,
we used the results of the measurements and injection molding simu-
lations and defined datasets where we simulated the learning process.
For our experiments, we used two different datasets: one from injection
molding and mass measurement, named injection molding dataset (ID),
and another defined from the injection molding simulation, named
simulation dataset (SD) (see Fig. 2). With these datasets, we interpolated
the weight of the product for any holding pressure–holding time com-
bination in the given range of measurement, therefore we were able to
use smaller steps for the adjustment of settings during learning. With
this method, we did not have to make thousands of injection moldings,
and we were still able to use actual injection molding data (or data from
injection molding simulation). Fig. 2 shows that injection molding and
simulation give relatively different results due to the lack of optimiza-
tion of the simulation. We did not optimize the simulation because, for a
new product/mold, engineers work primarily from simulation software
databases rather than measured material models. For this reason, our
results show how useful such simple simulations can be for the learning
algorithm.

2.2. Investigation of the effect of Actor-Critic parameters

2.2.1. The algorithm and its initial parameters
We aimed to use reinforcement learning to control the injection

molding machine. It is clear from the literature that reinforcement
learning can be used well in complex environments (like injection
molding) and it can adapt to new environments. Another advantage is
that it can also be taught with offline data. For these reasons, our method
can adapt to adjusting the injection molding machine based on the
(prior) knowledge obtained from simulation data.

Our first goal was to investigate the effect of the parameters of the
algorithm on the learning process. For this, we used only the ID. We
always used 0 bar holding pressure and 0 s holding time as a starting
point of the learning process. This is the safest way to set the parameters
if we do not have any information about the mold and the part. From the
starting point, the algorithm choses an action according to the policy
and changes the holding pressure and holding time. Then the algorithm
picks the product weight from the ID due to the new setting combina-
tions and updates its policy and value estimation. If there is no product
weight for the new setting combination in the dataset, then the

Fig. 1. The CAD model of the product: (a) top view (b) bottom view.

Table 1
The unchanged settings of the injection molding.

Process parameter Value

Shot volume [cm3] 30
Circumferential speed [m/min] 25
Back pressure [bar] 60
Decompression [cm3] 3
Injection flow [cm3/s] 30
Switch-over volume [cm3] 9
Injection time [s] 1.04 +/- 0.13
Injection time limit [s] 3
Injection pressure [bar] 939 +/- 14
Injection pressure limit [bar] 1500
Clamping force [kN] 400
Cooling time [s] 10
Cycle time [s] 22,5
Melt temperature [◦C] 220
Mold temperature [◦C] 40

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

3

algorithm interpolates the weight of the product from the neighboring
settings.

The pseudocode of our algorithm can be seen in Fig. 3. The algorithm
uses two function estimations: one for softmax policy estimation (π(a|s,
θ)), and one for the value function estimation (v̂(s,w)). These functions
are estimated from the weight vectors (θ and w) and the feature vectors
(xs and xh) based on the actual state: s (the weight of the product) and
the chosen action: a (i. e. how to change the technology). The weight
vector of the value function stores a value for each aggregate state,
which expresses the goodness of that state. The weight vector of the
policy function contains a value for each aggregate state–action pair,
which will determine the probability of choosing a given action in that
state using the policy function. All values of the weight vectors (θ and w)
are initially 0.5, i.e., all states and actions appear to be equally good.

For policy estimation, we used the softmax function. With this
method, the algorithm is able to make greedy decisions after sufficient
training but can improve this policy in new environments, adapting it to
changes. The reward (R) is estimated from the difference between the
target weight (mgoal = 8.75g) and the weight of the part produced. Our
algorithm uses the average reward (R), as this is a good measure of
performance for continuous tasks or tasks with many steps. Since the
algorithm learns through thousands of steps in our experiments, this
metric is more useful than the discounted reward. We set the initial
value of the average reward to 0, because it is the optimal value our
algorithm wanted to achieve. The average reward is updated through
learning because of the temporal difference error.

The algorithm needs a target state (sgoal) to get a reward (penalty) for
deviating from it. In this case, the target state is a product with a weight

of 8.75 g. However, for the algorithm to work, this state can be another
indicator of product quality, as long as that indicator can be quantified
in some way (for example, the shrinkage of the product).

The initial state is currently determined by the technological pa-
rameters. Apart from the machine settings, this state depends on the
material (drying, homogeneity) and the precision of the machine. In our
experiment, the initial settings are 0 bar holding pressure and 0 s
holding time. We chose these initial settings because this is the safest
combination of settings from a technological point of view, without any
background knowledge. The initial state has a big impact on the
outcome of learning, which is why an exploring start is often used in
general. We did not use exploring start because we wanted the algorithm
to learn to set up the machine as an expert would. We used the same
initial state value for the learning scenarios to simplify the analysis.

In our experiment, we investigate the use of deterministic and sto-
chastic environments. This can be adjusted with the parameter σ. If σ =

0, the environment is deterministic because there is no random noise on
the output of injection molding. However, if σ > 0, the weight of the
product will always get a random noise from a normal distribution with
a mean of 0 and a standard deviation of σ.

In all cases, we defined the end of learning at the 4000th injection
molding cycle (i. e. learning step) because, in most cases, this number of
steps was enough for the algorithm to sufficiently converge to the target
value. The algorithm could have been stopped earlier if it reached the
target value, but we did not do so to allow the algorithm to discover and
act as a continuous control. The pseudocode (Fig. 3) distinguishes three
learning parameters (αw, αθ, αR), but for simplicity, we used the same
value for each of them in our experiment. These parameters determine
the extent to which the temporal difference error should be accounted
for when updating function weights (θ and w) and the average reward
(R).

In the learning process, one step corresponds to one injection
molding cycle. After the initial setup, the algorithm chooses an action to
perform, observes the quality of the product (i. e., the state) and then
calculates the temporal difference error (δ) according to the derived
reward. The algorithm then uses this error to update the weights of the
functions associated with the former state and state–action pairs. The
algorithm repeats this task until it reaches the 4000th step. Of course,
this limit can be changed to suit the task, even as a continuous control
task.

2.2.2. Investigated parameters and the method of evaluation
In our research, we analyzed how the input parameters affect the

learning of the algorithm. We investigated the effect of several param-
eters (Table 2). The default values for each parameter are in bold.

To better understand the performance of the Actor-Critic algorithm

Fig. 2. (a) The injection molding dataset (ID) and (b) the simulation dataset (SD).

Fig. 3. The pseudocode of our Actor-Critic algorithm.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

4

in different cases, we performed 100 learning scenarios for the chosen
combinations of algorithm parameters. We illustrated the performance
of the algorithm by the change in the difference between actual weight
and the target weight (1) in each case, as this shows when the algorithm
converges. However, plotting 100 scenarios is not easy because the data
are already overlapping in the case of 2–3 scenarios (Fig. 4a). In addi-
tion, the choices made during the learning process can vary widely,
which means great variance in the results. Therefore, we plotted the
median value of difference from the target value on each learning step
and the interquartile range from the 100 learning scenarios (Fig. 4b).
This simplifies the representations of learning and makes it possible to
show learning with different initial parameters simultaneously.

E− = −
⃒
⃒mactual − mtarget

⃒
⃒, (1)

where E− is the negative error, mactual is the weight of the product in-
jection molded in the last cycle and mtarget is the target weight.

2.3. Investigation of the applicability of the Actor-Critic algorithm

2.3.1. Method of applying prior knowledge
The use of a priori knowledge can speed up learning (and thus setting

up the injection molding machine), which makes it easier to apply the
algorithm in real-world situations. In our algorithm, prior knowledge
means that the initial weight vectors (θ and w) are determined from

previous learning scenarios (the initial parameters of the algorithms
should be the same except θ and w) instead of using the initial weights,
which were 0.5 for each element of the weight vectors (see 2.2.1). The
new initial weights (prior knowledge) were the mean weight values after
the 4000th learning step from the 100 different learning scenarios.

In the investigation of the use of prior knowledge, we used the ID.
First, we tested whether prior knowledge can actually accelerate the
learning process. To do this, we used data from injection molding only to
generate prior knowledge (pre-learning) and subsequent application
(post-learning). Pre-learning, in this case, means the form of learning
described earlier, i.e., 100 different learning scenarios with over 4000
steps with given initial parameters. Post-learning is very similar, with
the difference that the initial weight vectors (θ and w) are the values
determined from pre-learning.

2.3.2. Using data from injection molding simulations
After we examined the application of prior knowledge, we investi-

gated the use of prior knowledge from injection molding simulation.
Since we run the simulations with the same setup combinations as actual
injection molding, it can be assumed that learning from the simulation
data will speed up setting up the machine when it is used in a real in-
jection molding environment. Therefore, we used the search SD to
generate the prior knowledge during pre-learning, and then used the ID
for post-learning. In addition, we made learning scenarios where the
starting point of post-learning was not the usual starting point (0 bar
holding pressure and 0 s holding time) but 300 bar holding pressure and
3 s holding time. This setting combination produced product mass
closest to the target product mass from the simulation results.

3. Results

3.1. The effect of algorithm parameters

In our first experiment, we investigated the effect of the key algo-
rithm parameters, such as the magnitude of the reward, the way of state
aggregations, the possible actions, etc. To do this, we simulated learning
scenarios with the algorithm with different initial parameters and
examined how the error (1) changes.

3.1.1. The magnitude of the reward
During learning, the algorithm compares the output of the actual

state and the goal. In our case, the goal is to produce a part with a weight
of 8.75 g. Therefore, a natural reward function might be the following
(2):

Table 2
The investigated algorithm parameters.

Algorithm parameter Values/Methods

Magnitude of the
reward

R = −
⃒
⃒mactual − mgoal

⃒
⃒ R = − 10 •

⃒
⃒mactual − mgoal

⃒
⃒ R =

− 100 •
⃒
⃒mactual − mgoal

⃒
⃒

Way of state
aggregation

by-part weight
by-injection molding settings

Number of states 10
50
100

Magnitude of actions Holding pressure: þ/¡25 bar;Holding time: þ/¡0.25 s
Holding pressure: +/− 50 bar Holding time: +/− 0.5 s
Holding pressure: +/− 100 bar; Holding time: +/− 1 s

Number of possible
actions

3 actions/settings
5 actions/settings
7 actions/settings

Value of learning
rate

α=0.01
α=0.05
α¼0.1

Environment Deterministic
Stochastic

Fig. 4. (a) Three different learning scenarios with the same parameters. (b) 100 different learning scenarios with the same parameters shown with median and
interquartile range.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

5

R = −
⃒
⃒mactual − mgoal

⃒
⃒, (2)

where R is the reward, mactual is the weight of the part produced with the
actual setting combination, mgoal = 8.75g is the goal of learning. How-
ever, the magnitude of the reward highly affects the temporal difference
error, as does the weight vector of the policy function and value func-
tion. Therefore, we made learning scenarios with three different reward
functions: with the absolute difference, ten times the absolute differ-
ence, and a hundred times the absolute difference. Fig. 5 shows the
negative error from the target value during the 4000 learning steps. Each
curve shows the results of 100 learning scenarios from the same starting
point and with the same initial algorithm parameters except the high-
lighted parameter. The brightly colored line shows the median value,
and the pale-colored area (with similar color) shows the interquartile
range of the values. The results clearly indicate that rewards with
greater magnitude have a significant influence on learning. Learning
with (1) will converge too slowly to a local optimum which is clear from
the great variance of the values. The reason behind this phenomenon is
that the value of the reward is so small that it changes the weights (θ and
w) to a small extent. In practice, for a larger product, the weight of the
part and its variation can be significantly more than for the actual task.
Therefore, it is particularly important to look at the extent to which the
reward, which seems to come naturally, helps the learning of the
algorithm.

3.1.2. The effect of learning rate
The learning of the algorithm, therefore, depends on the size of the

reward. However, the control of weights is not only through the reward,
but also through another parameter, the learning rate. During learning,
the Actor-Critic algorithm calculates the temporal difference error (δ)
from the reward and the value function. After that step, the algorithm
adjusts the average reward, value function, and policy function pa-
rameters with the temporal difference error weighted by the learning
rate. Usually, the learning rates for these function parameters and
average rewards are different. However, in our study, we use the same
learning rate for each task. We made learning scenarios with three
different learning rate values (α ∈ {0.01, 0.05, 0.1}) as well. If we use
too high a learning rate, we may change the parameters too much, and
we will not find the optimum. The other extremum is when the learning
rate values are too small, and it takes too many steps for the learning
process to converge. This latter phenomenon can be seen in Fig. 6. The
effect of learning rate and reward are similar. However, the learning
rate, as opposed to the reward, is not information about the product in
this case. For this reason, learning rates of the same value for products of
different sizes may have similar effects, while the effect of reward could
vary.

3.1.3. The type of state aggregation
In our experiment, the Actor-Critic algorithm uses state aggregation

to generalize between states that provide similar rewards or describe
similar behavior. However, with state aggregation, the algorithm dis-
criminates these states from all others and handles them differently. In
Fig. 7, we showed two ways of state aggregation in our dataset. We can
distinguish states based on the output of learning, in this case, the
weight of the injection molded part. This can be seen in Fig. 7a, where
each color represents a state with almost identical product weight, for 10
states. Another way is to distinguish states based on the injection
molding parameters (Fig. 7b). With this method, the parts of the search
space are considered a group with nearly identical holding pressures and
holding times. In our case, we considered settings almost identical,
which are within +25/-24.99 bar and +0.25/-0.2499 s of the high-
lighted settings. For example, the setting combination of 175 bar, 3.25 s
belongs to the 150 bar, 3 s setting. Of course, this means way more states
because we have 21×11 setting combinations. Therefore, we made a
state aggregation with 231 states based on product weight.

The results of the two learning scenarios are very similar (Fig. 8).
Each algorithm improves at the beginning, but later the variance of the
collected reward increases. With state aggregation performed by set-
tings, the median of the reward had a stable variance, as is the inter-
quartile range. In the other case, the magnitude of variance is far more
stochastic. The high variance in both cases is probably caused by too
many states, which can make learning difficult. State aggregation by
product weight results in a slight improvement after 2000 steps. This
could mean learning from reward-dependent states is more manageable
than from setting-dependent states. We think this is because the algo-
rithm can handle state aggregation by product weight more easily than
state aggregation by settings. The algorithm tries to find the relationship
between the coordinates in the search space and the goodness of the
product. State aggregation by product weight is, however, a natural
indicator of the goodness of the product, and therefore, the algorithm
finds the relationship somewhat more easily.

3.1.4. The number of states
We also investigated how the number of states with product

weight–dependent state aggregation affects learning. In Fig. 9 we
showed how differs the states if the number of discrete states increased
from 10 to 50.

The results (Fig. 10) clearly indicate that learning is harder if the
space is divided into several states. More states mean more places to
discover, and with the increasing number of states, the number of
function parameters in the weight vectors (w and θ) also increases.
Therefore, if the number of initial function parameters is great (such as w
and θ), exploration is all the more forced. This phenomenon could mean
a slower convergence to the optimal values. From an injection molding Fig. 5. The effect of the magnitude of the reward on learning.

Fig. 6. The effect of the learning rate on learning.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

6

perspective, this means that we need to look at many more cycles if the
space is broken down into many parts. Of course, in industry, the
number of states should be chosen according to the size of the product
and its tolerance, but the aim should be to use as few states as possible
without oversimplifying the search space.

3.1.5. The magnitude of actions
When an injection molding parameters are optimized, there is always

the question of how much to change them. Therefore, knowing or at
least suspecting how far the settings are from the optimal combination is
essential. If we are far from the target, we need to use greater changes in
the settings but close to the target, we should use smaller changes. It is
also important to investigate the magnitude of actions with which the

Fig. 7. State aggregation (a) by product weight with ten states (b) by injection molding settings.

Fig. 8. The effect of the type of state aggregation.

Fig. 9. State aggregation (a) with 10 states (b) with 50 states.

Fig. 10. The effect of the number of states.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

7

algorithm can find the target. We made learning scenarios where the
algorithm had different magnitudes of action for each parameter. The
actions are possibilities to change the state, i. e. the weight of the
product. In our case, the algorithm needs two input arrays, which
contain the possible changes of holding pressure and holding time. The
final action will be selected from all combinations of each vector
element due to the policy function. We used three action sets, and each
set includes one holding pressure and holding time array, which will not
change the setting on the injection molding machine (e. g. 0 bar and 0 s).
The difference between the three sets (small, medium, and large action
sizes) was the settings that changed the machine settings: the small ac-
tion set had a holding pressure change of +/-25 bar and holding time
change of +/-0.25 s, the medium action size set contained +/-50 bar
and +/-0.5 s, and the large action size set had +/- 100 bar and +/-1 s
holding pressure and holding time change, respectively (Fig. 11a).

Both the first and second sets reached an almost 0 reward, which
means they found settings with which the desired product quality can be
achieved (Fig. 11b). However, when the magnitude of the actions was
100 bar and 1 s, the algorithm could not reach this optimum. This
phenomenon can be imagined as the algorithm jumping around the
target value but not reach it.

3.1.6. The effect of the number of possible actions
We saw that when the magnitude of action is great, it can happen

that the algorithm does not find the local optimum or just in certain
scenarios. Another possibility is that more possible actions are used,
which differ in magnitude. With this, the algorithm can learn that if it is
far from the target, it should use greater steps than near the target.
Therefore, in our study, we used three action sets with a different
number of possible actions. The smallest action set (Fig. 12 a) was the
small action size set (see 3.1.5.) that we used for most of our previous
investigation. It has three possible steps for holding pressure (-25/0/
+25 bar) and holding time (-0.25/0/+0.25 s). The second set (Fig. 12 b)
contained two additional steps for each setting (+/-50 bar and +/0.5 s
for holding pressure and time, respectively). The biggest action set
(Fig. 12c) contained two more steps per setting (+/-100 bar and +/-1 s).

The results of these learning scenarios seem a little controversial
(Fig. 13). One can expect that the algorithm would converge faster with
a greater range of possible actions because it can choose actions with
greater steps far from the optimum and smaller steps near the optimum.
However, as well as for multiple states, the number of parameters in-
creases for multiple actions. This means more exploration due to the
starting values and many function parameters. The number of possible
actions increases with the settings to adjust, which is a great challenge
for a technology with as many input parameters as injection molding.

3.1.7. The effect of a stochastic environment
In the previous learning scenarios, we used a deterministic envi-

ronment. Therefore, the output of injection molding (the weight of the
product) was always the same for a given setting combination. However,
this is not true for injection molding, due to the small inaccuracies of the
various parts of the machine. We wanted to take into account this
phenomenon, so we made six samples with three different holding
pressures (400 bar, 700 bar, and 1000 bar) with all holding times. From
these datasets, we calculated the standard deviation for each setting
combination. The mean and median of the standard deviations were σ =

0.0053g and σ̃ = 0.0048g respectively. Hence, we added a normally
distributed random noise to each output result with a standard deviation
of 0.005 g. With this change, we created a stochastic environment for
learning. Fig. 14 a shows the results of learning from stochastic and
deterministic environments. The convergence of both scenarios is
similar, but the use of a stochastic environment shows a clear disad-
vantage. The variance of the median reward would not decrease to a
fixed value even if there were a setting combination for injection
molding (Fig. 14 b) which produces the part with the preferred weight.
Due to this, the end of learning is somewhat more difficult to determine.
However, during injection molding, the weight of the product will vary
with the same settings due to the noise in the process and environment.
Therefore, a stochastic environment should be used to simulate the real
injection molding process better.

3.2. The application of reinforcement learning for injection molding

In our second experiment, we investigated how to use the Actor-
Critic algorithm with prior knowledge for injection molding. The
former experiments showed the effect of the algorithm parameters, but
in each result, we saw that at least 250 steps were needed to achieve the
desired quality. Therefore, in real-life applications, the algorithm would
need at least 250 injection molding cycles at best to achieve the desired
quality (8.75 +/-0.03 g). In practice, this is too many injection molding
cycles, wasting a lot of material.

In industrial environments, injection molding machines are operated
by technicians and/or engineers who may not have much information
about a new mold/product but usually have a lot of experience with the
technology. In other words, they have a lot of prior knowledge. In the
previous experiments, the Actor-Critic algorithm had no specific prior
knowledge/experience, as we used the same values for the weight of the
value function and policy function of each state at the start of learning.
The same is true for the policy function parameters. The value function
estimates the goodness of a state, meaning how good it is for the algo-
rithm to be in that state as a function of the objective. The policy
function estimates the goodness of each state–action pair from which the

Fig. 11. (a) The possible steps with different magnitudes of actions in the search space. (b) the effect of the magnitude of actions.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

8

algorithm calculates the probability of each action for a given state.
Therefore, we could provide the Actor-Critic algorithm with these
function weights from a previous learning scenario, thus giving the al-
gorithm a priori knowledge.

3.2.1. The effect of prior knowledge coming from injection molding
experiments

First, we examined how the injection molding data can be used as
prior knowledge. Of course, the weight vectors cannot be used directly

from previous learning if the number of states or actions differs from the
new learning scenarios because, in this case, the number of function
weights is different (Fig. 15). Therefore, we used data from previous
learning containing the same number of states and actions (we used the
default algorithm settings from Table 2).

In Fig. 15 a, we can see state-value function weights for 10 states.
Here the third state is the best for the algorithm. However, the value of
the tenth state is, for some reason, greater than the surrounding states.
We can see a similar phenomenon when there are 50 states (Fig. 15 b), as
the first five and last five states appear to remain at the initial values.
This is because the algorithm does not update the values of these states.
This is because exploration did not cover these states in most cases or
averaging smoothed them out.

To understand the effect of prior knowledge, we compared the
learning scenarios with and without prior knowledge (Fig. 16 a). It is
clear from the results that prior knowledge makes learning much faster.
If we take the median curve, the algorithm crosses the acceptance limit
after only 26 steps. It is important to take into account that this many
steps are needed because the algorithm changed the injection molding
parameters by 25 bar and 0.25 s (small action size). When we let the
algorithm to choose from more actions (and thus from even greater
actions), the algorithm will be faster, and the median curve reaches the
limit from 17 steps (Fig. 16 b). This is a very important result because it
shows the effectiveness of the Actor-Critic algorithm. Suppose we can
use prior knowledge where the algorithm learned the use of many
possible actions (and the convergence to the target value has been
achieved in this prior knowledge). This can give us a significant
advantage in the application because the algorithm can choose actions

Fig. 12. (a) 9 possible actions (b) 25 possible actions (c) 49 possible actions.

Fig. 13. The effect of the number of possible actions.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

9

far from the target, which makes larger steps toward the target.

3.2.2. The effect of prior knowledge from simulation
However, determining prior knowledge from injection molding is

material- and energy-intensive. One way to do this is to experiment with

many injection molding parameter combinations and make learning
scenarios from the dataset (as we did in our analysis). The other way is to
have the algorithm handle the machine and train it with real-time data
until it produces stably in the optimal range. The results of the first
experiment (3.1) show that this usually takes thousands of injection

Fig. 14. The effect of different types of environments (a) during full learning. (b) at the convergence to the target.

Fig. 15. The mean of the value function parameters after 4000 learning steps. (a) with 10 discrete states, (b) with 50 discrete states.

Fig. 16. (a) The effect of learning from prior knowledge (from injection molding) (b) the effect of possible actions on the post-learning.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

10

molding cycles depending on state aggregation, actions, etc. Either way,
both methods require a lot of time and material, which, under industrial
conditions, do not always fit in with production.

Because of these drawbacks, we used a different approach. We
collected prior knowledge from injection molding simulations. For this,
we made injection molding simulations using the same combinations of
injection molding settings. Of course, simulations will not capture real
injection molding perfectly without the optimized simulation parame-
ters (such as material properties, cooling system, and so on). However,
our goal was not to adjust the simulation to reality but to get prior
knowledge from roughly accurate simulations and give this to the Actor-
Critic algorithm. If this were possible, the injection molding machine
capacity and material waste could be minimized.

The probability distribution of part weight and the dataset from
simulation (SD) and injection molding (ID) can be seen in Fig. 15. It is
clear that there is a significant difference between the two datasets. The
probability density function of simulation is narrower than the proba-
bility density function of injection molding (Fig. 15 a). In Fig. 15 b, we
can see the reason for this. In simulations, the effect of holding pressure
and holding time is smaller than in injection molding, and because of
that, the change in part weight is smaller too. However, even though the
magnitude of process parameters is smaller, the mechanism of change is
similar; for example, we can see a saturation effect as a function of
holding time. Interestingly, the saturation effect (due to holding time)
appears in the simulations with 0 bar holding pressure, although no such
effect is visible in reality. This saturation effect increases with holding
pressure in the ID, but the same increase is significantly smaller in the
SD. In our case, we wanted to use simplified simulations without the
accurate simulation of mold deformation. In addition, we did not specify
the cooling circuits of the mold or the coolant flowing in them in order to
reduce the calculation time of these simulations. Other differences may
be caused by the fact that we have not specified the thermal behavior of
the material based on real measurements. Instead, we used the data
provided the Moldex3D database. However, our aim was to make it
possible to use a priori knowledge without these extra measurements.

If we want to use this method with different datasets (such as ID and
SD), we can reconsider the method of state aggregation from two sides.
On the one hand, the simulation space can be viewed as being driven by
a similar mechanism on a different scale. This implies that we need a
similar policy to reach the goal. For example, if we want to go from the
origin [0,0] to coordinate [3,400], we should use the same policy in each
dataset. Because of this line of thought, it would be logical to use state
aggregation with rescaling (from the SD to the ID after pre-learning). We
call this method dataset-dependent state aggregation in our research.

On the other hand, our goal is to produce a part with a specific part

weight (8.75+/-0.03 g). Since the scale of the two datasets significantly
differs (Fig. 17), the location of the optimal values will be different in
each dataset. Therefore, for example, in simulation, the optimal values
could be in the second state, but in the real-life injection molding
dataset, these optimal values would be located in the fifth state. So,
another way could be to use state aggregation independently of the
datasets. Another method would be to use global state aggregation,
where the weight of a given product is in the same state for both data
sets. We call this method dataset-independent state aggregation in our
research.

Therefore, we investigated the learning of prior knowledge (pre-
learning) from the SD with both state aggregation, and then, the algo-
rithm used this knowledge with the ID dataset (post-learning). Fig. 18
shows the results of the two post-learning scenarios (pre-learning
reached stable production in both cases). The algorithm finds setting
combinations with the needed part weight much faster with dataset-
independent state aggregation. Of course, dataset-dependent state ag-
gregation can be useful when the relative location of the goal is the same
in each dataset. However, this requires relatively accurate simulations,
the drawbacks of which have been described earlier.

3.2.3. The effect of the initial starting point obtained from the simulation
The learning process can be accelerated if the initial setting combi-

nation is changed for a setting combination possibly nearer the target
combination. Up to this point, learning started in each scenario with the
initial injection molding settings of a holding pressure of 0 bar and a

Fig. 17. Difference between the simulation and injection molding datasets. (a) probability density function (b) measured data in the search space.

Fig. 18. The effect of dataset dependence of state aggregation on post-learning.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

11

holding time 0 s. However, from an injection molding simulation, we
can get information about what setting combinations give the best re-
sults, and give those to the algorithm as initial values. Learning will look
very different in this case. Fig. 19 a shows that the algorithm will start
from a better state because the absolute error will be smaller at the first
step. Therefore, the algorithm will produce acceptable parts with fewer
steps (fewer injection molding cycles). However, it is important to
highlight that the algorithm will make non-acceptable products after
that because it adjusts its policy for the new search space. A good so-
lution could be to stop the algorithm as soon it reaches the target value
and produce parts with the same settings until production steps out of
the tolerance due to some noise or anomaly, at which point the algo-
rithm would be restarted. After the 8th setting adjustment, the algorithm
already produces an acceptable product in more than 50 % of learning
scenarios (Fig. 19 b).

3.2.4. Guidelines for adequate prior knowledge
Our results show that using prior knowledge significantly improves

the performance of the algorithm. To obtain useful prior knowledge for
the application, we should consider the following aspects.

In injection molding simulations, the geometry of the product must
be accurately modeled to ensure that the filling of the product closely
approximates filling in real injection molding. This may mean relatively
little work compared to refining the simulation or measuring the
behavior of the material, but it is important for the needed policy. For
prior knowledge, having a clear picture about the search space is
important. Therefore, a series of injection molding simulations are
needed, so we recommend a dense mesh for the simulation. In our case,
the mesh parameter was 1 mm for the given product. We made relatively
simple simulations (the simulations ran for about 40 minutes on
average). This is important because the simulation and real results will
differ to some extent, but the amount of work invested remains rela-
tively small.

After that, with the simulation results, pre-learning is needed. The
number of steps during pre-learning should be long enough for the al-
gorithm to stabilize and reach the target. The state aggregation used
during pre-learning should also be used with post-learning. In this way,
the corresponding elements of the weight vectors will refer to the same
aggregated state during both learning processes. Our results confirmed
that a global, dataset-independent state aggregation is more useful than
dividing the datasets into a similar number of states. We recommend the
use of multiple pre-learning scenarios (in our case, we did 100 learning
scenarios) to ensure that the algorithm gathers enough experience due to
its stochastic behavior. Of course, for the algorithm to work correctly,
the number and value of the actions that the algorithm can select must
be the same during pre- and post-learning.

Considering these guidelines, we believe that a prior knowledge
suitable for learning can be obtained from the weight vectors available
at the end of pre-learning. We also showed that the optimal technolog-
ical settings found during pre-learning can also be interpreted as part of
the prior knowledge.

4. Conclusion

In our study, we examined the usability of the Actor-Critic algorithm
for injection molding. Our investigation is based on two parts. In the first
part, we discussed how the algorithm parameters affect learning in this
environment. We analyzed the effect of state aggregation, the reward
function, learning rate, possible actions, and the impact of the stochastic
environment.

The increase in learning rate and reward will make the learning of
the algorithm faster. On the other hand, increasing the number of states
reduces the speed of learning, as does increasing the number of actions,
which increases the number of parameters to be discovered. We used a
deterministic environment for most of our investigation, but showed
that the algorithm will learn similarly with a stochastic environment. Of
course, the reward will change in that case after each step. State ag-
gregation by weight performed slightly better than state aggregation by
technology, but the difference was relatively small. We concluded from
the investigation that the practical use of an Actor-Critic algorithm
needs improvement because the algorithm requires too many learning
steps (e.g., injection molding cycles) and information to produce good
parts.

Therefore, in the second half of the study, we discuss how prior
knowledge can be used to improve the performance of this algorithm.
We performed injection molding simulations to get prior knowledge
about the process and used this knowledge for the Actor-Critic algo-
rithm. As a result, the algorithm found the ideal settings more than 50
times out of practically 100 times after only 9 injection molding cycles.
We proved that the Actor-Critic algorithm we used produces acceptable
products much faster (with fewer injection molding cycles) if we use
prior knowledge from simulation. With this method, the algorithm could
compete with the work of a professional. This indicates that reinforce-
ment learning and especially the Actor-Critic algorithm could set up the
injection molding machine with the right initial settings. In the future,
we will analyze the effect of the experimental design for prior knowl-
edge and plan to validate our method by testing it in industrial
applications.

Ethical approval

This article does not contain any studies with human participants or

Fig. 19. (a) The effect of initial setting combinations for injection molding (b) the distribution of error from the target value after the 8th setting adjustment.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

12

animals performed by any of the authors.

Funding

This work was supported by the National Research, Development
and Innovation Office, Hungary [OTKA FK134336, OTKA FK138501];
National Laboratory for Renewable Energy has been implemented with
the support provided by the Recovery and Resilience Facility of the
European Union within the framework of Programme Széchenyi Plan
Plus [Project no. RRF-2.3.1-21-2022-00009]; New National Excellence
Program of the Ministry for Culture and Innovation from the source of
the National Research, Development and Innovation Fund [ÚNKP-22-3-
II-BME-105].

CRediT authorship contribution statement

Daniel Török: Writing – review & editing, Supervision, Project
administration, Funding acquisition. Richárd Dominik Párizs: Writing
– original draft, Visualization, Software, Methodology, Investigation,
Formal analysis, Conceptualization.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The data that has been used is confidential. Data will be made
available on request.

Acknowledgement

The authors thank ARBURG HUNGÁRIA KFT. for the ARBURG
Allrounder injection moulding machine, and TOOL-TEMP HUNGÁRIA
KFT., LENZKES GMBH and PIOVAN HUNGARY KFT. for the accessories.

References

[1] A.C. Pereira, F. Romero, A review of the meanings and the implications of the
Industry 4.0 concept, Procedia Manuf. 13 (2014) 1206–1214, https://doi.org/
10.1016/j.promfg.2017.09.032).

[2] S. Vaidya, P. Ambad, S. Bhosle, Industry 4.0 – a glimpse, in: Procedia
Manufacturing, 20, 2018, pp. 233–238, https://doi.org/10.1016/j.
promfg.2017.09.032).

[3] D. Guo, M. Li, Z. Lyu, K. Kang, W. Wu, R.Y. Zhong, G.Q. Huang, Synchroperation in
industry 4.0 manufacturing, Int. J. Prod. Econ. 238 (2021) 108171, https://doi.
org/10.1016/j.ijpe.2021.108171).

[4] M. Ghobakhloo, Industry 4.0, digitization, and opportunities for sustainability,
J. Clean. Prod. 252 (2020) 119869, https://doi.org/10.1016/j.
jclepro.2019.119869).

[5] H. Lasi, P. Fettke, H.G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Bus. Inf. Syst.
Eng. 6 (2014) 239–242 (https://doi.org/10.1007/s12599-014-0334-4).

[6] T. Ageyeva, S. Horváth, J.G. Kovács, In-mold sensors for injection molding: on the
way to industry 4.0, Sensors 19 (2019) 3551 (https://doi.org/10.3390/
s19163551).

[7] A. Jandyal, I. Chaturvedi, I. Wazir, A. Raina, M.I.U. Haq, 3D printing – a review of
processes, materials and applications in industry 4.0, Sustain. Oper. Comput. 3
(2022) 33–42, https://doi.org/10.1016/j.susoc.2021.09.004).

[8] M. Mehrpouya, A. Dehghanghadikolaei, B. Fotovvati, A. Vosooghnia, S.
S. Emamian, A. Gisario, The potential of additive manufacturing in the smart
factory industrial 4.0: a review, Appl. Sci. 9 (2019) 3865, https://doi.org/10.3390/
app9183865).

[9] M. Oleksy, G. Budzik, A. Sanocka-Zajdel, A. Paszkiewicz, M. Bolanowski, R. Oliwa,
Ł. Mazur, Industry 4.0 Part I. Selected applications in processing of polymer
materials, Polymery 63 (2018) 531–535 (https://doi.org/10.14314/
polimery.2018.7.7).

[10] H. Parmar, T. Khan, F. Tucci, R. Umer, P. Carlone, Advanced robotics and additive
manufacturing of composites: towards a new era in Industry 4.0, Mater. Manuf.
Process. 37 (5) (2022) 483–517, https://doi.org/10.1080/
10426914.2020.1866195).

[11] S.S. Aminabadi, P. Tabatabai, A. Steiner, D.P. Gruber, W. Friesenbichler,
C. Habersohn, G. Berger-Weber, Industry 4.0 in-line Ai quality control of plastic

injection molded parts, Polymers 14 (17) (2022) 3551, https://doi.org/10.3390/
polym14173551).

[12] V. Brnadić, T. Breški, Optimisation of mould design for injection moulding-
numerical approach, Teh. čki Glas. 15 (2) (2021) 258–266, https://doi.org/
10.31803/tg-20210531204548).

[13] T. Tábi, K. Pölöskei, The effect of processing parameters and calcium-stearate on
the ejection process of injection molded poly (lactic acid) products, Period.
Polytech. Mech. Eng. 66 (1) (2022) 17–25, https://doi.org/10.3311/PPme.18246).

[14] Ramini M., Agnelli S., Ramorino G.: Applications of shear heating parameter for
injection molding process optimization of AEM rubber compounds, Express Polym.
Lett., 16(4), 354-367 (2022). (https://doi.
org/10.3144/expresspolymlett.2022.27).

[15] Minguez-Enkovaara L.F., Carrión-Vilches F.J., Avilés M.D., Bermúdez M.D.: Effect
of graphene oxide and ionic liquid on the sliding wear and abrasion resistance of
injection molded PMMA nanocomposites, Express Polym. Lett., 17(3), 237-251
(2023). (https://doi.org/10.3144/expresspolymlett.2023.18).

[16] Guo G.: Investigation on surface roughness of injection molded polypropylene parts
with 3D optical metrology, Int. J. Interact. Des.Manuf., 16(1), 17-23 (2022).
(https://doi.org/10.1007/s12008-021-00796-8).

[17] F.D. Santis, R. Pantani, V. Speranza, G. Titomanlio, Analysis of shrinkage
development of a semicrystalline polymer during injection molding, Ind. Eng.
Chem. Res. 49 (5) (2010) 2469–2476 (https://doi.org/10.1021/ie901316p).

[18] X. Zhou, Y. Zhang, T. Mao, H. Zhou, Monitoring and dynamic control of quality
stability for injection molding process, J. Mater. Process. Technol. 249 (2017)
358–366, https://doi.org/10.1016/j.jmatprotec.2017.05.038).

[19] Barghash M.A., Alkaabneh F.A.: Shrinkage and warpage detailed analysis and
optimization for the injection molding process using multistage experimental
design, Qual. Eng., 26(3) 319-334 (2014). (〈https://doi.org/10.1080/0898211
2.2013.852679〉).

[20] D.O. Kazmer, S. Westerdale, A model-based methodology for on-line quality
control, Int. J. Adv. Manuf. Technol. 42 (2009) 280–292, https://doi.org/10.1007/
s00170-008-1592-4).

[21] S. Zhang, R. Dubay, M. Charest, A principal component analysis model-based
predictive controller for controlling part warpage in plastic injection molding,
Expert Syst. Appl. 42 (6) (2015) 2919–2927, https://doi.org/10.1016/j.
eswa.2014.11.030).

[22] M. Altan, Reducing shrinkage in injection moldings via the Taguchi, ANOVA, and
neural network methods, Mater. Des. 31 (1) (2010) 599–604 (https://doi.org/
10.1016/j.matdes.2009.06.049).

[23] F. Finkeldey, J. Volke, J.C. Zarges, H.P. Heim, P. Wiederkehr, Learning quality
characteristics for plastic injection molding processes using a combination of
simulated and measured data, J. Manuf. Process. 60 (2020) 134–143, https://doi.
org/10.1016/j.jmapro.2020.10.028).

[24] B. Zink, F. Szabó, I. Hatos, A. Suplicz, N.K. Kovács, H. Hargitai, T. Tábi, J.
G. Kovács, Enhanced injection molding simulation of advanced injection molds,
Polymers 9 (2) (2017) 77, https://doi.org/10.3390/polym9020077).

[25] J.Y. Chen, J.X. Zhuang, M.S. Huang, Monitoring, prediction and control of
injection molding quality based on tie-bar elongation, J. Manuf. Process. 46 (2019)
159–169, https://doi.org/10.1016/j.jmapro.2019.09.005).

[26] G. Gordon, D.O. Kazmer, X. Tang, Z. Fan, R.X. Gao, Quality control using a
multivariate injection molding sensor, Int. J. Adv. Manuf. Technol. 78 (2015)
1381–1391, https://doi.org/10.1007/s00170-014-6706-6).

[27] Yang A., Guo W., Han T., Zhao C., Zhou H., Cai J.: Feedback control of injection
rate of the injection molding machine based on PID improved by unsaturated
integral, Shock Vibr., 9960021 (2021). (https://doi.org/10.1155/2021/9960021).

[28] M.H. Tsai, J.C. Fan-Jiang, G.Y. Liou, F.J. Cheng, S.J. Hwang, H.S. Peng, H.Y. Chu,
Development of an online quality control system for injection molding process,
Polymers 14 (2020) 1607, https://doi.org/10.1155/2020/7023616).

[29] S. Kumar, H.S. Park, C.M. Lee, Data-driven smart control of injection molding
process, CIRP J. Manuf. Sci. Technol. 31 (2020) 439–449, https://doi.org/
10.1016/j.cirpj.2020.07.006).

[30] Z. Wang, W. Feng, J. Ye, J. Yang, C. Liu, A study on intelligent manufacturing
industrial internet for injection molding industry based on digital twin, Complexity
(2021) 8838914, https://doi.org/10.1155/2021/8838914).

[31] C.W. Su, W.J. Su, F.J. Cheng, G.Y. Liou, S.J. Hwang, H.S. Peng, H.Y. Chu,
Optimization process parameters and adaptive quality monitoring injection
molding process for materials with different viscosity, Polym. Test. 109 (2022)
107526, https://doi.org/10.1016/j.polymertesting.2022.107526).

[32] J.C. Chen, G. Guo, W.N. Wang, Artificial neural network-based online defect
detection system with in-mold temperature and pressure sensors for high precision
injection molding, Int. J. Adv. Manuf. Technol. 110 (2020) 2023–2033, https://
doi.org/10.1007/s00170-020-06011-4).

[33] H.S. Park, D.X. Phuong, S. Kumar, AI based injection molding process for consistent
product quality, Procedia Manuf. 28 (2019) 102–106, https://doi.org/10.1016/j.
promfg.2018.12.017).

[34] P. Hamet, J. Tremblay, Artificial intelligence in medicine, Metabolism 69 (2017)
S36–S40, https://doi.org/10.1016/j.metabol.2017.01.011).

[35] G. Culot, G. Nassimbeni, G. Orzes, M. Sartor, Behind the definition of Industry 4.0:
analysis and open questions, Int. J. Prod. Econ. 226 (2020) 107617, https://doi.
org/10.1016/j.ijpe.2020.107617).

[36] R. Nian, J. Liu, B. Huang, A review on reinforcement learning: introduction and
applications in industrial process control, Comput. Chem. Eng. 139 (2020) 106886
(https://doi.org/10.1016/j.compchemeng.2020.106886).

[37] Duda R.O., Hart P.E., Stork D.G.: Pattern classification, Wiley-Interscience, ISBN:
0471056693 (2000).

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

13

https://doi.org/10.1016/j.promfg.2017.09.032)
https://doi.org/10.1016/j.promfg.2017.09.032)
https://doi.org/10.1016/j.promfg.2017.09.032)
https://doi.org/10.1016/j.promfg.2017.09.032)
https://doi.org/10.1016/j.ijpe.2021.108171)
https://doi.org/10.1016/j.ijpe.2021.108171)
https://doi.org/10.1016/j.jclepro.2019.119869)
https://doi.org/10.1016/j.jclepro.2019.119869)
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref5
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref5
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref6
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref6
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref6
https://doi.org/10.1016/j.susoc.2021.09.004)
https://doi.org/10.3390/app9183865)
https://doi.org/10.3390/app9183865)
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref9
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref9
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref9
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref9
https://doi.org/10.1080/10426914.2020.1866195)
https://doi.org/10.1080/10426914.2020.1866195)
https://doi.org/10.3390/polym14173551)
https://doi.org/10.3390/polym14173551)
https://doi.org/10.31803/tg-20210531204548)
https://doi.org/10.31803/tg-20210531204548)
https://doi.org/10.3311/PPme.18246)
https://doi.org/10.3144/expresspolymlett.2022.27)
https://doi.org/10.3144/expresspolymlett.2022.27)
https://doi.org/10.3144/expresspolymlett.2023.18)
https://doi.org/10.1007/s12008-021-00796-8)
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref14
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref14
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref14
https://doi.org/10.1016/j.jmatprotec.2017.05.038)
https://doi.org/10.1080/08982112.2013.852679
https://doi.org/10.1080/08982112.2013.852679
https://doi.org/10.1007/s00170-008-1592-4)
https://doi.org/10.1007/s00170-008-1592-4)
https://doi.org/10.1016/j.eswa.2014.11.030)
https://doi.org/10.1016/j.eswa.2014.11.030)
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref18
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref18
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref18
https://doi.org/10.1016/j.jmapro.2020.10.028)
https://doi.org/10.1016/j.jmapro.2020.10.028)
https://doi.org/10.3390/polym9020077)
https://doi.org/10.1016/j.jmapro.2019.09.005)
https://doi.org/10.1007/s00170-014-6706-6)
https://doi.org/10.1155/2021/9960021)
https://doi.org/10.1155/2020/7023616)
https://doi.org/10.1016/j.cirpj.2020.07.006)
https://doi.org/10.1016/j.cirpj.2020.07.006)
https://doi.org/10.1155/2021/8838914)
https://doi.org/10.1016/j.polymertesting.2022.107526)
https://doi.org/10.1007/s00170-020-06011-4)
https://doi.org/10.1007/s00170-020-06011-4)
https://doi.org/10.1016/j.promfg.2018.12.017)
https://doi.org/10.1016/j.promfg.2018.12.017)
https://doi.org/10.1016/j.metabol.2017.01.011)
https://doi.org/10.1016/j.ijpe.2020.107617)
https://doi.org/10.1016/j.ijpe.2020.107617)
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref31
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref31
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref31

[38] T. Mao, Y. Zhang, Y. Ruan, H. Gao, H. Zhou, D. Li, Feature learning and process
monitoring of injection molding using convolution-deconvolution auto encoders,
Comput. Chem. Eng. 118 (2018) 77–90 (https://doi.org/10.1016/j.
compchemeng.2018.07.009).

[39] F. Guo, J. Liu, X. Zhou, H. Wang, Y. Zhang, D. Li, H. Zhou, An effective retrival
method for 3D models in plastic injection molding for process reuse, Appl. Soft
Comput. 101 (2021) 107034, https://doi.org/10.1016/j.asoc.2020.107034).

[40] A. Jaiswal, A.R. Babu, M.Z. Zadeh, D. Banerjee, F. Makedon, A survey on
contrastive self-supervised learning, Technologies 9 (1) (2021) 2, https://doi.org/
10.3390/technologies9010002).

[41] H. Jung, J. Jeon, D. Choi, J.Y. Park, Application of machine learning techniques in
injection molding quality prediction: implications on sustainable manufacturing
industry, Sustainability 13 (8) (2021) 4120, https://doi.org/10.3390/
su13084120).

[42] K.C. Ke, M.S. Huang, Quality classification of injection-molded components by
using quality indices, grading and machine learning, Polymers 13 (3) (2021) 353,
https://doi.org/10.3390/polym13030353).

[43] R.D. Párizs, D. Török, T. Ageyeva, J.G. Kovács, Machine learning in injection
molding: an industry 4.0 method of quailty prediction, Sensors 22 (7) (2022) 2704
(https://doi.org/10.3390/s22072704).

[44] Z. Song, S. Liu, X. Wang, Z. Hu, Optimization and prediction of volume shrinkage
and warpage of injection-molded thin-walled parts based on neural network, Int. J.
Adv. Manuf. Technol. 109 (2020) 755–769, https://doi.org/10.1007/s00170-020-
05558-6).

[45] S. Lee, Y. Yun, S. Park, S. Oh, C. Lee, J. Jeong, Two phases anomaly detection based
on clustering and visualization for plastic injection molding data, Procedia
Comput. Sci. 201 (2022) 519–526, https://doi.org/10.1016/j.procs.2022.03.067).

[46] M. Tejedor, A.Z. Woldaregay, F. Godtliebsen, Reinforcement learning application
in diabetes blood glucose control: a systematic review, Artif. Intell. Med. 104
(2020) 101836, https://doi.org/10.1016/j.artmed.2020.101836).

[47] H.I. Ugurlu, S. Kalkan, A. Saranli, Reinforcement learning versus conventional
control for controlling a planar bi-rotor platform with tail appendage, J. Intell.
Robot. Syst. 102 (2021) 1–17 (https://doi.org/10.1007/s10846-021-01412-3).

[48] Z. Wang, T. Hong, Reinforcement learning for building controls: the opportunities
and challenges, Appl. Energy 269 (2020) 115036, https://doi.org/10.1016/j.
apenergy.2020.115036).

[49] J.E. Sierra-Garcia, M. Santos, Combining reinforcement learning and conventional
control to improve automatic guided vehicles tracking of complex trajectories,
Expert Syst. 41 (2) (2024) e13076, https://doi.org/10.1111/exsy.13076).

[50] A.T.D. Perera, P. Kamalaruban, Applications of reinforcement learning in energy
systems, Renew. Sustain. Energy Rev. 137 (2021) 110618, https://doi.org/
10.1016/j.rser.2020.110618).

[51] S. Lee, Y. Cho, Y.H. Lee, Injection mold production sustainable scheduling using
deep reinforcement learning, Sustainability 12 (20) (2020) 8718, https://doi.org/
10.3390/su12208718).

[52] X. Li, Q. Luo, L. Wang, R. Zhang, F. Gao, Off-policy reinforcement learning-based
novel model-free minmax fault-tolerant tracking control for industrial processes,
J. Process Control 115 (2022) 145–156, https://doi.org/10.1016/j.
jprocont.2022.05.006).

[53] Y. Qin, C. Zhao, F. Gao, An intelligent non-optimality self-recovery method based
on reinforcement learning with small data in big data era, Chemom. Intell. Lab.
Syst. 176 (2018) 89–100, https://doi.org/10.1016/j.chemolab.2018.03.010).

[54] F. Guo, X. Zhou, J. Liu, Y. Zhang, D. Li, H. Zhou, A reinforcement learning decision
model for online process paramters optimization from offline data in injection
molding, Appl. Soft Comput. 85 (2019) 105828, https://doi.org/10.1016/j.
asoc.2019.105828).

Richárd Dominik Párizs obtained his B.Sc. and M.Sc. degree
in Mechanical Engineering at the Budapest University of
Technology and Economics (Hungary) in 2018 and 2020,
respectively. He is currently a Ph.D. student at the Department
of Polymer Engineering, Budapest University of Technology
and Economics. His research interests is the use of machine
learning for injection molding technology, mainly supervised
learning and reinforcement learning.

Dániel Török is an assistant professor at the Department of
Polymer Engineering, Faculty of Mechanical Engineering,
Budapest University of Technology and Economics (Hungary),
and a research fellow at MTA-BME Lendület Lightweight
Polymer Composites Research Group, Hungarian Academy of
Sciences (Hungary). His research interests include injection
molding, polymer testing, polymer materials science, machine
learning and image processing.

R.D. Párizs and D. Török Applied Soft Computing 167 (2024) 112236

14

http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref32
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref32
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref32
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref32
https://doi.org/10.1016/j.asoc.2020.107034)
https://doi.org/10.3390/technologies9010002)
https://doi.org/10.3390/technologies9010002)
https://doi.org/10.3390/su13084120)
https://doi.org/10.3390/su13084120)
https://doi.org/10.3390/polym13030353)
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref37
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref37
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref37
https://doi.org/10.1007/s00170-020-05558-6)
https://doi.org/10.1007/s00170-020-05558-6)
https://doi.org/10.1016/j.procs.2022.03.067)
https://doi.org/10.1016/j.artmed.2020.101836)
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref41
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref41
http://refhub.elsevier.com/S1568-4946(24)01010-X/sbref41
https://doi.org/10.1016/j.apenergy.2020.115036)
https://doi.org/10.1016/j.apenergy.2020.115036)
https://doi.org/10.1111/exsy.13076)
https://doi.org/10.1016/j.rser.2020.110618)
https://doi.org/10.1016/j.rser.2020.110618)
https://doi.org/10.3390/su12208718)
https://doi.org/10.3390/su12208718)
https://doi.org/10.1016/j.jprocont.2022.05.006)
https://doi.org/10.1016/j.jprocont.2022.05.006)
https://doi.org/10.1016/j.chemolab.2018.03.010)
https://doi.org/10.1016/j.asoc.2019.105828)
https://doi.org/10.1016/j.asoc.2019.105828)

	An experimental study on the application of reinforcement learning in injection molding in the spirit of Industry 4.0
	1 Introduction
	2 Material and methods
	2.1 Injection molding and measurement
	2.2 Investigation of the effect of Actor-Critic parameters
	2.2.1 The algorithm and its initial parameters
	2.2.2 Investigated parameters and the method of evaluation

	2.3 Investigation of the applicability of the Actor-Critic algorithm
	2.3.1 Method of applying prior knowledge
	2.3.2 Using data from injection molding simulations

	3 Results
	3.1 The effect of algorithm parameters
	3.1.1 The magnitude of the reward
	3.1.2 The effect of learning rate
	3.1.3 The type of state aggregation
	3.1.4 The number of states
	3.1.5 The magnitude of actions
	3.1.6 The effect of the number of possible actions
	3.1.7 The effect of a stochastic environment

	3.2 The application of reinforcement learning for injection molding
	3.2.1 The effect of prior knowledge coming from injection molding experiments
	3.2.2 The effect of prior knowledge from simulation
	3.2.3 The effect of the initial starting point obtained from the simulation
	3.2.4 Guidelines for adequate prior knowledge

	4 Conclusion
	Ethical approval
	Funding
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	References

