
Introduction 

The well-logging inverse problem is an iterative method for predicting reservoir characteristics 

from recorded data, using local inversion technique. This linearized optimization approach 

minimizes overdetermination issues by limiting unknowns to recorded log data. (Dobróka and 

Szabó 2015). In addition. The layer borders are regarded unknown and cannot be calculated 

using local inversion. To address the constraints of local inversion, a series expansion-based 

inversion can be utilized to estimate reservoir properties across a predetermined interval. 

(Dobróka et al. 2016) refer to this approach as interval inversion. Interval inversion involves 

series expansion of polynomial function to describe petrophysical parameter changes over 

depth intervals. It ensures precision and reliability, allowing for parameter inclusion. The 

Damping Least Squares (DLSQ) approach solves ill-posed inversion issues by reducing a 

positive factor until it approaches zero. 

 

This means that little changes in the input parameters (model attributes) might result in huge 

changes in the anticipated results. Essentially, the sensitivity matrix magnifies the influence of 

minor changes in the parameter space, making it difficult to correctly invert the issue (Van Rijn 

and Hutter 2018). When an inversion issue is ill-posed due to a large condition number, it might 

result in unstable solutions. This instability implies that tiny errors or uncertainties in observed 

data can lead to substantial inaccuracies in calculated model parameters. In practice, this might 

make it challenging to achieve consistent and relevant results from the inversion process. To 

overcome this issue, a variety of strategies are used, including regularization methods. 

 

Theoretical background 

The response function governs the recording of data and the estimation of parameters. These 

response functions are distinguished by their nonlinearity. The linearized inversion approach 

includes estimating the nonlinear connection between the observed data and the predicted 

parameters using a Taylor series truncated at first order. The relationship between the observed 

data and model parameters at z depth can be written as follow 

𝑑(𝑜𝑏𝑠)
𝑘(𝑧) = 𝑔𝑘(𝑚1(𝑧), 𝑚2(𝑧), … , 𝑚𝑀(𝑧)), ( 1 ) 

The discretization of the i-th spatial dependent model parameter can be written in the following 

form 

𝑚𝑖(𝑧) = ∑ 𝐵𝑞
(𝑖)

𝛹𝑞(𝑧),

𝑄

𝑞=1

 ( 2 ) 

On the contrary to the point-by-poitn inversion, the unknowns of the interval inversion are the 

discretization coefficients B. By using the DLSQ algorithm, the initial model can be iteratively 

refined, in case of interval inversion as follow 

𝛿𝐵⃗⃗ = (𝐺(𝐵)𝑇𝐺(𝐵) + 𝜆𝐼)−1𝐺(𝐵)𝑇𝛿𝑑𝐵, ( 3 ) 

The ill-posed problem is based on the condition number which is function of the minimum and 

maximum eigenvalues of the sensitivity matrix. (Meju 1992) introduced an iterative algorithm 

based on factorizing the sensitivity matrix (Jacobian matrix) into three other matrices as follow 

𝐺(𝐵𝑖) =  𝑈𝑆𝑉𝑇 , ( 4 ) 

where U is (NxQM) data eigenvector, V is (QMxQM) model parameters eigenvector, and S is 

(QMxQM) matrix with eigenvalues in its diagonal. The eigenvalues of 𝐺(𝐵𝑖) are positive 

numbers with i ≤ M (number of parameters). the ill-posed problem will arise in case of small 

eigenvalues of the term 𝐺(𝐵𝑖)𝑇𝐺(𝐵𝑖). Therefore, the SVD scheme recommends adding a 



positive bias to the eigenvalues of that term. By substituting, the final equation to update the 

model parameters provided by can be written as 

𝐵𝑖+1 = 𝐵𝑖 + 𝑉 𝑑𝑖𝑎𝑔 {
𝜂𝑖

𝜂𝑖
2+𝜆𝑖

2} 𝑈𝑇𝛿𝑑𝐵.  ( 5 ) 

The damping factor is determined through a process of comparing the misfit of the L-th test at 

any given iteration with that of the (L+1)-th test. If an improvement in misfit is observed, the 

new factor is accepted.  

 

The standalone SVD-based interval inversion will test all the eigenvalues of the sensitivity 

matrix to use as a damping factor for the inversion process. However, the high 

overdetermination ratio of the interval inversion will lead to a time-consuming process. In this 

research we implement a hybrid optimization technique that integrates between the SVD and 

DLSQ optimization schemes. The algorithm begins using the SVD scheme which does the 

testing for all the eigenvalues to guarantee the stability of the convergence procedure while the 

initial model is so far from the solution. Then, after a data distance threshold value, Close to 

the optimum value, the algorithm is changed for a fast DLSQ scheme. This hybrid algorithm 

both increases the rate of convergence of the inversion procedure and provides a regularized 

scheme in the case of the far initial models cases. 

 

Synthetic Data-driven hybrid SVD-based Interval Inversion 

The synthetic model that is constructed based on the Heaviside basis function consists of 4 

layers model varying in the volume of lithological constituents (shale-sand), porosity, and 

saturation content (hydrocarbon-water). Figure 1 shows the misfit between the actual and 

calculated data at iteration 60, respectively, while Figure (2a) shows the predicted petrophysical 

parameters. The SVD based inversion shows a smooth convergent pattern, but it shows a rapid 

convergent until data distance lower to 5% and too slow convergent until reach the zero data 

distance (Figure 2 (b and c)). 

 
Figure 1. The fitting between the synthetic data and the calculated data (iteration 60); the red 

dashed lines represent the calculated data, while the solid black lines represent the synthetic 

data. 



 
Figure 2. Shows the predicted petrophysical parameters (a), and the convergence of data 

distance. (b) the standalone SVD-based interval inversion, (c) Hybrid SVD-based interval. 

Field application of the hybrid SVD-based interval inversion 

The viability of both algorithms was tested using a well-logging dataset from a gas-bearing 

reservoir in an Egyptian field in the northwestern region of Egypt's Western Desert. The 

reservoir is part of a highly heterogeneous Jurassic sandstone deposit.  

 
 

Figure 3. Shows the predicted petrophysical parameters (a), and the convergence of data 

distance. (b) interval inversion, (c) the standalone SVD-based interval inversion, (d) Hybrid 

SVD-based interval. 



Figure (3a) demonstrates that the reservoir is mostly composed of sandstone layers with minor 

shale laminations that impact both storage and flow capacity. The study's findings highlight an 

important observation: reservoir parameters vary depending on reservoir quality. This means 

that these critical characteristics are not uniformly distributed, but rather adapt and modify in 

response to varied levels of reservoir quality. Figures (3b, 3c, and cd) show the data distance 

convergence pathway of traditional interval inversion, SVD-based interval inversion, and the 

hybrid SVD-based interval, respectively.  

 

Conclusions 

The hybrid Singular Value Decomposition (SVD)-based interval inversion algorithm is a 

promising solution for ill-posed inversion problems and computational efficiency. It integrates 

the SVD scheme for initial iterations, ensuring stability and convergence, and then transitions 

to the faster Damped Least Squares (DLSQ) method near the optimum solution. The algorithm 

accurately predicts petrophysical parameters across multiple layers with varying reservoir 

characteristics, and its performance was validated in a field application on a gas-bearing 

reservoir in Egypt's Western Desert. The hybrid approach ensures stable and relevant results 

even with uncertainties or errors in input data, and its ability to capture variations in reservoir 

quality and adapt to underlying petrophysical changes is significant for improved 

characterization and decision-making in reservoir development. The field well logging dataset 

shows that the reservoir is not homogeneous and consists mainly of sandstone layers separated 

by small laminations from shale. The data distance convergence is smooth in the case of the 

hybrid and normal SVD based schemes but it’s fast only in the case of the hybrid scheme. The 

data distance converge to 9.5 %.  
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