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A B S T R A C T

Cybersecurity remains a critical challenge in the digital age, with network traffic flow anomaly detection being
a key pivotal instrument in the fight against cyber threats. In this study, we address the prevalent issue of
data integrity in network traffic datasets, which are instrumental in developing machine learning (ML) models
for anomaly detection. We introduce two refined versions of the CICIDS-2017 dataset, NFS-2023-nTE and
NFS-2023-TE, processed using NFStream to ensure methodologically sound flow expiration and labeling. Our
research contrasts the performance of the Random Forest (RF) algorithm across the original CICIDS-2017, its
refined counterparts WTMC-2021 and CRiSIS-2022, and our NFStream-generated datasets, in both binary and
multi-class classification contexts. We observe that the RF model exhibits exceptional robustness, achieving
consistent high-performance metrics irrespective of the underlying dataset quality, which prompts a critical
discussion on the actual impact of data integrity on ML efficacy. Our study underscores the importance of
continual refinement and methodological rigor in dataset generation for network security research. As the
landscape of network threats evolves, so must the tools and techniques used to detect and analyze them.
1. Introduction

Cybersecurity stands at the forefront of technological challenges in
the digital age. As security threats evolve in complexity and volume,
the need for advanced anomaly detection systems becomes imperative.
Machine Learning (ML) and Artificial Intelligence (AI) have emerged
as powerful allies in this fight, equipping us with sophisticated tools to
anticipate, identify, and neutralize threats. At the core of these tools
lies a dependency on high-quality datasets that accurately reflect the
complexities of network traffic and cyber attacks.

Over the past decades, numerous datasets have been published
to advance research in network traffic flow anomaly detection and
cybersecurity. Prominent examples include datasets from the Canadian
Institute for Cybersecurity, which offer extensive labeled traffic pat-
terns [1]. The UNSW-NB15 dataset [2] is also widely utilized, providing
rich features extracted from real-world network traffic. Recently, new
datasets such as LITNET-2020 [3] have emerged, offering annotated
real-world network flow data capturing a wide array of attack types
and normal traffic. Additionally, HIKARI-2021 [4] focuses on encrypted
synthetic attacks and benign traffic to reflect modern network con-
ditions. Several works also compile and list the available datasets in
the field, including those mentioned above [5–7]. Collectively, these
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datasets enhance the development and benchmarking of machine learn-
ing models in detecting network anomalies, ensuring a robust defense
against evolving cyber threats.

The CICIDS-2017 dataset [8] has been pivotal in the development of
methodologies for detecting network traffic anomalies. It offers a broad
array of labeled traffic patterns and serve as a fundamental testing
ground for a variety of ML-based approaches. Despite its widespread
adoption and significant contributions to the field, recent scrutiny has
exposed errors within these datasets that could skew the performance of
detection systems trained on them [9–11]. These inaccuracies highlight
a critical need for continuous validation and refinement of measure-
ment techniques to ensure that the models are learning from data that
accurately represents real-world conditions.

This paper delves into a thorough examination and comparative
analysis of five datasets — CICIDS-2017 [8], its WTMC-2021 [9] and
CRiSIS-2022 [11] refinements, and our two refinements, NFS-2023-
nTE, which does not implement TCP flag expiry, and NFS-2023-TE,
which does — employing the Random Forest (RF) algorithm to assess
network anomaly detection in binary and multi-class classification
paradigms. Our study builds upon previous efforts to refine these
datasets, which, despite improvements, continue to exhibit anomalies
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such as inexplicable counts of TCP FIN and RST flags, negative val-
ues in flow features, and instances of missing data. These persistent
inconsistencies form the backdrop against which we scrutinize the
datasets, aiming to unravel how such irregularities might influence the
performance and reliability of machine learning models in detecting
network anomalies.

The conclusions drawn from our investigation into network anomaly
are manifold. Firstly, the study highlights the remarkable resilience
of the RF model, which consistently delivers high accuracy across
all examined datasets. This consistency is a testament to the model’s
robustness, effectively transcending the challenges posed by data biases
and measurement inaccuracies inherent in the datasets. Secondly, our
investigation into feature importance sheds light on the nuanced role
of TCP FIN and RST flags in the classification process. While these
features are not consistently the most influential across all scenarios,
their accurate representation proves critical in specific contexts. Lastly,
extending our analysis to include Decision Tree (DT) and Naive Bayes
(NB) algorithms, we observe a continuation of the trends identified
with the RF model. This corroboration across multiple algorithms not
only strengthens the validity of our findings but also underscores the
broader adaptability of ML techniques to datasets with varying levels
of imperfection.

Compiling these insights, the study underscores a dual reality: the
encouraging adaptability of machine learning models to imperfect datasets
and the potential risk of high model performance obscuring underlying data
flaws. While refined measurement techniques may not dramatically al-
ter performance metrics, they are indispensable in ensuring that models
are trained on data that truly reflects real-world network behaviors.
This balance between model resilience and data integrity is crucial for
advancing the field of cybersecurity, guiding future research towards
the development of more accurate and reliable anomaly detection
systems.

The key contributions of this paper are as follows:

(i) We provide a thorough examination of the CICIDS-2017, WTMC-
2021, and CRiSIS-2022 datasets, identifying and documenting
various imperfections. This analysis is crucial as it brings to
light specific issues that could potentially hinder the effective-
ness of ML applications in network anomaly detection, thereby
informing future dataset refinement and usage strategies.

(ii) We introduce two refined versions of the CICIDS-2017 dataset—
NFS-2023-nTE [12], which does not implement TCP flag expiry,
and NFS-2023-TE [13], which does. These refined datasets rep-
resent a step forward in terms of data integrity and reliability,
and are made available online for widespread use, promoting
transparency and replicability in research.

(iii) We make our detailed and reproducible methodology publicly
accessible as a digital artifact [14], which embodies the core
of our contribution. This methodology underpins the findings
reported in this paper and offers a versatile resource for re-
searchers and practitioners in the field of ML-based network
security. It can be readily adapted to process the CICIDS-2017
PCAP files, catering to the specific needs of diverse research
endeavors.

In summary, the NFS-2023 datasets introduce advanced method-
logies to ensure high data integrity and consistency. Unlike previous
atasets, they come with comprehensive documentation and customiz-
ble measurement processes, addressing the limitations of hard-coded
ettings and poor reproducibility found in prior versions. Our method-
logy affords the flexibility to implement advanced functionalities,
ncluding TCP FIN/RST flag expiration strategies, dynamic flow label-
ng, and other customizable features. These capabilities enhance the
easurement process, resulting in datasets that are more representative

f real-world network conditions and valuable for developing robust
nomaly detection models.
2
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Our research endeavors to build upon, rather than discredit, the
oundations laid by existing datasets. Ultimately, our work seeks to
ontribute to the evolution of machine learning in cybersecurity, align-
ng research efforts with the complex realities of network traffic and
nhancing the resilience of systems against emerging cyber challenges.

The rest of this paper is structured as follows: Section 2 offers a brief
verview of the CICIDS-2017 dataset and its subsequent refinements,
TMC-2021 and CRiSIS-2022. Section 3 delves into identifying the

ey limitations and imperfections inherent in these datasets. Section 4
utlines the primary objectives of our work, establishing the goals and
otivations driving our research. Section 5 discusses the methodol-

gy employed in generating our refined versions of the CICIDS-2017
ataset. Section 6 analytically examines the five datasets, focusing on
spects such as flow counts, label distributions, occurrences of negative
nd NaN values, and TCP FIN and RST flag counts. Section 7 compares
he performance of the RF model across all five datasets, encompassing
oth binary and multi-class classification scenarios. Section 8 presents
ur findings and their broader implications. Section 9 discusses po-
ential future work in light of the current study’s limitations. Finally,
ection 10 concludes this paper.

. Evolution of the CICIDS-2017 dataset

In the realm of machine learning-based anomaly detection, the
ntegrity and realism of datasets play a crucial role. The CICIDS-2017
ataset, in this context, has emerged as a foundational resource in the
evelopment of methodologies for network attack detection and pre-
iction. Despite its extensive adoption in the cybersecurity community,
he dataset has been subject to scrutiny due to inherent inconsistencies
hat could potentially skew research outcomes. This section explores
he evolution of the CICIDS-2017 dataset, highlighting its original
omposition and subsequent refinements.

.1. CICIDS-2017

The CICIDS-20171 dataset [8] is a comprehensive collection of
abeled network traffic patterns, encompassing benign activities and
imulated malicious attacks, including DoS/DDoS, Port Scan, Brute
orce, and Infiltration events. Generated over five days from 3 to
July 2017, this dataset offers a diverse range of flows, captured

n individual PCAP files. Accompanying CSV files, produced using
he CICFlowMeter2 [15,16], provide flow records with corresponding
abels, facilitating the assessment and comparison of various ML-based
nomaly detection approaches.

.2. WTMC-2021: Advancing CICIDS-2017

Recognizing the limitations of the original CICIDS-2017 dataset,
ecent efforts led by Engelen et al. have resulted in significant improve-
ents [9,10]. The WTMC-2021 dataset,3 a refined iteration, addresses

ey issues in traffic generation, flow construction, feature extraction,
nd labeling identified in the original dataset. This refined version,
hich revises over 20 percent of the original traffic data, offers a more
ccurate and reliable resource for anomaly detection research, setting
new standard in dataset integrity for the cybersecurity community.

1 https://www.unb.ca/cic/datasets/ids-2017.html
2 https://github.com/ahlashkari/CICFlowMeter
3 https://intrusion-detection.distrinet-research.be/WTMC2021/tools_

atasets.html
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2.3. CRiSIS-2022: Further refinement

Building upon the advancements of WTMC-2021, the CRiSIS-2022
dataset4 introduced by Lanvin et al. offers additional enhancements
[11]. This version addresses overlooked issues such as mislabeled port
scan attacks and duplicated traffic captures. By rectifying these aspects,
CRiSIS-2022 provides a more robust and accurate dataset, further
aligning simulated network traffic conditions with real-world scenarios
and bolstering the reliability of subsequent cybersecurity research.

3. Key limitations in dataset realism and applicability

Despite the release of the refined CICIDS-2017 and the remedial
patches applied to the CICFlowMeter tool, the application of this
dataset for research transferable to real-world scenarios remains lim-
ited. The CICFlowMeter tool has been the cornerstone for all existing
versions of the CIC-IDS-2017 dataset, including the original and the
improved ones. Although patches have been implemented to rectify
the tool, its flow construction and feature extraction pipeline still
diverge from the operations followed in real-world flow metering. The
limitations can be grouped into two primary categories.

3.1. Inadequate implementation of flow timeout mechanism

The CICFlowMeter tool, diverges from standard flow metering prac-
tices in its implementation of flow timeouts. While it employs a flow
timeout akin to an idle timeout, it lacks a standard active timeout
mechanism. Instead, it uses an activity timeout for subflow statistics,
differing from the de facto standard in flow metering tools and pro-
tocols like NetFlow and IPFIX. This absence of a conventional flow
expiration policy results in datasets that are not fully representative
of typical network conditions, a limitation present in both the original
and patched versions of CICFlowMeter.

3.2. Flaws in TCP flow flag-based expiration mechanism

The original CICFlowMeter was claimed lacking a robust TCP flag-
based flow expiration mechanism, terminating TCP flows upon the first
observation of FIN or RST flags. This was addressed by the patches
introduced by Engelen et al., which aligned flow termination more
closely with the TCP specification. In the patched version, a TCP flow
is no longer terminated after a single FIN packet. It terminates after
mutual exchange of FIN packets, which is more in line with the TCP
specification. Additionally, an RST packet is no longer ignored either.
Instead, the RST packet also terminates a TCP flow.

However, this modified termination process, while technically ac-
curate, deviates from the behavior commonly observed in commercial
flow metering tools, which typically terminate flows upon the first FIN
or RST flag. This discrepancy introduces potential biases in perfor-
mance assessments, as the datasets do not accurately reflect real-world
flow metering behavior.

Additionally, and more importantly, with the patch, a critical issue
was introduced. The WTMC-2021 and CRiSIS-2022 datasets exhibit
anomalously high FIN and RST flag counts in individual flow records,
with counts sometimes exceeding 100. Such behavior is atypical in
standard flow metering practices, leading to ambiguous interpretability
and relevance for real-world applications.

4. Objectives

Our research is guided by three central objectives.

4 https://gitlab.inria.fr/mlanvin/crisis2022
3

4.1. Addressing identified issues with a methodologically sound dataset

The primary goal of our research was to address the critical issues
highlighted in Section 3 by developing a dataset through a process that
is both transparent and methodologically robust. The CICFlowMeter,
widely recognized in AI and ML-based anomaly detection research,
suffers from limited documentation, scalability issues, methodological
errors, and constraints in customizability. Its open-source nature does
not mitigate the challenge of deciphering and resolving its complex un-
derlying issues. Moreover, although there is a hint about an impending
Python-based version that might address these issues,5 such a release
had not materialized as of the date of our study.

In our search for a tool with methodologically sound flow feature
calculation, we utilized NFStream, offering dependable performance
and flexibility in customization. It is particularly adept at implementing
TCP flow expiration policies and advanced flow labeling methodolo-
gies. By utilizing NFStream, we were able to sidestep the intricate
challenges posed by CICFlowMeter, effectively addressing the limita-
tions highlighted in this present work. As a result, we generated two
novel versions of the CICIDS-2017 dataset:

• NFS-2023-nTE : This version disabled TCP flag-based flow expira-
tion, aiming to mirror the flow generation process used in existing
dataset versions.

• NFS-2023-TE : In contrast, this version enabled TCP flag-based
flow expiration, better reflecting the flow characteristics observed
in real-world network flow metering scenarios.

4.2. Comparing ML model performances across datasets

Our second objective focused on conducting a comparative anal-
ysis of ML model performances across several datasets. This encom-
passed the original CICIDS-2017 dataset, along with its WMTC-2021
and CRiSIS-2022 refinements, and the two novel versions we created
using NFStream: NFS-2023-nTE (without TCP flag expiry) and NFS-
2023-TE (with TCP flag expiry). The purpose of this comparison was
to evaluate the influence of different flow metering strategies on ML
model outcomes. A key aspect of this analysis was to understand how
the incorporation or absence of TCP flag expiration policies affects the
accuracy and reliability of these models in network traffic analysis and
anomaly detection.

4.3. Developing a customizable dataset creation methodology

Finally, our present work was also aimed at developing a method-
ology that researchers can customize to process PCAP files as per
their unique requirements. This approach is designed to empower the
research community to create their own versions of datasets, grounded
in a sound, transparent, and adaptable data processing methodology.

5. Methodology

In this sections, we delve into the specifics of our methodology,
discussing the rationale behind our configuration choices and the tech-
niques employed to ensure the integrity, accuracy, and relevance of our
datasets and achieved results.

5 https://github.com/ahlashkari/CICFlowMeter/issues/154

https://gitlab.inria.fr/mlanvin/crisis2022
https://github.com/ahlashkari/CICFlowMeter/issues/154


Computer Networks 251 (2024) 110617A. Pekar and R. Jozsa
Table 1
Summary of PCAP files analysis.

PCAP No. of Packets No. of Duplicates % Duplicates No. of Frames No. of Out of
Order Frames

% Out of Order

Monday 11 709 971 526 729 – 11 183 242 3 105 –
Tuesday 11 551 954 496 702 4.3% 11 055 252 3 581 0.03%
Wednesday 13 788 878 494 582 3.6% 13 294 296 12 531 0.09%
Thursday 9 322 025 568 505 6.1% 8 753 520 3 424 0.04%
Friday 9 997 874 480 540 4.8% 9 517 334 6 980 0.07%
5.1. Raw data preprocessing

Our experimental approach began with downloading the raw packet
trace files from the CICIDS-2017 dataset. In line with the preprocessing
steps outlined by Lanvin et al. [11], we undertook a similar strategy
to minimize the undocumented (likely) anomalies in the raw packet
traces [11] that could potentially bias our results.

Initially, we utilized the editcap command (editcap -D 10000
input.pcap output.pcap) to remove duplicate packets from the
acquired PCAP files. This command, with a deduplication window set
to 10,000 packets, effectively identifies and eliminates duplicates, strik-
ing a balance between computational efficiency and the thoroughness
required for our analysis.

Following deduplication, the reordercap command (reordercap
input.pcap output.pcap) was applied to the cleaned traffic trace
files. The purpose of this step was to reorder the packets chronologi-
cally, thereby ensuring the temporal accuracy of network events, which
is crucial for a precise analysis of network flow.

Table 1 provides an in-depth summary of the results obtained from
executing these commands on each raw packet trace file. It details the
total count of frames in the PCAP files before and after deduplication
and highlights the number of frames that were out of sequence pre-
and post-reorder, along with their respective percentage differences.
Through these preprocessing steps, we were able to refine the raw PCAP
files effectively, laying a solid foundation for our subsequent network
traffic flow analysis.

5.2. IP flow generation

For the critical task of processing the PCAP files, we employed
NFStream [17], our Python-based tool that is specifically engineered
for rapid, flexible, and expressive data handling in network analysis.

The core strength of NFStream lies in its hybrid design, which
combines the ease and accessibility of Python with the performance
efficiency of C. This is epitomized by the NFlow structure, a central
component written in C, that forms the backbone of the tool. The
NFlow structure is designed to represent a network flow and incor-
porates essential attributes like the five-tuple flow key. Beyond these
fundamental features, it is augmented with a rich set of flow statistics
and metadata, encompassing categories such as core features, Layer 7
visibility, post-mortem statistics, and Sequence of Packet Length and
Time (SPLT) details. What makes NFStream particularly versatile is the
ability for users to selectively enable or disable these feature sets during
the flow measurement process, thereby tailoring the analysis to specific
requirements.

Moreover, NFStream excels in bridging the gap between raw net-
work measurements and sophisticated data science analytics. Its in-
trinsic capabilities in flow measurement and feature computation are
complemented by an adaptable architecture. This flexibility is partic-
ularly pronounced in the integration of bespoke network functionali-
ties through the NFPlugin component [17]. In our study, this feature
was instrumental, as it allowed us to integrate our specific TCP flow
4

expiration policy and flow labeling methodology directly into the tool.
5.2.1. Flow measurement specificities
In our research, we utilized NFStream v6.5.4 and primarily adhered

to the default settings recommended in the NFStream documentation.
However, to align the tool’s functionality with the specific require-
ments of our dataset and research objectives, we customized several
parameters as follows:

• Decode Tunnels: We disabled the tunnel decoding feature because
the CICIDS-2017 PCAP files did not contain any tunneled traffic.
This deactivation ensured a streamlined analysis focused on the
traffic types present in our dataset.

• BPF Filter: A custom Berkeley Packet Filter (BPF) was imple-
mented to exclusively capture TCP and UDP packets over IPv4.
With this customization, we achieved a more targeted packet
filtering process, effectively excluding traffic types of marginal
volume.

• Flow Timeouts: We adjusted the idle and active timeouts to 60 and
120 s, respectively. This change from the default settings (120
and 1800 s) was driven by the aim to more accurately replicate
the network traffic flow metering conditions in CICIDS-2017,
thereby enhancing the realism, relevance and comparability of
our findings.

• DPI-based Labeling:We set the ‘n_dissections’ value to 0, effectively
disabling Deep Packet Inspection (DPI)-based Layer 7 labeling.
This adjustment was made considering its limited utility in our
Intrusion Detection System (IDS) analysis.

• Statistical Analysis: In deviation from the default configuration, we
enabled the statistical analysis feature. This decision was made to
enrich our dataset with detailed flow statistics, providing a more
robust foundation for comprehensive data evaluation.

5.2.2. TCP flow expiration policy
Our TCP flow expiration policy, implemented as an NFPlugin within

NFStream, uses a specific set of criteria for marking TCP flows as
expired based on the packet characteristics. This policy is crucial for
ensuring accurate dataset generation and flow management.

• At flow initiation: Upon the initiation of a new network flow, our
policy dictates that if the incoming packet carries a TCP RST flag
(indicating an abrupt termination) or a TCP FIN flag (signifying a
normal closure), the flow is immediately marked for expiration
using a specific identifier. Specifically, the expiration ID of ‘-
1‘ is assigned, which is reserved for user-defined expiration in
NFStream. This ensures that our dataset accurately reflects both
abrupt terminations and orderly closures of TCP connections right
from the start.

• At flow update: For existing network flows, our policy similarly
mandates the assignment of the expiration ID ‘-1‘ if a packet
carries an RST flag or if a FIN flag is detected during flow updates.
This practice ensures that changes in the status of ongoing con-
nections, whether unexpected interruptions or planned closures,
are promptly captured.

The choice of ‘-1‘ for the expiration ID allows NFStream to dis-
tinguish these flows as requiring immediate removal from the flow
cache, which maintains records of active flows. This is in contrast to
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Algorithm 1 Flow Expiration Manager for TCP Flows
1: class FlowExpirationManager inherits NFPlugin:
2: ⊳ Manages the expiration policy for TCP flows.
3: procedure on_init(𝑝𝑎𝑐𝑘𝑒𝑡, 𝑓 𝑙𝑜𝑤)
4: ⊳ Set the expiration ID based on RST or FIN flags.
5: if 𝑝𝑎𝑐𝑘𝑒𝑡.𝑟𝑠𝑡 or 𝑝𝑎𝑐𝑘𝑒𝑡.𝑓 𝑖𝑛 then
6: 𝑓𝑙𝑜𝑤.𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛_𝑖𝑑 ← −1
7: end if
8: end procedure
9: procedure on_update(𝑝𝑎𝑐𝑘𝑒𝑡, 𝑓 𝑙𝑜𝑤)
0: ⊳ Set the expiration ID based on RST or FIN flags.
1: if 𝑝𝑎𝑐𝑘𝑒𝑡.𝑟𝑠𝑡 or 𝑝𝑎𝑐𝑘𝑒𝑡.𝑓 𝑖𝑛 then
2: 𝑓𝑙𝑜𝑤.𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛_𝑖𝑑 ← −1
3: end if
4: end procedure

other values like ‘0‘ for idle timeout and ‘1‘ for active timeout, which
NFStream uses to manage flows under standard operational conditions.

Algorithm 1 shows the pseudo code for our TCP flow expiration
strategy within NFStream. This strategy, while not encompassing every
nuanced TCP sequence anomaly present in raw traffic traces, is in line
with established methodologies used by various flow exporters, both
open-source and commercial, as referenced in literature [18]. This in-
cludes widely-used protocols like IPFIX and NetFlow, which are integral
to numerous vendor devices. This alignment with common industry
practices aims to boost the practical applicability of our datasets.

5.2.3. Post-processing flows
To further enhance the relevance and accuracy of our dataset, we

implement an additional refinement step after generating the flow data.
This step involves filtering out flow records that may not provide
meaningful insights due to the nature of their termination. Specifically,
we target flows that were terminated prematurely by an RST or FIN flag
in their initial packet, which could represent truncated connections or
abnormal operations.

Algorithm 2 outlines the specific criteria used to filter out certain
flow records during our post-processing phase. This process helps to
ensure that our dataset focuses on more substantive network connec-
tions that offer deeper and more contextually rich insights for analysis.
Such filters are particularly important in studies of anomaly detec-
tion, as they help to eliminate potential noise and focus on genuinely
anomalous activities that are not artifacts of flow expiration policies.

Algorithm 2 Post-Processing Flows
1: procedure FilterFlows(𝑓𝑙𝑜𝑤𝑠)
2: ⊳ Exclude flows that may skew analysis results.
3: Initialize 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑓𝑙𝑜𝑤𝑠
4: for each 𝑟𝑜𝑤 in 𝑓𝑙𝑜𝑤𝑠 do
5: if 𝑟𝑜𝑤[𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑝𝑎𝑐𝑘𝑒𝑡𝑠] ≠ 1
and (𝑟𝑜𝑤[𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑟𝑠𝑡_𝑝𝑎𝑐𝑘𝑒𝑡𝑠] ≠ 1 or
𝑟𝑜𝑤[𝑏𝑖𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙_𝑓𝑖𝑛_𝑝𝑎𝑐𝑘𝑒𝑡𝑠] ≠ 1) then

6: Add 𝑟𝑜𝑤 to 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑_𝑓𝑙𝑜𝑤𝑠
7: end if
8: end for
9: end procedure

5.2.4. Attack type labeling
In our study, we employed an additional NFPlugin within the

NFStream framework to systematically label each network flow based
on predefined criteria. These criteria are designed to reflect the attack
patterns and benign behaviors documented for each weekday from
5

Monday to Friday in the original dataset [16]. We analyze key flow
characteristics such as source and destination IPs, ports, protocols, and
packet payloads. Each characteristic is matched against specific attack
profiles that include not only the types of attacks but also their known
time windows through a detailed multi-stage process:

1. Attribute Matching: Each flow’s attributes are first checked against
the attack profiles to identify potential matches based on IP
addresses, port numbers, and protocols.

2. Temporal Validation: For flows that match the attack profiles in
attributes, the time stamps are then verified against the doc-
umented time windows of the attacks to confirm if the flow
occurred during the known period of attack activity.

3. Final Labeling: Flows that match both attribute and temporal
criteria are labeled with specific attack tags (e.g., ‘SSH-Patator’,
‘Web Attack - Brute Force’), whereas those that do not align with
any known attack patterns are marked as ‘BENIGN’.

An integral part of our labeling process is the management of flows
with zero packet payloads (ZPL). These are particularly challenging
as they can skew the accuracy of anomaly detection. Our payload
manager maintains a detailed record of the flow payloads, enabling
us to identify and appropriately label ZPL flows as ‘BENIGN’. This
adjustment is necessary because, despite being marked as anomalies
in the original dataset, such flows might not exhibit typical malicious
characteristics [9]. In our methodology, we label flows with ZPL as
‘BENIGN’, except for those identified as part of a ‘Portscan’ type.

Additionally, our labeling mechanism includes the capability to re-
verse the flow direction. This feature is essential for accurately labeling
flows in scenarios where packets from the same flow may be segmented
into subflows (as a consequence of our TCP flow expiration strategy).
By swapping source and destination parameters, we ensure that each
part of the flow is evaluated in its proper context, enhancing the overall
accuracy of our dataset labeling.

This meticulous approach ensures a high degree of accuracy in dis-
tinguishing between benign and malicious flows, reflecting the unique
attack dynamics documented for each day. This systematic process fa-
cilitates more targeted and meaningful analysis in subsequent research
phases, enabling robust detection of anomalies and attack patterns.

6. Dataset overview

6.1. Distribution of benign and anomalous flows

Table 2 presents a comparative analysis of the distribution of the
flow types across the five CICIDS-2017 dataset versions examined in
this study.

The CICIDS-2017 dataset is available in two variants. The version
tailored for ML research omits several columns, including Flow ID,
Source IP, Source Port, Destination IP, Protocol, and Timestamp, unlike
its counterpart which includes these essential fields. Given the signif-
icance of the protocol identifier in model training, we opted for the
more comprehensive version, despite its inclusion of 288 602 flows
with unknown labels. These unlabeled flows were excluded from our
analysis.

For the WTMC-2021 dataset, we disregarded flows marked as ‘At-
tempted’. As noted by Engelen et al. [9], some flows in payload-
reliant attack categories lack an actual payload and are thus labeled
as ‘Attempted’.

From the data in Table 2, it is evident that the CICIDS-2017 and
NFS-2023-TE datasets exhibit a roughly similar count and distribu-
tion of flow records. These datasets share a common approach in
expiring flows upon encountering the first FIN or RST TCP flag. Con-
versely, the WTMC-2021, CRiSIS-2022, and NFS-2023-nTE datasets,
which were generated without TCP FIN or RST flag-based flow ex-
piration, demonstrate a closely aligned flow count and distribution

pattern.
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A noteworthy distinction emerged regarding the integrity of data
fields in the datasets. All datasets produced using CICFlowMeter, ex-
hibited a small but significant number of flow entries with NaN (Not a
Number) values. This occurrence of NaN values potentially indicates
gaps or inconsistencies in the flow metering methodology employed
by CICFlowMeter. Such anomalies can have a cascading effect on data
quality and, consequently, on the performance and reliability of ML
models trained using these datasets. In contrast, the datasets generated
using NFStream demonstrated a higher level of data completeness, with
no instances of unfilled data fields.

In addition to the occurrence of NaN values, our analysis uncovered
another dimension of data integrity concerns in the datasets produced
using CICFlowMeter. A significant number of entries across various
features, such as ‘Flow Duration’, ‘Flow Bytes/s’, ‘Flow Packets/s’, and
several others, contained negative values for each day from Monday
to Friday. Such negative values are not logically justifiable within the
context of these network traffic flow metrics and suggest the presence
of errors in the dataset’s measurement process. This observation further
underscores the challenges associated with ensuring data quality in the
datasets derived from CICFlowMeter.

Conversely, while the WTMC-2021 dataset shows an improvement
with fewer features containing negative numbers, it still presents this
anomaly, particularly from Monday to Thursday in the ‘Flow IAT Min’
feature and more extensively on Friday. This indicates that although
refinements have been made, certain measurement inaccuracies persist.
The CRiSIS-2022 dataset stands out for its absence of such irregu-
larities, indicating a more rigorous flow measurement methodology
or post-processing where such flow entries might have been removed
manually.

While the NFStream-generated datasets do contain entries with
negative numbers, these are intentionally designed to represent specific
flow conditions, such as custom flow expiration policies, rather than be-
ing indicative of measurement errors. The negative values in NFStream
datasets are, therefore, a feature of the dataset’s structure and not a
flaw.

Nonetheless, this comparison underscores the influence of flow
expiration policies on the structure and composition of network traf-
fic datasets, thereby potentially affecting the subsequent analysis and
model training processes.

6.2. Distribution of specific anomaly types

Building on the insights from Table 2, Table 3 delves deeper into
the distribution of specific anomaly types across the five versions of
the CICIDS-2017 dataset. The data presented in this table excludes the
NaN entries detailed in Table 2.

An important observation from Table 3 is the alignment in value
counts between the two refined versions and those measured using
NFStream, when compared to the original CICIDS-2017 dataset. This
alignment suggests that the updates and patches applied to CICFlowMe-
ter have likely contributed to a more accurate measurement and label-
ing of anomalies, bringing these metrics closer to the results observed
with NFStream.

Another notable observation from Table 3 is the effective identifi-
cation and labeling of PortScan attacks in the CRiSIS and NFStream
versions of the dataset. These attacks were previously unnoticed in
the original CICIDS-2017 dataset and its WMTC-2021 refinement. The
enhanced accuracy in measuring and labeling PortScan is a critical
advancement for network security research, thereby offering a more
robust foundation for training and evaluating ML models in the context
6

of anomaly detection.
6.3. Reconstructing TCP FIN and RST flag counts

Table 4 provides an insightful comparison of the counts of flows
with three or more TCP FIN and RST flags across the five studied
versions of the CICIDS-2017 dataset. This analysis is crucial for ver-
ifying the impact of TCP flag-based flow expiration policies on the
characteristics of the generated flow records.

The enhancement of TCP flag-based flow expiration in WMTC-2021
was intended to align flow records more closely with standard TCP
operational behaviors. Ideally, this would result in flows being expired
after a bidirectional exchange of packets with FIN flags, or immediately
upon detecting a packet with an RST flag. However, our analysis reveals
that the CICFlowMeter version used for WMTC-2021 did not fully
achieve this objective. Contrary to expectations, both the WMTC-2021
and CRiSIS-2022 datasets include flow records with anomalously high
counts of FIN or RST flags, sometimes exceeding 100 flags per a single
flow in extreme cases.

Our preliminary examination of the CICFlowMeter’s patched version
revealed that the abnormally high TCP flag counts are likely due to how
flow expiration is handled. In the patched CICFlowMeter, TCP flows
are designated for expiration upon detecting either a TCP RST flag or a
sequence of two TCP FIN flags followed by a TCP ACK flag. However,
even after a flow is marked for expiration, its attributes continue to
be updated until it is eventually removed from the flow cache. This
removal occurs either due to the active timeout (hard coded 120 s)
being exceeded or when a TCP SYN flag is encountered in a flow
already marked for expiration. In the latter case, a new flow record is
initiated with the packet containing the SYN flag, and the previous flow
is discarded. The result is flow records with significantly high counts
of these flags, making their interpretability ambiguous and, at times,
misleading with respect to standard TCP operation.

Our measurement with NFStream revealed differences in dataset
characteristics based on whether TCP compliant expiration policy was
enabled or disabled. When we activated the TCP expiration policy
in NFStream, the resulting dataset (NFS-2023-nTE) aligned well with
the expected standard TCP behavior. The flows were terminated in a
manner consistent with typical TCP connection closures, leading to a
more realistic representation of network traffic. However, this version
diverged from the flow characteristics observed in the WMTC-2021 and
CRiSIS-2022 datasets, particularly in terms of the counts of TCP FIN and
RST flags.

Conversely, when the TCP expiration policy was disabled, the result-
ing dataset (NFS-2023-nTE) showed similarities to the flow characteris-
tics observed in WMTC-2021 and CRiSIS-2022, as evident from Table 4.
Given this alignment, we chose to produce the NFS-2023-nTE dataset
without enabling the TCP flag-based expiration policy. This decision
was pivotal in ensuring that the results obtained using NFS-2023-nTE
could be more effectively contrasted with those derived from existing
datasets.

While not directly evident from Table 4, in the NFS-2023-TE
dataset — which was generated without activating the TCP flag-based
expiration policy — there were no flows with more than two counts of
TCP FIN or RST flags. In fact, these counts were limited to a maximum
of one per flow, perfectly aligning with the expected behavior outlined
in our TCP expiration policy described in Section 5.2.2.

Nonetheless, the discrepancy between the expected and observed
behaviors in flow records with respect to TCP FIN and RST flags under-
scores the importance of accurate implementation of network protocols
in flow metering tools. It also highlights the effectiveness of NFStream
in adhering to TCP standards when the appropriate expiration policy is

activated.
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Table 2
Flow type distribution overview per dataset version.

Da
y Dataset Total Benign Anomaly NaN Negative

M
on

CICIDS-2017 529 918 529 918

—

64 299 597
WTMC-2021 371 749 371 749 47 517
CRiSIS-2022 372 425 372 425 2 492 0

NFS-2023-nTE 376 826 376 826 0 c

NFS-2023-TE 559 775 559 775 0 c

Tu
e

CICIDS-2017 445 909 432 074 13 835 201 257 104
WTMC-2021b 321 984 315 031 6 953 23 511
CRiSIS-2022 322 462 315 509 6 953 2 336 0

NFS-2023-nTE 325 677 318 705 6 972 0 c

NFS-2023-TE 467 254 456 311 10 943 0 c

W
ed

CICIDS-2017 692 703 440 031 252 672 1 008 336 224
WTMC-2021b 491 006 319 216 171 790 29 758
CRiSIS-2022 497 115 325 324 171 791 2 281 0

NFS-2023-nTE 503 140 329 267 173 873 0 c

NFS-2023-TE 865 413 691 015 174 398 0 c

Th
u

CICIDS-2017a 458 968 456 752 2 216 38 267 336
WTMC-2021b 360 486 360 264 222 288 621
CRiSIS-2022 355 618 291 211 64 407 33 287 0

NFS-2023-nTE 358 302 294 128 64 174 0 c

NFS-2023-TE 485 224 413 744 71 480 0 c

Fr
i

CICIDS-2017 703 245 414 322 288 923 47 284 166
WTMC-2021b 546 445 291 433 255 012 348 515
CRiSIS-2022 548 828 293 367 255 461 3 011 0

NFS-2023-nTE 547 186 293 341 253 845 0 c

NFS-2023-TE 775 694 518 961 256 733 0 c

a Contains 288 602 flows with NaN labels whose count is not included.
b Contains attempted attack types whose count is not included.
c Contains negative numbers but these denote specific flow conditions.
Table 3
Anomaly breakdown.

DS Anomaly Type CICIDS-2017 WTMC-2021 CRiSIS-2022 NFS-2023-nTE NFS-2023-TE

Mon – – – – – –

Tue FTP-Patator 7 938 3 973 3 973 3 992 7 963
SSH-Patator 5 897 2 980 2 980 2 980 2 980

Wed

DoS GoldenEye 10 293 7 567 7 567 7 916 7 917
DoS Hulk 231 073 158 469 158 470 158 027 158 546
DoS Slowhttptest 5 499 1 742 1 742 2 727 2 732
DoS Slowloris 5 796 4 001 4 001 5 192 5 192
Heartbleed 11 11 11 11 11

Thu

Infiltration 36 32 32 27 28
PortScan – – 64 185 63 957 71 262
Web Attack - Brute Force 1 507 151 151 151 151
Web Attack - SQL Injection 21 12 12 12 12
Web Attack - XSS 652 27 27 27 27

Fri
Bot 1 966 738 738 738 738
DDoS 128 027 95 123 95 144 93 178 95 685
PortScan 158 930 159 151 159 579 159 929 160 310
7. ML performance comparison

7.1. ML algorithm

In our study, we explore the impact of data integrity on network
anomaly detection by employing Random Forest (RF), a widely rec-
ognized and frequently used machine learning technique. RF is an
ensemble learning method that operates by constructing a multitude
of decision trees at training time. It outputs the mode of the classes
(classification) of the individual trees, which enhances the overall
predictive accuracy and controls over-fitting.

The rationale behind this selection is that RF have been consistently
utilized in the literature related to the CICIDS-2017, WMTC-2021,
and CRiSIS-2022 datasets. For instance, CICIDS-2017 employed the K-
7

Nearest Neighbors (KNN), RF, Iterative Dichotomiser 3 (ID3), Adaboost,
Multilayer Perceptron (MLP), NB, and Quadratic Discriminant Anal-
ysis (QDA) algorithms [16]; WMTC-2021 focused solely on RF [9];
and CRiSIS-2022 assessed Support Vector Machine (SVM), NB, RF,
and DT [11]. Choosing the RF algorithm ensures that we evaluate a
method previously employed in related research, thereby enhancing
the comparability and transferability of our observations across these
studies.

7.2. Feature selection

In our comparative study of RF model performances using different
versions of the CICIDS-2017 dataset, a crucial step is the mapping of
flow features generated by CICFlowMeter and NFStream. While both

tools serve similar purposes in network traffic analysis, they generate a
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Table 4
Number of flows more than two with FIN and RST flags and their distribution between benign and anomalous traffic types.

Day Dataset Flows with FIN > 2 Flows with RST > 2

Total Benign Anomaly Total Benign Anomaly

Mon

CICIDS-2017 0 0 0 0 0 0
WTMC-2021 18 703 18 703 0 9 860 9 860 0
CRiSIS-2022 16 477 16 477 0 9 657 9 657 0

NFS-2023-nTE 16 476 16 476 0 9 785 9 785 0
NFS-2023-TE 0 0 0 0 0 0

Tue

CICIDS-2017 0 0 0 0 0 0
WTMC-2021 11 737 11 690 47 4 396 4 383 13
CRiSIS-2022 9 387 9 340 47 4 152 4 139 13

NFS-2023-nTE 9 386 9 339 47 4 217 4 204 13
NFS-2023-TE 0 0 0 0 0 0

Wed

CICIDS-2017 0 0 0 0 0 0
WTMC-2021 10 952 5 692 5 260 40 779 2 512 38 267
CRiSIS-2022 8 566 3 305 5 261 40 577 2 309 38 268

NFS-2023-nTE 8 827 3 295 5 532 40 832 2 380 38 452
NFS-2023-TE 0 0 0 0 0 0

Thu

CICIDS-2017 0 0 0 0 0 0
WTMC-2021 5 272 5 272 0 2 076 2 076 0
CRiSIS-2022 2 231 2 231 0 1 884 1 884 0

NFS-2023-nTE 2 230 2 230 0 2 028 2 028 0
NFS-2023-TE 0 0 0 0 0 0

Fri

CICIDS-2017 0 0 0 0 0 0
WTMC-2021 4 877 4 826 46 2 434 2 425 9
CRiSIS-2022 2 624 2 578 46 2 210 2 201 9

NFS-2023-nTE 3 735 2 554 1 181 3 621 3 608 13
NFS-2023-TE 0 0 0 0 0 0
t
o
t
a
C
c
n
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f
v
a

range of flow features with some overlaps and some unique aspects.6,7

ur focus is on identifying features that are common across both
ools to ensure a fair and balanced comparison. Table 5 details this
apping, highlighting the five-tuple (five flow key attributes) and 41

low features that can be directly compared or have closely analogous
ounterparts. By concentrating on a consistent set of common flow
eatures, we aim to provide a logical and well-grounded basis for com-
aring the effectiveness of methodologies developed using the datasets
erived from these two tools.

While feature selection methods could have been employed to re-
uce the dimensionality of data, we opted to utilize the full feature set
rovided by the CICIDS-2017 dataset, with specific exclusions aimed at
inimizing potential biases. Specifically, the source and destination IP

ddresses, as well as port numbers flow key attributes were excluded
rom our feature set. The rationale behind this decision was to avoid
iasing the model with information that could inadvertently skew its
earning process. For instance, IP addresses present a challenge in terms
f transforming them into a format that is effectively utilizable by ML
odels. On the other hand, including destination port numbers in the

eature set could lead the model to associate certain port numbers
e.g., port 21 for FTP or port 22 for SSH) with specific types of attacks
e.g., FTP-Patator or SSH-Patator). This reliance on port numbers could
etract from the model’s ability to learn and identify attack patterns
ased on the intrinsic characteristics of the network flows.

The protocol identifier attribute, however, was retained as part
f our feature set. In the CICIDS-2017 dataset, all attacks were exe-
uted over the TCP protocol, rendering the inclusion of the protocol
dentifier somewhat less impactful. Nevertheless, considering that TCP
lags were also included in our feature set, we found no compelling
eason to exclude the protocol identifier. Its inclusion might still of-
er marginal benefits in understanding flow characteristics, especially
hen combined with other features.

6 For a comprehensive list of features from CICFlowMeter, see https://
ithub.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt.

7 For NFStream features, refer to https://www.nfstream.org/docs/api.
8

K

It is worth to note that, even for features that appear similar,
discrepancies in their calculated values may occur, as also evident
in Tables 2–4. These differences can arise due to variations in how
the features are computed and the specific mechanisms employed for
updating and terminating flows. Understanding the reasons behind
these discrepancies is not within the scope of our current work. A more
thorough investigation would be required to fully comprehend these
variations and their root causes.

7.3. Metrics

In evaluating the performance of the RF algorithm on various
dataset versions, we used a comprehensive set of metrics for both
binary and multi-class classification scenarios. For binary classification,
we consolidated all attack types under a singular ‘‘ANOMALY’’ label,
whereas, for multi-class classification, we retained the original labels
for individual attack types.

The key metrics employed include precision (the ratio of correctly
predicted positive observations to the total predicted positive obser-
vations), recall (the ratio of correctly predicted positive observations
o all actual positive observations, also known as true positive rate
r sensitivity), accuracy (the ratio of correctly predicted observations
o total observations), F1 score (the weighted average of precision
nd recall), and Receiver Operating Characteristic (ROC) - Area Under
urve (AUC) (measuring the model’s ability to distinguish between
lasses). In addition to the metrics mentioned above, we also calculate
ormalized confusion matrices for each model.

.4. Binary classification results

Table 6 presents a comparative analysis of the performance metrics
or each dataset in our binary classification setup. The table shows the
alues for precision (Prec.), recall (Rec.), accuracy (Acc.), F1 score (F1),
nd Area Under the Receiver Operating Characteristic Curve (AUC).

ey observations from Table 6 are as follows:

https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
https://github.com/ahlashkari/CICFlowMeter/blob/master/ReadMe.txt
https://www.nfstream.org/docs/api
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Table 5
Flow feature mapping between NFStream and CICFlowMeter.

NFStream Feature CICFlowMeter Feature

src_ip Source IPa

src_port Source Porta

dst_ip Destination IPa

dst_port Destination Porta

protocol Protocol

src2dst_packets Total Fwd Packeta

dst2src_packets Total Bwd packetsa

src2dst_bytes Total Length of Fwd Packeta

dst2src_bytes Total Length of Bwd Packeta

bidirectional_duration_ms Flow Duration

bidirectional_min_ps Packet Length Mina

bidirectional_max_ps Packet Length Maxa

bidirectional_mean_ps Packet Length Mean
bidirectional_stddev_ps Packet Length Std
src2dst_max_ps Fwd Packet Length Max
src2dst_min_ps Fwd Packet Length Min
src2dst_mean_ps Fwd Packet Length Mean
src2dst_stddev_ps Fwd Packet Length Std
dst2src_max_ps Bwd Packet Length Max
dst2src_min_ps Bwd Packet Length Min
dst2src_mean_ps Bwd Packet Length Mean
dst2src_stddev_ps Bwd Packet Length Std

bidirectional_mean_piat_ms Flow IAT Mean
bidirectional_stddev_piat_ms Flow IAT Std
bidirectional_max_piat_ms Flow IAT Max
bidirectional_min_piat_ms Flow IAT Min
src2dst_mean_piat_ms Fwd IAT Mean
src2dst_stddev_piat_ms Fwd IAT Std
src2dst_max_piat_ms Fwd IAT Max
src2dst_min_piat_ms Fwd IAT Min
dst2src_mean_piat_ms Bwd IAT Mean
dst2src_stddev_piat_ms Bwd IAT Std
dst2src_max_piat_ms Bwd IAT Max
dst2src_min_piat_ms Bwd IAT Min

bidirectional_fin_packets FIN Flag Count
bidirectional_syn_packets SYN Flag Count
bidirectional_rst_packets RST Flag Count
bidirectional_psh_packets PSH Flag Count
bidirectional_ack_packets ACK Flag Count
bidirectional_urg_packets URG Flag Count
bidirectional_cwr_packets CWR Flag Counta

bidirectional_ece_packets ECE Flag Count

src2dst_psh_packets Fwd PSH Flags
dst2src_psh_packets Bwd PSH Flags
src2dst_urg_packets Fwd URG Flags
dst2src_urg_packets Bwd URG Flags

a There is an inconsistency in the naming conventions used across the original
CICIDS-2017 dataset and its subsequent refinements, WTMC-2021 and CRiSIS-2022.

• Both WTMC-2021 and CRiSIS-2022 datasets consistently show
near-perfect scores across all metrics. This indicates exceptional
model performance in correctly classifying flows, with minimal
misclassifications.

• The CICIDS-2017 dataset exhibits variability in performance
across different days, with particularly lower recall and F1 scores
on Tuesday and Thursday. This suggests discrepancies in data
quality or representativeness, impacting the model’s ability to
detect true positives effectively.

• An interesting pattern emerges with the Thursday datasets. While
accuracy is consistently high across all versions, there are notice-
able variations in the other metrics. CICIDS-2017, WTMC-2021,
and NFS-2023-TE demonstrate lower recall, F1 scores, and ROC
AUC, indicating some challenges in consistently identifying true
positives. In contrast, CRiSIS-2022 and NFS-2023-nTE achieve
higher metrics, reflecting a more balanced detection capabil-
ity. This suggests that the Thursday dataset may have unique
characteristics influencing the models’ predictive performance.
9

Table 6
Performance metrics comparison across datasets and days for binary classification.

• NFS-2023-nTE and NFS-2023-TE datasets generally align closely
with the refined datasets (WTMC-2021 and CRiSIS-2022) in terms
of performance metrics. This indicates that the methodological
improvements in CICFlowMeter are effective.

• The NFS-2023-TE dataset, particularly on Friday, shows high
scores in all metrics, aligning closely with the NFS-2023-nTE
dataset. This suggests that the TCP flag-based expiration policy
in NFS-2023-TE does not adversely affect the model’s ability to
classify anomalies accurately.

• The NFS-2023-nTE dataset demonstrates excellent precision and
recall, particularly on Wednesday and Friday, indicating its ro-
bustness in identifying true positives without increasing false
positives.

Complementary to the performance metrics detailed in Table 6,
the confusion matrices in Table 7 provide additional insights into the
classification patterns of each model. The key findings that can be
observed:

• The confusion matrices across all datasets for the days of Tuesday
(with an exception for CICIDS-2017), Wednesday, and Friday
show that the True Positive Rates (the recall for the anomaly
class) are exceedingly high, often reaching perfect or near-perfect
scores. This suggests that the models are highly effective at iden-
tifying anomalous flows on these days.

• Unlike other days, the Thursday matrices reveal a notably lower
True Positive Rate for anomaly detection in certain datasets, such
as CICIDS-2017, WTMC-2021, and NFS-2023-TE. This indicates
that the models struggle to consistently identify anomalies on
this day, which may be due to the unique characteristics or
distribution of the Thursday data.
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Table 7
Day-wise and dataset-wise confusion matrix comparison for binary classification.
• On Tuesday and Wednesday, the models using the WTMC-2021,
CRiSIS-2022, and NFS-2023-nTE datasets display perfect classi-
fication for benign flows, with zero false positives. This demon-
strates the models’ strong ability to correctly identify normal
behavior without mistakenly flagging it as anomalous.

• There is a notable consistency in the performance of the CRiSIS-
2022 and NFS-2023-nTE datasets across all days, as evidenced by
the high scores for both benign and anomaly classes, indicating
stable model performance regardless of the day.

• The NFS-2023-nTE dataset stands out on Friday with perfect
scores, reflecting the model’s accuracy in distinguishing between
benign and anomalous flows without error.

The analysis of feature importances, as shown in Fig. 1 for each
model, reveals a further insight: TCP FIN and RST flags typically do
not emerge as dominant features influencing model outcomes. This
trend holds across various dataset versions, with few exceptions. This
observation clarifies that the implementation of TCP expiration policies
has a minimal impact on the predictive capabilities of the Random
Forest model. Instead, the model utilizes a diverse array of features to
effectively differentiate between benign and anomalous traffic.

Friday datasets stand out, with TCP FIN and RST flags gaining
more prominence. However, even with these features assuming greater
importance, the RF classifier maintains high accuracy. This underscores
10
the algorithm’s ability to adapt and extract relevant patterns from com-
plex data structures, highlighting its resilience to potential inaccuracies
in specific feature measurements.

7.5. Multi-class classification results

The comparative analysis of multi-class classification performance
across different versions of the CICIDS-2017 dataset is depicted in
Table 8. Notable observations from the table include:

• The WTMC-2021, CRiSIS-2022, NFS-2023-nTE, and NFS-2023-TE
datasets exhibit near-perfect or perfect scores across all metrics
on Tuesday, Wednesday, and Friday, indicating an exceptional
ability of the models to classify multiple attack types with high
precision and reliability.

• The original CICIDS-2017 dataset shows slightly lower perfor-
mance compared to the other datasets, particularly on Tuesday
and Wednesday, which could suggest some limitations in the
dataset’s consistency or potential issues with class imbalances
affecting model performance.

• Both NFS-2023-nTE and NFS-2023-TE datasets achieve perfect
scores in all metrics on Tuesday and Friday, and near-perfect
scores on Wednesday and Thursday. This indicates that the
datasets generated using NFStream, with and without TCP flag-
based flow expiration, provide robust bases for model training
and evaluation.
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Fig. 1. Binary classification feature importance comparison.
• On Thursday, there is a noticeable performance drop for the
CICIDS-2017 and NFS-2023-TE datasets compared to other days
and datasets. This suggests some difficulty in distinguishing be-
tween classes on this particular day.

• Across all datasets and days, the models maintain high accuracy
levels, demonstrating their effectiveness in correctly classifying
both benign and anomalous flows in a multi-class setting.

Complementary to the performance metrics in Table 8, the confu-
sion matrices in Table 9 shed light on the classification performance
for individual attack types across the datasets on different days. The
matrices reveal several noteworthy patterns:
11
• Across all datasets, certain attack types such as FTP-Patator and
SSH-Patator on Tuesday and Infiltration on Wednesday are clas-
sified with high precision. This indicates that the models are
particularly effective at detecting these types of attacks with
minimal false positives.

• There is some variation in the recall rates for different attack
types. For example, on Thursday, the recall for DoS attacks is
noticeably lower in the CICIDS-2017 dataset compared to the
others. This variation suggests that some datasets or models may
be better tuned to recognize specific attacks over others.

• The NFS-2023-nTE and NFS-2023-TE datasets demonstrate con-
sistently high precision and recall across all attack types. This
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Table 8
Performance metrics comparison across datasets and days for multi-class classification.

uniformity highlights the robustness of the NFStream tool in
generating datasets that lead to reliable classification models.

• Similar to the findings in Tables 6–8, the confusion matrices
for Thursday reveal some challenges in classifying attacks, par-
ticularly for the NFS-2023-TE dataset. The NFS-2023-TE dataset
displays slightly less precision and recall for certain attack types,
aligning with the earlier observation of lower performances on
this day.

• Despite some day-to-day and attack-type-specific variations, the
overall accuracy across all datasets remains high. This suggests
that the RF models are generally well-calibrated to distinguish
between benign traffic and various types of network anomalies.

Feature importances for the multi-class scenarios, as illustrated in
ig. 2, exhibit trends consistent with those observed in the binary clas-
ification scenarios (Fig. 1). In these analyses, TCP FIN and RST flags
enerally do not stand out as dominant features affecting model out-
omes. Similar to the binary results, these flags become slightly more
ronounced in the datasets from Friday, yet even when these features
ssume greater significance, the RF classifier continues to demonstrate
igh accuracy. This consistency highlights the classifier’s robustness,
ffectively leveraging a wide range of features to accurately distinguish
etween multiple classes of network traffic. Such adaptability is crucial,
emonstrating the model’s ability to maintain performance reliability
espite variations in feature importance across different types of data
ontexts.

. Discussion

.1. Implications of dataset quality on RF model efficacy

Upon analyzing the results from both binary and multi-class clas-
ification tables, it is evident that the RF models exhibited robust
12
performance across various dataset versions, demonstrating high ac-
curacy and precision in both binary and multi-class classification sce-
narios. This suggests that while dataset refinement and remeasure-
ment can lead to improvements, even datasets with known biases and
measurement issues can yield models with impressive performance.

However, the consistently high performance across datasets raises
a critical point of discussion. It illustrates the adaptability of ML
algorithms, particularly Random Forest, to learn from data with varying
quality levels. Yet, it also suggests a potential risk: that high performance
may mask underlying dataset flaws. While the refinements and NFStream-
generated datasets do show some improvements, the significance of
these improvements is less pronounced than one might expect, given
the already high performance of models trained on the original dataset.

The RF algorithm operates by creating an ensemble of decision
trees. These trees are constructed based on the statistical characteristics
of the flows associated with a target label (BENIGN or a specific
anomaly). Even if the statistical characteristics of the datasets vary, the
RF model can still learn to classify the target label, albeit with slightly
different parameters that determine the splits in the trees. From this
perspective, the observation of consistent performance is not surprising,
as the algorithm effectively handles its classification task. However,
such results can indeed obscure underlying data quality issues.

If the flow records are not measured in a standardized manner
or contain methodological errors, the resulting flow records will still
exhibit certain statistical characteristics. These characteristics are suf-
ficient for training a model, but whether the flow records accurately
reflect the true nature of the network flows is a different matter.
Consequently, high model performance might not necessarily indicate
high data quality, but rather the model’s ability to learn patterns from
the available data.

Another observation is that our findings do not corroborate the
substantial performance improvements reported in WTMC-2021 [9]
and CRiSIS-2022 [11], particularly when these are juxtaposed with the
original performance metrics of CICIDS-2017 [8]. However, these dis-
crepancies may stem from the intricacies involved in applying machine
learning algorithms. Further study is necessary to more comprehen-
sively understand the underlying causes of these discrepancies.

8.2. Multi-model performance comparison

We also evaluated the performance of the Decision Tree (DT)
and Naive Bayes (NB) algorithms, benchmarking them against the RF
model. For model training, the top 15 features were selected using the
Extremely Randomized Trees (Extra-Trees) algorithm [19]. Table 10
compares the achieved performance across various datasets and clas-
sification scenarios. Metrics below 0.9 have been highlighted in gray.
From Table 10, several key conclusions can be derived.

Across both binary and multi-class classifications, RF consistently
outperforms DT and NB. This superior performance is reflected in its
near-perfect precision, recall, accuracy, F1 score, and AUC ROC. The
robustness of RF is attributed to its ensemble nature, which aggregates
multiple decision trees, thereby reducing overfitting and enhancing
generalization.

DT demonstrates strong performance in most scenarios but exhibits
more variability compared to RF. Notably, its lower performance on
the Thursday datasets in binary classification highlights its sensitivity
to data variations and potential overfitting to specific features.

NB shows the most significant fluctuations in performance, particu-
larly in precision and recall. This variability stems from NB’s assump-
tion of feature independence, which may not hold true in complex
datasets, resulting in higher false positive rates and lower overall
accuracy.

The day-to-day performance variability, especially in NB, under-
scores the impact of data distribution on model performance. The
consistency of RF suggests it is better equipped to handle varying data

distributions, while DT and NB are more sensitive to such changes.
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Table 9
Day-wise and dataset-wise confusion matrix comparison for multi-class classification.
From Table 10, we also find that the best performance was achieved
on the CRiSIS-2022 and NFS-2023-nTE datasets. Here, the accuracies
are consistently high across both binary and multi-class classification.
This suggests that the CRiSIS-2022 dataset and our dataset with no
TCP flow expiration policy applied are particularly well-suited for these
models.

Across the other three datasets, CICIDS-2017, WTMC-2021, and
NFS-2023-TE, several metrics perform very poorly, especially for the
NB algorithm. Notably, there are cases where precision, accuracy, F1
score, and ROC AUC are poor, but recall is close to 100%. This suggests
that while the model identifies most positive cases, it does so with a
high rate of false positives, particularly for NB. This highlights the need
for careful feature selection and model tuning to improve performance
in these datasets.

In conclusion, the high performance of RF in both binary and multi-
class scenarios makes it a preferred choice for anomaly detection tasks,
where robust and consistent performance is crucial. DT can serve as
a good alternative when interpretability and lower computational cost
are prioritized, despite its occasional variability. NB, while less reliable
overall, can be useful in scenarios with well-understood and consistent
data distributions.

8.3. Conclusive insights

The examination of the results leads us to a nuanced understand-
ing. On one hand, the resilience of ML models, particularly RF, to
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dataset imperfections is encouraging, as it demonstrates their abil-
ity to effectively capture underlying patterns of anomalous behavior.
RF’s consistent performance across datasets, despite variations in data
quality, highlights its robustness and adaptability.

However, this robustness also underscores the critical need for
vigilance in dataset creation. The consistently high performance of RF
models can mask underlying data quality issues, as high model perfor-
mance might not necessarily indicate high data quality, but rather the
model’s ability to learn patterns from the available data. This emphasizes
the importance of refined measurement techniques. These techniques are
essential not because they drastically change model performance metrics, but
because they ensure that the models are learning from data that accurately
represents real-world conditions. Ensuring data quality is particularly
crucial when deploying these models in operational settings, where the
stakes of misclassification are high.

Our comparative analysis of RF, DT, and NB models revealed several
important insights. While RF consistently outperforms the other mod-
els, the performance variability in DT and especially in NB highlights
the sensitivity of these models to data quality and distribution. DT
exhibits strong performance but with more variability, particularly
in datasets with specific attack types. NB, on the other hand, shows
significant fluctuations in performance due to its assumption of feature
independence, which may not hold true in complex datasets. This
sensitivity to data variations further underscores the need for careful
feature selection and model tuning to improve performance, especially
in datasets with known biases or measurement issues.
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Fig. 2. Multi-class classification feature importance comparison.
The potential masking effect observed in RF is not as pronounced in
DT and NB, which tend to be more directly affected by data quality. This
difference indicates that while RF can maintain high performance even with
imperfect data, DT and NB provide more visible indicators of data quality
issues through their performance variability.

In summary, our comprehensive reflection underscores the complex-
ity of evaluating dataset quality solely based on model performance
metrics. It highlights the importance of continuously striving for dataset
accuracy and sound methodology to ensure that high model perfor-
mance corresponds with true predictive power in real-world scenarios.
Ensuring data quality and methodological rigor is essential for the
14
effective deployment of these models in operational settings, where the
consequences of misclassification can be significant.

9. Limitations and future prospects

9.1. Real-time applicability of the datasets

A fundamental limitation inherent in all versions of the CICIDS-
2017 dataset is their constrained utility in real-world, especially real-
time anomaly detection scenarios. The core issue with these datasets
stems from the manner in which the flow records were generated.
Predominantly, the tools were configured to produce comprehensive
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Table 10
Performance metrics of DT, RF, and NB algorithms across different datasets and classification scenarios.
flow records encapsulating the complete lifecycle of network flows.
While this methodology ensures detailed record-keeping, it falls short of
mirroring the real-time flow characteristics that are pivotal in dynamic
network environments. Essential aspects like flow size, packet count, or
duration thresholds, which are critical in simulating real-world traffic
patterns, are not adequately represented.

This limitation manifests in the datasets’ inability to offer a re-
alistic portrayal of the partial and evolving nature of network flow
information, which is crucial for real-time monitoring and anomaly
detection. In practical scenarios, anomaly detection systems often rely
on incomplete or evolving flow data to function effectively and adap-
tively. The complete flow records in the datasets may not, therefore,
offer an accurate reflection of how ML models perform in such time-
sensitive settings. This discrepancy poses significant challenges to the
transferability of research findings based on these datasets to practical,
real-time detection systems. The research community must be cautious
in extrapolating the results derived from these datasets to real-world
applications, as the underlying data may not accurately simulate the
conditions encountered in real-time network environments.

While NFStream offers a capability to meter flows up to specific
thresholds, this aspect was not explored within the scope of the current
15
study. Future research, therefore, should focus on utilizing NFStream
or similar tools to create datasets that better reflect the partial flow
information characteristic of real-time network environments. Such
datasets would be invaluable in evaluating the effectiveness of ML mod-
els under conditions that demand swift and accurate anomaly detection
using incomplete data. This direction of research promises to bridge
the gap in understanding the applicability and performance of ML
models in real-time anomaly detection scenarios, a critical step towards
enhancing the practical relevance of anomaly detection methodologies.

9.2. Scalability considerations

The scalability implications of this study highlight several potential
limitations. While RF models have shown impressive accuracy and ro-
bustness, their computational intensity poses challenges for scalability.
Deploying RF models in real-time, high-throughput environments may
require significant infrastructure, including parallel processing capabil-
ities and high-memory systems. This can limit the practical deployment
of RF in resource-constrained settings.

DT and NB models, which were also analyzed in this study, exhibit
their own scalability challenges. Although DT models are generally less
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computationally demanding than RF, they still require careful tuning
and feature selection to maintain performance at scale. DT models
can become inefficient when dealing with very large datasets or high-
dimensional feature spaces, potentially leading to slower processing
times and increased memory usage.

NB models, while computationally efficient and quick to train,
showed significant fluctuations in performance. The assumption of
feature independence in NB may not hold true in complex datasets,
leading to scalability issues as the model may struggle to handle the
nuances of large-scale data accurately. Additionally, NB’s sensitivity
to data distribution changes can result in varying performance when
scaled up to larger datasets.

In light of the above, future work should focus on quantifying
the computational resources required for training and deploying these
models in real-world settings, considering the studied classification con-
texts. This involves not only measuring the time and memory needed
but also assessing the infrastructure costs and feasibility of deploying
these models in operational environments.

9.3. Application of sophisticated machine learning

Our research has been concentrated on the analysis of single flows,
without delving into the interdependencies that might exist between
different flow samples. This specific focus has made supervised learning
techniques, RF, DT, and NB, more suitable for our study, in comparison
to more complex methods like unsupervised learning or advanced
models such as Isolation Forest (IF) and Long Short-Term Memory
(LSTM) networks.

In our approach, we utilized features that represent the externally
observable characteristics of network flows, predominantly derived
from packet aggregation. A critical observation here is the possibility
that certain attack signatures might not show substantial deviations
from typical flow statistics when analyzed individually. These signa-
tures could instead be more indicative of the nature of specific attacks,
aspects that are not easily identifiable from external flow characteristics
alone. As a result, while IF is known for its proficiency in outlier
detection, its effectiveness in distinguishing between certain types of
anomalies and normal flows might be limited. This limitation is partic-
ularly pronounced when the anomalies in question do not manifest as
distinct outliers in the statistical analysis of individual flows.

Furthermore, the application of LSTM networks, which are inher-
ently designed for time-series data, encounters unique challenges in the
context of network flow records. The fundamental nature of network
flows, with their varied start and end times, durations, and intervals,
does not align perfectly with typical time-series characteristics. This
discrepancy, further exacerbated by sporadic traffic bursts, complicates
the task of organizing these flows into coherent time windows or
extracting features representative of such patterns. The complexity in-
volved in processing and analyzing network flows in a manner suitable
for LSTM networks demands a different methodological approach that
was beyond the scope of our current examination.

Given these considerations, a further area for future research lies in
exploring and developing algorithms that can effectively process and
analyze network flows, taking into account their unique characteristics
and interdependencies. Such advancements are required to enhance
the applicability and effectiveness of machine learning techniques in
practical, dynamic network environments.

9.4. Implications of FIN/RST flags in flows

As discussed throughout this study, we observe a considerable
number of flows with FIN/RST flags (see Table 4). The body of the
study focused on the handling of such flags in the context of standard
measurement methodologies, i.e., how a flow should be treated upon
16

observing a packet with such a flag (see Section 4).
However, the presence of FIN/RST flags can also be indicative
of the server being saturated due to the effectiveness of the attack
being performed towards it. If the server is close to its saturation due
to the massive number of connections, it will start terminating the
connections to avoid crashing or service outages. This is manifested
in the network traffic flows as packets with an increased number of
FIN/RST flags.

This observation raises an interesting dilemma: whether to include
these packets in the flows or exclude them via TCP flag-based expira-
tion policies (see Section 5.2.2), as applied during the generation of the
NFS-2023-TE dataset. Technically, these packets are the product of the
attack and might not be mixed with regular attack signatures.

Including these FIN/RST packets in the flow records provides a
more comprehensive view of the network’s response to the attack,
reflecting both the attack traffic and the server’s defensive measures.
This approach ensures that the dataset captures the full spectrum of
network behavior under stress, which can be invaluable for understand-
ing the dynamics of the attack and the server’s response. Moreover,
this comprehensive approach can improve the robustness of ML models
by training them on a dataset that includes various aspects of attack
scenarios, including the server’s attempts to mitigate the impact.

On the other hand, excluding these packets through TCP flag-based
expiration policies could help isolate the attack signatures more clearly,
avoiding potential noise introduced by the server’s defensive actions.
This can lead to cleaner datasets that focus strictly on the attack
patterns, which might be preferable for certain types of analysis or for
training models specifically aimed at detecting the initial stages of an
attack before server saturation occurs.

In our study, NFS-2023-nTE does not implement TCP flag expiry,
while NFS-2023-TE does. However, both the single model evaluation
and multi-model evaluation did not show noticeable performance dif-
ferences across these two datasets. This suggests that for the models
assessed, taking into account TCP FIN/RST flags did not significantly
impact the classification performance. Nonetheless, further research
is needed to extend the examination to a wider range of machine
learning algorithms. Future research could explore hybrid approaches
that leverage the strengths of both methodologies, potentially offering
a more nuanced understanding of network behaviors in the presence of
attacks.

9.5. Handling of flows with zero packet payloads

This study marked flows with zero packet payload as BENIGN
despite these flows being originally labeled as attacks by the dataset
authors [16]. This decision is based on the observation that the attack
types used in the traffic traces typically involve data transfer. Flows
with no data being transmitted, although originally labeled as attacks,
do not exhibit the characteristics of real-world attacks since the flow
features derived from packet payload sizes (e.g., minimum, maximum,
mean, and standard deviation of packet sizes in forward and backward
directions, or flow size) remain zero. This can potentially introduce
bias into model development. Therefore, we relabeled such flows as
BENIGN traffic. This approach is consistent with the strategy applied
in [9], where the authors also relabeled such flows due to similar
considerations.

However, our evaluations demonstrated that this relabeling strategy
did not significantly impact model performance. Notably, the CICIDS-
2017 dataset, which did not implement this relabeling strategy, showed
performance metrics comparable to those of the other datasets. This
finding suggest that the evaluated models are resilient to the presence
of flows with zero packet payloads. This resilience might be due to
the models’ ability to generalize from the available data and focus on
features that more strongly indicate attack patterns.

To gain a better understanding of the impact of handling poten-
tially anomalous flows with zero packet payloads, further studies are
required. Future research should explore whether this strategy of re-
labeling impacts the detection capabilities and overall performance of

models in various scenarios.
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10. Conclusion

Our comprehensive study embarked on the quest to enhance the
integrity of network traffic datasets, a cornerstone for developing ma-
chine learning models in cybersecurity anomaly detection. By deploy-
ing NFStream, we carefully crafted two refined versions of the CICIDS-
2017 dataset that adhere to methodologically sound flow measurement
principles. The subsequent evaluation using the RF algorithm provided
a multi-faceted view of the models’ performance across the original,
refined, and NFStream-generated datasets.

The research unearthed several key insights. Despite data measure-
ment inconsistencies in existing datasets, the RF model demonstrated
remarkable resilience, showcasing consistent accuracy in anomaly clas-
sification. However, this robustness does not overshadow the impor-
tance of rigorous dataset preparation, as evidenced by negative values
and NaN entries in datasets not processed by NFStream.

This work underscores the critical need for transparent and accurate
flow metering in network traffic analysis. Future research should con-
tinue to explore the development of sophisticated flow metering tools
that can seamlessly integrate into the ML pipeline, ensuring that models
are trained on data reflective of the multifaceted nature of network
behavior.

In alignment with the principles of open science, the refined
datasets, NFS-2023-nTE [12] and NFS-2023-TE [13], have been made
accessible to the broader research community. Furthermore, we have
ensured that the scripts utilized in our experiments are also publicly
available [14]. Our reproducible methodology is readily adaptable for
processing the CICIDS-2017 PCAP files to meet the diverse needs of
future research endeavors. This initiative aims to promote a deeper
understanding of our methodological approaches and foster further
research within this area of study.
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