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Summary 
 
Insightful data on a variety of factors, such as geometrical properties and storage capacity, were obtained through 

borehole geophysics, which is crucial for assessing the subsurface reservoirs close to the drilling well. The 

optimization of reservoir exploration, however, depends on the accurate assessment of these characteristics. 

Additionally, because they are time-consuming and vulnerable to biases in interpretation, classic sequential 

interpretation procedures of well-logging data are used today. Borehole geophysical datasets from artificial and 

actual field boreholes were used to test the suggested procedure. In order to verify and validate the prediction of 

various lithological units and their petrophysical properties in the presence of 5% Gaussian noise, a synthetic 

dataset was employed. The procedure was further expanded to incorporate other zone factors, including shale 

parameters and Archie’s coefficients. The gas-bearing reservoir in Egypt is a suitable case study to evaluate and 

validate the suggested workflow in a challenging, deep reservoir with significant variability. To introduce several 

lithological units with various petrophysical and zone characteristics, our automated procedure recorded the 

interaction patterns and hidden linkages. 
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Automated Prediction of Geometrical, Zone, and Petrophysical Parameters for Tight Gas 
Reservoirs. 
 
Introduction 
 
Borehole geophysics is important for evaluating the subsurface reservoirs surrounding the drilling well 
because it gave rise to insightful information on several parameters including geometrical 
characteristics and storage capacity (Doveton, 2001). However, Accurate estimation of these 
parameters is vital for reservoir exploration optimization (Dobróka & Szabó, 2011). Furthermore, the 
traditional sequential interpretation techniques of well-logging data are time-consuming and subject to 
interpretation biases. Nowadays, the field of borehole geophysics has seen a revolution concerning the 
use of machine-learning approaches (Lima et al., 2020). This research focuses on the integration 
between a robust unsupervised machine learning technique, which is called Most Frequent Value based 
clustering (MFV-cluster), and borehole inversion to present a fully automated methodology for the 
prediction of geometrical, zone, and petrophysical (volumetric) parameters. This approach improves 
the robustness of the inversion process by identifying the different lithological units using MFV 
clustering and making that prior information guides the inversion process, enabling more focused and 
accurate parameter estimation within each identified cluster. The use of both techniques can improve 
the overall understanding of the subsurface in a simultaneous way. The use of MFV-cluster instead of 
the conventional cluster is essential for overcoming the dependency of initial location of centroids, and 
decrease the method’s  sensitivity to outliers (Szabó et al., 2021). 
 
The proposed workflow was tested using synthetic and real field borehole geophysical datasets. The 
synthetic dataset was used to test and validate the prediction of different lithological units as well as 
their petrophysical parameters in the presence of 5% Gaussian noise. Furthermore, the workflow was 
extended to include different zone parameters such as shale parameters and Archie’s coefficients. The 
gas-bearing reservoir from Egypt is an appropriate case study to test and validate the proposed workflow 
in a complex and deep reservoir with high heterogeneity percentage. This automated workflow captured 
the interactive patterns and hidden relationships to introduce different lithological units with different 
petrophysical and zone parameters. 
 
MFV-based clustering 
 
The coordinates of the layer boundaries can be detected using the MFV-cluster method. Steiner (1991) 
introduced a robust algorithm for locating the most frequent value that is not affected but the outliers. 
The MFV cluster is based on the weighting of the data, where the weights can be calculated as follow: 
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where 𝜀  is the dihesion. The most frequent value (M) is calculated as the weighted average of xk 
elements, where the wk symmetric weighting function 	 is calculated with the deviation ek=(xk-M). 
Therefore, the algorithm starts to calculate the initial adhesion value from the range of the dataset. In 
the following iterations, both 𝜀  and M will be calculated from each other by using the following 
equations: 
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The implementation of the Steiner weights in the K-means clustering, introduced a new robust weighted 
distance called Steiner distance, while the location of the new centroid can be determined as follow: 
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Inversion of well logs 
 
For the calculation of layers coordinates and zone parameters, the depth-dependent inversion, which 
can be called interval inversion, can be used advantageously because of its high overdetermined ratio 
(Szabó & Dobróka, 2020). The forward problem expresses a nonlinear connection between the well-
log data and the model parameters (petrophysical (m), zone (O), and depth coordinate of the q-th layer 
(zq)). Mathematically, the relationship can be expressed as follows: 
𝐝 = 𝐠(𝐦,𝐎, 𝑧). (5) 

The layer thickness can be expressed as a combination of two Heaviside basis functions as follows: 
𝐿 = [𝑢(𝑧 − 𝑍38.) − 𝑢(𝑧 − 𝑍3)] (6) 

where Zq is the depth coordinate of the qth layer. The nonlinear relationship between the data and the 
unknowns can be approximated using the Taylor series truncated at the first order as follow (Menke, 
1984): 
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where the first part is the initial model, followed by the approximation of petrophysical, zone, and 
geometrical parameters, respectively. 
 
Integration between MFV-cluster and interval inversion 
 
We introduce a method to analyse the results of MFV-clustering each iteration to define the layers' 
continuity and by turn the layer's boundaries. We define the absolute difference between two clusters 
labels Li and Lj for two successive data points di and dj as delta. Based on a predefined threshold value, 
we group the labels with a delta that are lower than a threshold value or equal to zero. This grouping 
forms a set S, which consists of labels Li that satisfy the condition (delta<=threshold) for some other 
labels Lj within the vertical well-logging dataset. A layer is defined as a set of datapoints di 
corresponding to Li labels that belong to S. To further prediction of layers parameters, an interval 
inversion performs for the grouped data points in each layer. Thanks to the high overdetermined ratio 
of the interval inversion technique, the model parameters can be extended to include the zone 
parameters. The zone parameters are represented by one expansion coefficient of the grouped data 
points within each layer. While the petrophysical parameters are represented using a number of series 
expansions multiplied by an orthogonal polynomial function to capture changes within the depth 
interval. Finally, the previous workflow will be repeated to constrain the results of the interval inversion 
to the actual layers# coordinates extracted from the convergence of the MFV-clustering. 
 
Application of the workflow on a synthetic dataset 
 
In the beginning, the stability and robustness of the MFV-clustering were tested using a synthetic dataset 
filled with 30% outliers. Table 1 shows that the Steiner distance has a lower error as well as a smaller 
range compared to the Euclidean distance. Besides that, the Steiner distance shows a precise mean and 
lower standard deviation, which guarantees stability in the location of the updated centroids and 
robustness against the implemented outliers. 

Table 1 Statistical evaluation of both Euclidean and Steiner distances. 
 Mean Standard 

deviation 
Range SSE 

Euclidean distance 3.4 5.5 40.4 1522.3 
Steiner distance 1.6 1.5 9 547.7 

The proposed algorithm was tested using a synthetic well-logging dataset contaminated with 3% 
Gaussian noise. The synthetic model consisted of a three layers model of two sandstone layers filled 
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with hydrocarbon with different saturation percentages with one embedded shale layer. The synthetic 
well log data of the first layer were calculated according to a sandstone layer filled with hydrocarbon, 
while the other sandstone layer was supposed to be partially filled with water. Figure 1 shows the fitting 
between the actual and predicted data and the layers detected from the cluster phase (last track).  
 
Application of the workflow on gas-bearing reservoir 
 
The real case represents a wireline logging dataset recorded for the Jurassic gas-bearing reservoir 
located in the Northwestern part of Egypt. The reservoir is considered a tight sand reservoir with a high 
degree of heterogeneity because of the diagenetic processes. The reservoir quality is affected by the 
illitization problem as well as quartz overgrowth. The proposed workflow was used to optimize the 
cementation exponent as a zone parameter as well as the prementioned petrophysical parameters. Figure 
2 shows the fitting between actual and predicted data with extracted intervals coordinates in the last 
track, while figure (3 - left) shows the predicted parameters. Figure (3 - right) shows the convergence 
of the data distance. 

 
Figure 1 The fitting between actual (solid black line) and predicted (red dashed line) wireline logging 
data in the synthetic case. (Iteration 10). 

  
Figure 2 The fitting between actual (solid black line) and predicted (red dashed line) wireline logging 
data in gas-bearing reservoir case. (Iteration 20). 
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Conclusion 
 
The integration between the MFV clustering and interval inversion could predict automatically and 
simultaneously the petrophysical, zone, and geometrical parameters of the borehole geophysical dataset 
in both cases of noisy synthetic and real datasets. In the case of the gas-bearing reservoir, the predicted 
parameters show that the reservoir consists mainly of sandstone layers with different rock quality. 
Therefore, the gas-bearing reservoir is a heterogenous reservoir in which the cementation exponent 
cannot be assumed to be constant, but it ranges from 2 to 2.4. The data distance between the calculated 
and actual borehole data set is 8%.  

 

 

Figure 3 The petrophysical and zone parameters prediction of the gas-bearing reservoir after 
Iteration 20 (left), and the data distance convergence (right). 
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