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Abstract
This paper explores the comparative analysis of federated learning (FL) and centralized learning (CL) models in the

context of multi-class traffic flow classification for network applications, a timely study in the context of increasing privacy

preservation concerns. Unlike existing literature that often omits detailed class-wise performance evaluation, and con-

sistent data handling and feature selection approaches, our study rectifies these gaps by implementing a feed-forward neural

network and assessing FL performance under both independent and identically distributed (IID) and non-independent and

identically distributed (non-IID) conditions, with a particular focus on incremental training. In our cross-silo experimental

setup involving five clients per round, FL models exhibit notable adaptability. Under IID conditions, the accuracy of the FL

model peaked at 96.65%, demonstrating its robustness. Moreover, despite the challenges presented by non-IID environ-

ments, our FL models demonstrated significant resilience, adapting incrementally over rounds to optimize performance; in

most scenarios, our FL models performed comparably to the idealistic CL model regarding multiple well-established

metrics. Through a comprehensive traffic flow classification use case, this work (i) contributes to a better understanding of

the capabilities and limitations of FL, offering valuable insights for the real-world deployment of FL, and (ii) provides a

novel, large, carefully curated traffic flow dataset for the research community.
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1 Introduction

Computer networks have witnessed significant innovation

over the past decades, characterized by the development of

new techniques, paradigms, and protocols, as well as the

proliferation of diverse services and applica-

tions [14, 17, 47, 49, 54]. Amidst these advancements,

network traffic flow classification (TFC) has emerged as a

cornerstone of modern network and service management.

TFC involves the identification and mapping of packet

flows to specific traffic types, providing rich information

that enhances various management tasks, including traffic

routing, congestion control, network security, and quality

of service (QoS) and service level agreement (SLA) man-

agement. This task, however, is challenged by the

increasing complexity and variability of network traffic

patterns. Differentiating among various traffic types

requires sophisticated techniques capable of capturing and

interpreting intricate traffic behavior.

Despite the integration of a diverse range of techniques

into TFC, such as machine learning (ML), the effective

analysis and classification of different traffic types remain

challenging [39, 40]. ML techniques have proven efficient

in processing and categorizing complex traffic behaviors,

even with massive data volumes. However, data privacy

concerns and stringent data protection measures limit data

sharing with researchers, professionals, and across
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industry, businesses, and academia. Consequently, the

practical usability and advancement of TFC solutions are

hindered by the constrained availability of shared, labeled

traffic datasets [21, 53, 67].

Federated learning (FL) offers an ingenious solution to

privacy concerns in traffic flow classification. FL addresses

this by allowing for a decentralized training process where

the data resides locally and does not need to be transferred

to a central location for processing [35]. This approach

ensures that sensitive network traffic data remains within

its original premises, drastically reducing the risk of data

leakage and ensuring compliance with privacy regulations.

Furthermore, despite the distributed nature of FL, it allows

for collaborative model development, ensuring that the

global model benefits from the individual insights gleaned

from each local dataset.

This study examines the performance of incremental

federated learning across a spectrum of data distribution

scenarios, from independent and identically distributed

(IID) to various levels of non-independent and identically

distributed (non-IID) complexities. We introduce a novel

approach to FL tailored to the dynamic nature of network

traffic flow measurements. Our experiment design,

involving five clients in a FL setup, is structured to closely

emulate real-world conditions. We implement a distinct

dataset chunk distribution strategy for both training and

validation phases across ten rounds of FL, ensuring that

each client receives unique data chunks per round without

reuse, reflecting diverse traffic segments. This methodol-

ogy prevents data overlap and promotes an incremental

learning process by exposing the model to new data in each

round.

The integral incremental learning approach in our FL

setup ensures that the models are continually refined and

updated, reflecting the dynamic nature of real-world net-

work traffic. This approach, diverging from static learning

paradigms, amplifies the practical advantages and appli-

cability of FL in real-world settings, particularly high-

lighting its significance in ensuring privacy preservation

and the efficient handling of heterogeneous data

distributions.

We compare the FL results to an idealistic baseline

obtained via centralized learning (CL). This evaluation is

conducted within the context of multi-class traffic flow

classification, encompassing a diverse array of network

applications. For this purpose, we have developed a multi-

class classification model employing a feed-forward neural

network. The comprehensive evaluation of our models is

carried out through several lenses: validation accuracy and

loss, model performance metrics (precision, recall, and F1-

score), and detailed insights drawn from normalized con-

fusion matrices.

Our examination of FL models reveals their resilience

and ability to incrementally improve across federated

rounds. Specifically, in the IID scenario, our FL model

demonstrated a notable increase in validation accuracy,

starting at 90.38% in the initial round and reaching up to

96.65% by the tenth round. In comparison, non-IID sce-

narios, despite their inherent complexities, showcased the

FL models’ adaptability, with the FL model reaching a

peak accuracy of 97.09% in the simplest scenario. This

demonstrates the effectiveness of the incremental federated

learning (IFL) approach even under demanding conditions.

While challenges were observed in the most complex non-

IID scenarios, the FL model still performed admirably and

indicated potential for future improvements.

Moreover, the associated validation loss, precision,

recall, and F1-score metrics, complemented by normalized

confusion matrices, align with the findings from the vali-

dation accuracy analysis. These results highlight the pro-

ficiency of FL models in leveraging decentralized and

varied datasets, delivering a performance that rivals those

of traditional CL approaches.

Our contribution extends beyond existing studies by

(i) Identifying gaps in precursory works, particularly

the inconsistencies in data collection and feature

selection and the often-overlooked need for class-

wise performance evaluation.

(ii) Reducing biases inherent in prior studies by

maintaining stringent control over traffic flow

measurement and feature computation. The result

of this controlled process is a novel traffic flow

dataset, which we share with the research

community.

(iii) Offering a transparent and reproducible method-

ology, which includes the class-wise performance

evaluation of network traffic flow classification,

among other aspects.

(iv) Introducing an innovative incremental learning

design within FL, which not only enhances the

realism in FL applications but also effectively

narrows the divide between theoretical machine

learning constructs and their application in real-

world network traffic monitoring.

The remainder of this paper is structured as follows: Sect. 2

provides a concise overview of traditional machine learn-

ing-based traffic flow classification. Section 3 delves into

the challenges associated with collaborative traffic flow

classification, specifically concerning data protection, and

business interests. Section 4 offers a review of pertinent

literature in the field. Section 5 introduces our approach to

FL-based traffic flow classification. Section 6 outlines the

design of our experimental approach. Section 7 presents

the results obtained from the experiment. Section 8
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provides a discussion of these results. Finally, Sect. 9

concludes the paper, highlighting our key findings and their

implications.

2 Flow classification using machine learning

The workflow for traditional ML-based traffic flow clas-

sification, from packet capture to application categoriza-

tion, is depicted in Fig. 1. The major steps of this process

can be summarized as follows.

Traffic collection involves capturing network traffic data.

Generally, there are two modes of traffic collection: offline

mode, where packets are collected and stored in pcap

files, providing a checkpoint for reiterating over the

workflow but requiring significant storage resources; and

online mode, where captured packets are forwarded

directly to the feature engineering and ground-truth gen-

eration components, without storing a workflow

checkpoint.

Feature engineering is a critical step in preparing the data

for model training. It involves aggregating packets into

flows using a preselected flow key [33], typically com-

posed of the source and destination IP addresses, source

and destination port numbers, and transport protocol

identifier. Once aggregated, a set of flow features, such as

mean packet inter-arrival times, variance of packet sizes,

and flow duration, is computed. Basic counters and

optional metrics are maintained for each flow entry in the

flow cache until its termination, based on the active and

inactive timeouts. Feature selection is performed to remove

redundant or irrelevant features, based on correlation [65],

consistency [51], and breadth-first search [66] methods.

The primary output of feature engineering is a training

dataset for the machine learning model, which maximizes

its learning accuracy.

Ground-truth generation is mandatory for supervised ML

approaches and consists of labeling each flow with its

corresponding class (e.g., binary classification for anomaly

detection or multi-classification for application identifica-

tion). Based on the Garbage In, Garbage Out principle, the

performance of supervised learning is intrinsically linked

to the quality of labels. Thus, obtaining reliable labels is

the cornerstone of the overall approach. High-quality label

generation is certainly achievable on a synthetic traffic

trace, (i.e., a priori knowledge of synthetically generated

traffic); nonetheless, it is more complicated for large-scale

data collection. To overcome scalability issues, researchers

leveraged deep packet inspection (DPI) engines as ground-

truth generators [5, 6, 10–12, 16, 18].

Dataset splitting decomposes the collected data into

training, validation, and test sets. The training set is

leveraged for learning—fitting the parameters of an ML

model. In contrast, the validation set is used to tune the

parameters of the model. Finally, the test set provides an

unbiased measure of model effectiveness as it consists of

samples not used to build or tune the model. Validation and

test sets are obtained using holdout or k-fold cross-vali-

dation and should follow the probability distribution of the

training set. Training, validation, and testing sets can also

be obtained from different network locations and/or over

several time periods. This strategy allows to evaluate the

temporal and spatial robustness of a model.

Model learning is the core of an ML approach built to

generalize the outcome from training samples. General-

ization could be simplified as the ability of a learner to

predict previously unseen cases accurately. Researchers

applied a broad set of ML algorithms to tackle traffic

management challenges [15]. The most commonly used

algorithms could be categorized as follows: supervised

algorithms (e.g., support vector machines [26], proba-

bilistic neural networks [61], Bayesian neural net-

works [9], decision trees [8], k-nearest neighbors [56]),

and unsupervised algorithms (e.g., k-means [43], Auto-

Class [25], and DBSCAN [24]). As illustrated in Fig. 1, a

supervised algorithm operates on labeled samples, whereas

an unsupervised one does not rely on labels to construct a

set of clusters. In the latter case, assigning a label to each

extracted cluster is not a straightforward process. Hence,

semi-supervised methods are also leveraged by researchers

in [11, 18] where a mixture of labeled and unlabeled data is

used as training input.

Validation and testing are two essential processes in an

ML-based workflow. On the one hand, validation isFig. 1 Workflow for categorizing traffic flows using machine learning
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performed to evaluate the performance of the learner and

tune its parameters. On the other hand, testing the fitted

model provides an unbiased performance evaluation. Both

evaluations are based on metrics such as accuracy, recall,

precision, F1-score, and the area under the precision-recall

curve (AUC-PR). Metric selection depends on the nature of

the problem (e.g., high recall vs. high precision problem)

and dataset characteristics (e.g., highly unbalanced

dataset).

Model deployment is the final step of the workflow. In a

TFC deployment, packets captured in real-time are orga-

nized into flow records (statistics) which are subsequently

fed to the classifier developed in the previous steps. The

classifier (model) then indicates the likelihood of the

membership of the flows. Implementations might differ to

meet specific use case requirements. For example, certain

implementations may update the model periodically to

ensure optimal performance.

3 Data protection in the face of TFC

Network traffic flow measurement, essential for effective

monitoring, service, and operation management, poses

significant privacy risks [67]. While the data-gathering

process inherently captures the content or characteristics of

end-user communications, the common practice of using

ML techniques for TFC exacerbates these concerns. ML

models often require a unified dataset for training, neces-

sitating the collection and consolidation of data from

multiple network locations, typically administered by dif-

ferent parties. This process of sharing and transferring

datasets to a central node for model training can incite

issues relating to data protection and business

interests [59].

Even when traffic flow measurement is conducted with

legitimate objectives and without the intention to invade

user privacy, the resultant dataset could contain personal

information, hence falling under the purview of data pro-

tection regulations, such as the general data protection

regulation (GDPR) of the European Union. While flow

records only contain traffic metadata obtained through

packet aggregation over a common flow key, thus avoiding

full packet payload inspection [33], this metadata can

provide insights into the who, when, where, and how much

of our communication. Furthermore, IP addresses can serve

as practical identifiers that can be linked across services,

websites, and devices, representing personal information in

a broader sense.

Under GDPR, establishing a lawful basis for managing

personal data is paramount. In the case of sharing data with

third parties, this would typically require user consent,

which is impractical to obtain from all users covered by

flow records. This leads to reluctance among organizations

to share data for fear of potential GDPR noncompliance

penalties. While anonymization techniques could poten-

tially mitigate privacy concerns, they often compromise the

usefulness of the data, creating a trade-off between privacy

and utility [20, 31, 41].

Organizations also have business interests to protect.

Network configuration and policy information can be

inferred from flow records, and inadvertently revealing

such information can compromise an organization’s com-

petitive edge. For instance, traffic patterns can be studied

for topology discovery, revealing the structure of the net-

work, or used to infer routing policies and security con-

figurations. Similarly, details such as destination ports can

hint at what services are running on the network, and

behavior analysis might uncover usage patterns or security

incidents. This potential disclosure of strategic information

adds another layer of reluctance toward sharing traffic

traces with third parties [2].

These factors contribute to the tendency to store and

manage measurement data in silos under different admin-

istrative controls, hindering the development of superior

ML models that could benefit from aggregated informa-

tion [64]. Network traffic is inherently dynamic, and flow

characteristics can vary significantly across networks and

over time. Consequently, an ML model developed in one

network may not perform as well when deployed in

another.

However, FL provides a promising solution to these

challenges by facilitating collaborative model development

across multiple stakeholders without requiring direct

sharing of training datasets. FL operates by sharing local

model updates, keeping individual datasets under the

control of their respective owners. This approach can

alleviate the concerns of organizations in terms of data

protection and business interests, thereby creating a more

conducive environment for advancing traffic flow classifi-

cation techniques.

4 Related work

Federated learning is burgeoning as a pivotal technique in

collaborative learning tasks, particularly where the privacy

preservation of training data is prioritized. This has gar-

nered increasing attention from both academic and industry

perspectives, thereby leading to a noticeable surge in

related studies. An overview of pertinent work in the

domain of network traffic classification is assembled in

Table 1. This tabulated compilation allows for an efficient

comparison, encapsulating the publication year, the clas-

sification type (packet or flow-based), the employed
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modeling methodology, the aggregation procedure, the

dataset used, the control over flow feature computation,

and a critique of the application classification

accomplished.

The reviewed works span a range of machine learning

models, including deep neural networks (DNNs), convo-

lutional neural networks (CNNs), multilayer perception

(MLP), and cooperative communication networks (CCNs),

implemented within a federated learning context to classify

network traffic. The primary aggregation method employed

is the FedAvg algorithm, though variations are used by [70]

with a selective gradient communication method and [60]

with a sparse parameter difference matrix. Classification

tasks target the differentiation of network traffic, from

binary to more granular identification of application traffic

types. Studies demonstrate varying degrees of success in

the federated learning model’s performance, with some

indicating equivalence to, if not outperforming, centralized

and local models, particularly in contexts of privacy

preservation and computational efficiency.

The review of recent research in the domain of network

traffic classification reveals a range of techniques and

approaches. Some works [44, 52, 68] have explored

packet-based classification strategies. However, there is a

marked preference for flow-based traffic classification as

they often provide a more comprehensive picture of net-

work traffic patterns beyond the insights derived by ana-

lyzing individual packet headers. They tend to be also more

computationally efficient, given that they summarize data

from numerous packets.

Table 1 Overview of pertinent work in the domain of network traffic

classification. The compilation encapsulates the publication year, the

classification type (packet or flow-based), the employed modeling

methodology, the aggregation procedure, the dataset used, the control

over flow feature computation, and a critique of the application

classification accomplished

ID Year Class.

basis

Scope Methodology Aggreg.

method

Dataset Managed

feature

calculation

Class-wise

analysis

IID/non-IID

assessed

Majeed

et al. [44]

2020 Flow Internet

TC

FL with

DNN

FedAvg CIC-ISCXVPN2016 s s s

Zhou [68] 2020 Packet IIoT TC FL with

CNN

FedAvg Modbus2014, DNP3-

2017

– d

Mun and

Lee [52]

2021 Packet Internet

TC

FL with

CNN x
FedAvg CIC-ISCXVPN2016 – d d

Zhu et al.

[71]

2021 Packet Internet

TC

FL with

DNN x
FedAvg --- – d s

Aceto et al.

[3]

2021 Flow Internet

TC

MML with

DNN

N/A CIC-ISCXVPN2016 s d s

Zhu et al.

[70]

2022 Flow IoT TC Fed-SOINN

with RBF

FedAvg
y

CIT2005, CIC-

ISCXVPN2016

s s d

Abbasi

et al. [1]

2022 Flow IoT TC FL with

MLP

FedAvg CIT2005, CIC-IDS2017,

CIC-Darknet2020

s s d

Wei et al.

[63]

2022 Flow 6G

Internet

TC

FL with

CNN

FedAvg CIC-ISCXTor2016 s s s

Jin et al.

[34]

2023 Flowz Internet

TC

FSSL with

CNN

FedAvg QUIC2018 d s

Guo and

Wang

[32]

2023 Flow Internet

TC

FL with

CNN

FedAvg QUIC2018, CIC-

ISCXVPN2016

s s

Sun et al.

[60]

2023 Flow Internet

TC

FL with

CNNx
N/A USTC-TFC2016 s s d

This work Flow Internet

TC

IFL with

DNN

FedAvg Author-generated d d d

Symbol indication: d present, partial, s lacking, – not applicable.

yLightly modified version of the FedAvg algorithm.

zUtilizes subflows generated by sampling from intraflow per-packet characteristics.

xUses packet-to-vector image transformation as part of feature space preparation
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In the same vein, several papers [52, 60, 71] exploit

packet-to-image transformation as a part of feature space

preparation. Despite this methodology’s potential for pro-

viding a visual understanding of packet data, it might not

be optimal due to the potential loss of critical information

during the transformation process. It may also introduce

unnecessary complexity and computational costs. More-

over, the transformation may not preserve the inter-rela-

tionships of the data, which are vital for understanding the

network traffic context.

Another notable observation drawn from the table is the

heavy reliance on datasets generated by the Canadian

Institute for Cybersecurity (CIC). These collections offer a

broad array of labeled traffic patterns and serve as a fun-

damental testing ground for a variety of machine learning-

based approaches. The widespread usage of CIC datasets1

can be interpreted as a testament to their credibility within

the research community. However, recent concerns sur-

rounding the CIC-IDS2017 [57] dataset and the CIC-

FlowMeter2 [22, 37], a successor to the ISCXFlowMeter

program, cast a shadow over this trust due to observed

inconsistencies. There are documented issues pertaining to

packet timestamping irregularities, the presence of dupli-

cate packet instances, the mishandling of out-of-order

packets, and an alarming lack of labeling for Port Scan

attacks in these datasets [36]. Furthermore, the tool utilized

for generating all the CIC datasets, CICFlowMeter, has

been criticized for improper flow termination upon

detecting TCP flags and inaccuracies in flag counter cal-

culations [23]. Flow expiration issues involving active and

idle times have also been raised [23].

Although a rectified version of the CICFlowMeter tool

has recently been released [23], along with some corrected

datasets [42], the body of related works continues to be

anchored on the original, flawed datasets. It has been

demonstrated that these dataset errors can significantly

influence experimental outcomes, thus possibly skewing

the results. Apart from one study, all others do not manage

the computation of flow features themselves but rely on the

prepackaged CSV files containing labeled flow records

provided by CIC. This dependence could potentially

introduce biases in their findings, as the preprocessed data

may not necessarily reflect the specific assumptions or

objectives integral to their methodologies. Consequently,

this critique invites a reconsideration of the results obtained

by these related works in light of these dataset

inconsistencies.

With regard to the used datasets, we also noticed

inconsistencies and ambiguities in certain works, prompt-

ing a call for greater clarity. For instance, Mun and

Lee [52] claim that their model can classify 16 application

types, including SCP, Spotify, and Netflix categories. This

assertion raises questions, given that the CIC-

ISCXVPN2016 [22] dataset contains only 14 application

categories, with none of the three aforementioned cate-

gories directly included. The authors do not explain this

discrepancy, leading to uncertainty and potential

misinterpretation.

We observed similar deviations in Aceto et al. [3]. They

identify 6 traffic types instead of the original 7 and 15

application types as opposed to the original 14 encom-

passed in the dataset. Although some preprocessing is

acknowledged, details regarding the process to determine

these labels are not explicitly stated, leaving room for

improvement in terms of transparency.

In Zhu et al. [70], there is a lack of clarity about the

selection of flow features for evaluation. Given that the

CIT2005 [50] and CIC-ISCXVPN2016 datasets comprise a

different number of features (248 vs. 23), a clear expla-

nation of the selected features would eliminate potential

inconsistencies resulting from divergent dataset structures.

The methodology in Abbasi et al. [1] also raises ques-

tions. It is unclear how many samples were selected from

the CIT2005 dataset despite the authors’ claim of com-

bining all sets. Additionally, the selection process for the

subset of application labels remains vague. Moreover, an

intriguing discrepancy exists between the consistently

lower training times and the considerably larger number of

features in the CIT2005 dataset (248 for CIT2005 vs. 83 for

CIC-IDS2017 vs. 93 for CIC-Darknet2020 [38]), casting

doubts on the credibility of the presented results.

In Guo and Wang [32], there appears to be also a dis-

parity between the number of traffic categories identified

by the authors in the CIC-ISCXVPN2016 dataset and the

original dataset, a discrepancy that remains unexplained.

A broader perspective also reveals that several

works [1, 63, 68, 70] use datasets developed for traditional

and data center networks to validate their IoT-centric

approaches. These datasets may not adequately represent

the typical traffic types found in contemporary IoT net-

works. There exist more suitable datasets explicitly crafted

for IoT contexts, such as the one mentioned in [4]. Sur-

prisingly, the authors did not provide a rationale for

selecting these datasets over more contextually appropriate

alternatives. This lack of justification warrants a discussion

about the adequacy of such selection of datasets and their

impact on the presented results.

Next, most studies also seem to disregard the impor-

tance of class-wise performance evaluation in multi-class

classification, typically presented in the form of a confu-

sion matrix. This is a significant omission because it pro-

vides a more granular understanding of the model’s

performance across different classes, highlighting where

1 https://www.unb.ca/cic/datasets/index.html.
2 https://github.com/ahlashkari/CICFlowMeter.
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the model is successful and where it fails. Without this

information, one might incorrectly assume that a high

overall accuracy rate indicates equal performance across all

classes, which is rarely the case. In the realm of network

traffic classification, where the ability to detect a variety of

different traffic types accurately is vital, such analysis

becomes particularly crucial.

Lastly, half of the works mentioned above do not

explicitly state whether they investigated different data

distribution conditions; this is a glaring omission, as a TFC

mechanism could produce significantly better results in an

IID scenario compared to a non-IID one. In this work, we

design our experiments around four different data distri-

bution scenarios, starting from IID and progressing toward

non-IID conditions with increasing complexity; we report

and compare performance figures for each of the

conditions.

Amidst these observations, another trend surfaces that

could inadvertently trivialize the problem of application-

type classification, thereby questioning the necessity of

employing machine learning. The details surrounding data

preparation, feature engineering, and feature selection are

often inadequately documented. Consequently, it remains

ambiguous whether port numbers, typically utilized in

generating flow records as part of the flow key, were

incorporated into the feature space. Traditional network

traffic classification associates specific port numbers with

certain applications (e.g., SSH, BitTorrent, NTP, RDP),

implying that these application types could be distin-

guished merely by scrutinizing the port numbers, thereby

rendering the application of machine learning redundant.

Therefore, the inclusion of port numbers within the feature

space could introduce significant bias to the outcomes,

thereby potentially inflating the perceived effectiveness of

the model. In light of this, we emphasize the need for a

more transparent and detailed account of feature selection,

highlighting the impact of feature choices on the classifi-

cation task and the generalization ability of the models.

In contrast to the aforementioned studies, our work

consciously addresses their limitations, thereby ensuring

full control over the traffic generation process. The network

traffic flow characteristics in our study are calculated using

NFStream [7], a tool we developed recently. This tool

effectively overcomes the identified shortcomings of the

CICFlowMeter, thereby eliminating the potential bias that

could be introduced into the data it generates. Furthermore,

we curated our own dataset for this study. We did so by

measuring the network traffic flows at the uplink of the

university’s student dormitory network. We place a strong

emphasis on describing the complete process from packet

capture to feature space preparation, which serves as input

for our models. This in-depth explanation bolsters the

interpretability and reproducibility of our research,

promoting an open and transparent approach to scientific

inquiry. Recognizing the significant value of multi-class

classification performance evaluation, we also provide an

analysis of the effectiveness of our approach across mul-

tiple classes.

5 Methodology

This study aims to investigate the applicability and

efficiency of FL in the context of traffic flow classification.

Our methodology employs an incremental FL approach to

network traffic flow classification, leveraging network

traffic flow measurement while performing privacy-pre-

serving machine learning. FL addresses the current chal-

lenges in sharing high-quality, labeled datasets due to data

protection policies, thus overcoming barriers to effective

TFC.

5.1 Flow measurement

The initial stage of the methodology involves the mea-

surement and management of network traffic flows. This is

achieved by aggregating packets that share a common key,

as illustrated in Fig. 2. Flow features, derived from the IP,

TCP, and UDP packet headers, form the primary basis for

subsequent analysis and classification. Such features

include statistical summaries (minimum, maximum, mean,

and standard deviation) of packet lengths and inter-arrival

times.

To standardize this flow metering across clients, we

have adopted the NFStream framework from our previous

work [7]. This open-source framework stores the measured

flow records in pandas DataFrames and CSV files, serving

as the input for local model learning. CSV and pandas

DataFrames were chosen for their widespread acceptance

in ML-related tasks.

5.2 Privacy-preserving machine learning

The methodology then proceeds to the application of FL to

solve the learning task collaboratively, coordinated by a

logically centralized server, but without the need for direct

data exchange, as shown in Fig. 2. The primary computa-

tion at the client level includes model training and evalu-

ation, while the server manages the global computation,

orchestrating client activities such as client selection,

configuration, gradient aggregation, federated global model

evaluation, and client model update.

To facilitate this complex interaction between local and

global computations, we have adopted the Flower frame-

work [13]. This open-source FL framework enables a
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flexible, extendable, and language-, communication-, and

device-agnostic solution. Flower aims to streamline the

transition of existing ML pipelines into an FL setup and

fosters realistic-scale research.

5.3 Workflow

The workflow for our incremental FL-based methodology

for traffic flow classification involves a series of interac-

tions between the server and the client components.

Fig. 2 High-level architecture of the methodology. Records that carry

traffic flow information collected by the clients in each network via

NFStream [7] serve as input for TFC. Eligible participating clients

first connect to the server, download the current model, and learn

about the training strategy. Then, the clients start computing the

training gradients using local data. The server systematically and

periodically collects the gradients from the clients to update the

current model via Flower [13]. Subsequently, the participating

entities update their model. Repeating these steps realizes the cross-

silo learning task through a loose federation of nodes participating in

the learning process coordinated by the central server. The data are

observed locally and remains put without any other clients or the

server having access to it
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5.3.1 Server initialization

The FL process mandates the server to be fully operational

before beginning. This involves setting up secure com-

munication channels with the client devices. In parallel, the

server undergoes global model initialization, which

includes setting up a model with a pre-defined architecture

and specific parameters.

Notably, this phase does not necessitate the use of any

dataset, reflecting the server’s role in FL as a coordinator

rather than a direct learner. Instead, its function is to

compile and aggregate updates—such as model weights or

gradients—submitted by various clients, each of which

trains the model locally on its unique (possibly self-cu-

rated) dataset. Following these initial steps, the server

invokes the Flower framework to facilitate the manage-

ment of the FL process, thereby ensuring efficient coordi-

nation and seamless integration of updates from all

participating clients.

5.3.2 Client initialization

Each client within the federated network initiates the

necessary processes for active participation. This process

starts with the establishment of a secure communication

channel with the server, consistent with the server-side

configuration. Subsequently, clients initialize their local

models, typically aligning with the initial model architec-

ture and parameters set by the server. This standardization

is crucial for uniform starting conditions across clients,

facilitating effective model update aggregation on the

server side. In our FL framework, the initial model setup

can be directly defined and distributed by the server at the

training’s outset, ensuring uniformity across all client

models.

Upon completing these initial steps, clients signal their

readiness for training to the server, marking the com-

mencement of the federated learning cycle.

In our framework, the input dataset for local training can

come from diverse sources, such as live packet captures,

PCAP files, or structured datasets (e.g., CSV or Parquet

formats). To ensure consistency and compatibility

throughout the federated learning process, clients are

required to format their local datasets according to the

NFStream feature syntax3.

An essential aspect of data preparation involves unifying

target label encoding across all participating clients, crucial

for the consistency and interpretability of the model’s

outputs. In our design, this uniformity is ensured by

encoding the target labels before employing our unique

dataset chunking methodology, detailed in Sect. 6.4.

However, the comprehensive examination of encoding

strategies and their implications in varied deployment

contexts is beyond the scope of this current work and

earmarked for future investigation.

Each client in our FL experiment design represents a

distinct network segment and is continually exposed to

new, unseen network traffic flows. This exposure is facil-

itated through our unique dataset chunking methodology,

as outlined in Sect. 6.4, which enables an incremental

learning process. This methodology allows local models to

be progressively refined with each new data iteration,

enhancing the realism of our FL setup and providing

valuable insights into real-world traffic analysis applica-

tions. By adopting this structured approach, we not only aid

in maintaining label consistency across the federated net-

work but also enhance the overall efficiency and applica-

bility of the learning process, embodying the principles of

incremental learning in a federated context.

5.3.3 Federated learning process

The FL process in our methodology utilizes federated

averaging (FedAvg) [45], a privacy-preserving machine

learning algorithm widely recognized for enabling the

collaborative development of a unified global model in

distributed learning environments.

The selection of clients for model training and the

evaluation of the global model are fully configurable within

our adapted framework. While client selection is typically

random when multiple clients are available, our configu-

ration does not preclude the engagement of all available

clients if deemed necessary or practical. In our specific

experiment design, we have opted for the involvement of

all five clients, facilitating a fair comparison to the ideal-

istic CL case.

In each learning round, clients initiate the process by

downloading the latest iteration of the global model, which

entails retrieving the current weights (parameters) from the

server. These weights are synthesized from the cumulative

learning from all clients that have previously contributed to

the model. Following this, clients proceed to locally train

an instance of this global model using their private data-

sets. Upon the completion of an FL round, the server

aggregates the model updates—specifically, the gradi-

ents—from all participating clients. The server then

updates the global model by averaging these collected

parameters, thereby finalizing the cycle and setting the

stage for the subsequent FL round.

5.3.4 Model evaluation

Typically, after developing a new global model, the server

may send it to a randomly selected subset of clients (or to3 https://www.nfstream.org/docs/api.
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all clients, depending on the configuration) for evaluation.

Following this evaluation phase, the server aggregates the

performance metrics returned by the clients.

In contrast, our experiment design opts for validation of

the global models directly on the server side. We have

established dedicated validation sets for each federated

round, as outlined in Sect. 6.4. Clients employ these dis-

tinct validation sets to evaluate their model’s performance

following every local training epoch within each round.

This evaluation mechanism is implemented via a Python

Keras Callback, facilitating real-time performance assess-

ment during the training phases. In parallel, the server

leverages these same validation sets specific to the round to

assess the efficacy of the global model after each round’s

aggregation phase.

This approach allows for a detailed comparison between

the local client models and the server’s aggregated global

model. By employing this method, we gain valuable

insights into the progression of individual client models

relative to the overall advancements of the global model,

enhancing our understanding of FL dynamics.

5.3.5 Iteration and adaptability

Once the performance of the new model has been evalu-

ated, the system is ready to commence the subsequent FL

round. The workflow is designed to accommodate an

arbitrary number of rounds, offering significant flexibility.

This design allows clients to switch modes and join or exit

the federated network as required, thereby ensuring the

system’s adaptability to dynamic operational environ-

ments. This iterative process facilitates continuous learning

and model refinement in response to changing data land-

scapes and client configurations.

6 Experiment design

Our evaluation consists of a comparative analysis of the

incremental FL-based approach versus an idealistic CL

mechanism. To achieve a robust evaluation of network

traffic flow classification using FL, our experiment design

incorporates NFStream v6.5.4 for flow measurement and

Flower v1.4.0 for federated network communication, fol-

lowing the architecture illustrated in Fig. 2. In this section,

we delve into the key aspects of our experiment design,

starting with dataset preparation and the establishment of

ground truth, followed by our approach to training setup

and model configuration.

6.1 Dataset preparation and ground-truth
establishment

We established a ground truth to assess the comparative

performance of FL and CL approaches based on the flow

measurements from a university’s student dormitory net-

work. Flow application labeling was performed using the

nDPI library integrated within NFStream, ensuring precise

identification and categorization of flow applications.

During the generation of flow records, priority was

given to the effective management of flow expiration. We

set the idle timeout to 120 s and the active timeout to 1800

s, with a specific emphasis on the expiration of TCP flows.

Our TCP flow expiration policy is designed to remove

expired flows based on specific conditions involving TCP

flags. A flow immediately expires upon the detection of a

TCP RST flag, ensuring rapid termination of the flow in

cases of abrupt connection closure. For the FIN flag, the

policy is more nuanced: a flow expires only after the

detection of two bidirectional FIN packets, which must be

followed by an ACK packet. This ensures that the flow is

observed through the complete process of a graceful TCP

connection termination in accordance with TCP flow ter-

mination conventions. In addition, it is important to note

that the byte counts reported by NFStream in our setup

were configured at the link layer level, ensuring that the

reported sizes reflect the entire packet size, including link

layer headers, rather than just the IP payload size.

The data preparation process involved several pivotal

steps to ensure the reliability and accuracy of our study.

We started by eliminating all flows where nDPI did not

assign the label with the highest level of confidence. This

precaution was taken to enhance the accuracy of the

identified classes while reducing the possibility of mis-

classification, which could otherwise distort the analysis

results.

In addition, we dismissed flows with a count below a

certain packet threshold. Such flows might represent

ephemeral, sporadic or faulty connections, contributing

insignificant or unreliable information to our dataset. Set-

ting a minimum packet count requirement ensured that the

flows included in our study were substantial enough to

yield meaningful data. In our data preparation, we defined

this minimum number as 10 packets.

The filtered dataset consisted of 451 distinct applica-

tions. For the purpose of this study, however, we decided to

concentrate exclusively on a subset of these applications to

streamline interpretation and management. The selected

applications included ‘TLS.TikTok,’ ‘QUIC.YouTube,’

‘BitTorrent,’ ‘TLS.Facebook,’ ‘HTTP,’ ‘Discord,’

‘STUN,’ ‘QUIC.Instagram,’ ‘RDP,’ and ‘WhatsApp.’ This

selection ensured a balanced representation of both
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applications with distinct patterns and popular applications

frequently used by students.

The splitting process to prepare the dataset for the IID

scenario was executed in a stratified manner. This ensured

that the samples from each application were uniformly

distributed among the chunks. However, in some instances,

data cannot be evenly divided due to an insufficient number

of samples for certain applications or when the number of

samples for some applications is not a multiple of the

number of chunks. In our study, this discrepancy resulted

in a residual amount of 322 samples. These residual sam-

ples were removed from the dataset to maintain consis-

tency and ensure a fair allocation.

Our process concluded with a final dataset comprising

3, 163, 140 flows, furnishing a robust foundation for our

subsequent analysis. The distribution of this dataset across

TCP and UDP, as well as among the ten chosen application

types, is depicted in Fig. 3. The specific distribution for

each application type is as follows: ‘TLS.TikTok,’ 28:73%
‘QUIC.YouTube,’ 20:56% ‘BitTorrent,’ 10:85% ‘TLS.Fa-

ceBook,’ 10:13% ‘HTTP,’ 9:60% ‘Discord,’ 5:25%

‘STUN,’ 4:88% ‘QUIC.Instagram,’ 4:22% ‘RDP,’ 3:44%
and ‘WhatsApp’ 2:34%.

To uphold the principles of reproducibility and open

scientific collaboration, we are sharing this dataset4.

6.2 Data feature reduction and selection

Our final dataset initially encompassed a diverse range of

features, including both numerical and categorical types.

Among the categorical features, we specifically retained

the application names, which served as the target for our

model training. These application names were processed

using label encoding to convert them into a numerical

format.

However, to reduce model complexity and mitigate the

risk of overfitting, other categorical features such as IP

addresses and client and server fingerprints were removed.

High-cardinality categorical features can often introduce

noise and distort the learning process of the model. By

focusing on numerical and directly quantifiable features

alongside the label-encoded application names, we refined

our dataset to 65 features. This dataset included forward

(src-to-dst), backward (dst-to-src), and bidirectional

measures.

To streamline the feature space further for more efficient

learning, we employed the Extra Trees [30] feature selec-

tion method. This approach assigns a significance score to

each feature. By setting a threshold of 0.02, we identified

and selected the most impactful features, narrowing them

down to 14 key flow features. These selected features

include the minimum, mean, standard deviation, and

maximum packet sizes (PS) in both the bidirectional and

backward directions. In the forward direction, we included

the standard deviation and maximum packet sizes. Addi-

tionally, our reduced feature space also included time-re-

lated features, specifically the bidirectional standard

deviation and maximum of packet inter-arrival times

(PIAT). Furthermore, the TCP flags were considered by

including the RST (reset) packets measured bidirectionally.

This methodical approach led to a compact yet compre-

hensive feature set, ideally suited for an efficient and robust

analysis.

6.3 Neural network architecture

Our experiment for both FL and CL employed a feed-

forward neural network (FNN) with a conventional archi-

tecture comprising an input layer, two hidden layers, and

an output layer. The network was structured as follows:

• The input layer was designed with 14 neurons, aligning

with the number of features in our dataset.

• Hidden layer 1 contained a calculated number of

neurons: two-thirds the size of the input layer (rounded

to the nearest whole number, resulting in 9 neurons)

plus the size of the output layer (10 neurons). This

configuration yielded 19 neurons for the first hidden

layer.

• Hidden layer 2 was configured to match the size of the

input layer, comprising 14 neurons.

• The output layer was equipped with 10 neurons,

corresponding to the number of classes in our classi-

fication task.

For both hidden layers, we utilized the rectified linear unit

(ReLU) activation function. ReLU is favored for its ability

to introduce nonlinearity, enhancing the model’s capacity

to learn complex patterns without significant computational

complexity. The output layer employed the Softmax acti-

vation function, which is effective in multi-class

Fig. 3 Distribution of network traffic across different protocols and

the selected ten applications

4 https://github.com/FlowFrontiers/IFLforTFC/blob/main/datasets/

dataset.parquet.
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classification tasks. Softmax converts the output layer’s

raw scores (logits) into probabilities that sum to one, ideal

for classifying into multiple categories.

The model was compiled using the Adam optimizer,

renowned for its efficiency in handling sparse gradients and

its adaptability with varying learning rates. We specifically

chose a learning rate of 0.0001, a relatively low value, to

ensure gradual and more stable convergence during train-

ing. This fine-tuned learning rate helps in navigating the

model through complex landscapes of high-dimensional

data, aiming to find the optimal set of weights with mini-

mal risk of overshooting the minimum loss.

6.4 Data handling strategy in FL and CL setups

Our experiment was structured to simulate the dynamic and

evolving nature of network traffic flow measurements

involving five clients in a cross-silo FL setup. To effec-

tively emulate real-world network traffic, we devised a

unique dataset chunk distribution strategy. Each client

participated in 10 rounds of FL, and for each round, we

allocated specific data chunks for training and validation:

• Training Dataset Chunks: We provided each client with

ten distinct training dataset chunks, one for each round,

containing flows representing different network traffic

segments. These chunks were exclusive to each client

and each round, with no overlap of flow samples

between chunks, and were used only once. This

approach was chosen to mimic the progressive nature of

network traffic flow measurements.

• Validation Dataset Chunks: Alongside, for each round

of FL, we reserved a separate validation dataset chunk.

These differed from the training chunks and were

shared among all clients and the server within the

specific round. This ensured that validation was

consistent and comprehensive.

In FL, each client conducted local training over 10 epochs

for each round using a batch size of 32. The clients per-

formed validation facilitated by Keras Callbacks after each

of the 10 epochs of local training using the dedicated

chunk. This setup enabled us to assess how well the local

models generalized to data outside their own distribution

(client-specific data). After the completion of each round,

the server aggregated the local model gradients using

FedAvg and validated the updated global model using the

same dedicated validation chunk. This end-of-round vali-

dation assessed the performance of the updated global

model.

This approach introduces a unique design setup in fed-

erated learning that is particularly suited for environments

with dynamic and ever-evolving data, such as network

traffic. Unlike most existing methods where data might be

reused or iteratively cycled through FL rounds, our

methodology ensures that each data sample (flow) is used

only once for training (excluding repetitions within epochs)

or validation. This exclusive utilization of data samples

embodies an incremental learning process wherein

models are systematically updated and refined with the

influx of new, unique data. This strategy not only adds a

layer of realism to our FL model but also provides more

accurate insights into how these models would perform in

real-world network traffic analysis. Consequently, our

design represents a significant advancement, effectively

narrowing the gap between theoretical machine learning

constructs and their practical applications in real-world

settings.

For CL, we aimed to mirror the validation proportion

seen in the FL setup. Our total dataset consisted of

3,163,140 samples. Considering the division of the dataset

into 60 chunks (50 for training and 10 for validation, across

all clients and rounds), each chunk contained approxi-

mately 52,719 samples. Therefore, to have a comparable

validation set size in CL as in FL, we calculated a train-test

split of approximately 16.67%. In CL, we maintained a

consistent total number of training epochs (100) to align

with the cumulative epochs in FL (10 epochs across 10

rounds), and adhered to a training batch size of 32.

6.5 IID and non-IID data partitioning
and assignment

Traditional machine learning algorithms typically operate

under the presumption that data is IID, implying that all

samples stem from the same distribution, and each sample

is independent from others. This IID assumption holds

significant relevance in FL, which involves learning from

distributed data sources, also referred to as ‘participants.’

Considering the potential for each participant’s data to

exhibit a non-IID distribution, it is critical to verify the

robustness and efficiency of our learning algorithm under

both IID and non-IID conditions.

In our study, we therefore considered a variety of con-

ditions contributing to the creation of different IID and

non-IID scenarios. From Table 2, we find that by carefully

partitioning and assigning data according to these condi-

tions, we craft scenarios that test the limits of federated

learning, from idealized conditions where data are evenly

distributed, to complex situations that challenge the algo-

rithms with varied data distributions among the partici-

pants. The description of these scenarios is as follows:

1. IID: In the IID scenario, every data chunk has an

identical sample size, ensuring that each participant

receives an equal number of samples. This mirrors the
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assumption that data is evenly distributed among

participants.

2. non-IID-A: For the non-IID-A condition, chunks differ

in sample size, reflecting a more realistic situation

where some participants may have more data than

others.

3. non-IID-B: In the non-IID-B scenario, while each

chunk has an identical application distribution, the

sample sizes differ. This setup allows us to study the

impact of different amounts of data per participant

while maintaining consistent application diversity.

4. non-IID-C: The non-IID-C scenario is characterized by

identical application counts across chunks but varying

application distribution and sample sizes. This repre-

sents a common real-world challenge where the

number of samples per application may be consistent,

but the overall composition of the data can vary

significantly.

Each of these scenarios presents unique challenges for

federated learning algorithms, and assessing performance

under each condition provides insight into their robustness

and adaptability.

The stacked bar plots in Fig. 4 illustrate the per-chunk

application type distribution across the four scenarios. For

the IID scenario, as shown in Fig. 4a, we ensured a uniform

distribution-identical to that in the unpartitioned dataset-

within each chunk, thereby fulfilling the ‘identically dis-

tributed’ requirement of the IID condition. As a result, each

chunk featured a proportionate representation of every

application type.

In contrast, for the non-IID scenarios A–C (refer to

Fig. 4b–d), we preserved a uniform distribution of appli-

cation types in the validation chunks (allocated every sixth

chunk, as indicated in the plots), mirroring the distribution

found in the IID scenario chunks. This was intended to

ensure the representation of each application class within

the validation chunks, providing a robust basis for evalu-

ating the global model’s adaptability and generalizability.

Following this, we systematically distributed the remaining

samples to the training chunks using three distinct

approaches, incrementally increasing the degree of non-

IIDness as detailed in Table 2. This allowed us to explore

scenarios in which some clients may not encounter certain

application types during local training, offering a

methodical examination of the models under diverse dis-

tribution conditions and yielding insight into the practi-

cality and efficacy of FL in authentic environments.

7 Results

This section offers a comprehensive analysis of the results

derived from our experimental evaluation. To enhance

comprehensibility, we have divided our findings into sev-

eral categories, each focusing on a different facet of the

performance exhibited by our FL approach compared to

CL.

We begin with an evaluation of model performance,

focusing on validation accuracy and loss. Although training

accuracy and loss are commonly assessed, we emphasize

validation metrics because the global model, which is an

aggregation of local model gradients, does not provide

training accuracy and loss. This precludes a direct com-

parison between local and global models, hence our focus

on validation metrics.

Next, we examine a range of well-established machine

learning performance indicators: precision, recall, accu-

racy, and the F1-score. Precision measures the fraction of

samples in a class that were classified correctly. Recall

calculates the proportion of actual positives that were

classified correctly (accounting for false negatives). F1-

score is defined as the harmonic mean of precision and

recall, balancing both previous characteristics. Finally,

accuracy establishes the number of correct classifications

over all attempts. These metrics provide a comprehensive

view of our approach’s effectiveness. For both FL and CL,

we computed multi-class versions of these metrics using

the macro-average method. This method treats each class

with equal importance, which is essential given our data-

set’s class imbalances. While macro averaging may not

yield the highest overall accuracy, it promotes fairness and

ensures high performance across all classes.

Finally, we present normalized confusion matrices.

These matrices offer detailed insights into the classification

accuracy for different application types, highlighting the

models’ discriminative abilities. Together, these evalua-

tions contribute to a thorough understanding of our FL

approach’s performance.

7.1 Validation accuracy and loss

Figure 5 compares the validation accuracy and loss of the

CL model with that of the FL models under the four dis-

tinct data distribution scenarios. This analysis is based on

data collected over 10 FL rounds. Each round includes 10

epochs of local training by the clients, followed by a ser-

ver-side aggregation of gradients, denoted as FedAvg in the

plots (bottom x axis). For better clarity in the visual rep-

resentation, the plots for the FL models depict results from

every second epoch (bottom x axis), whereas the CL
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model’s results are presented for every fifth epoch (top

x axis).

7.1.1 IID scenario

The comparison of validation accuracy between the FL

models in the IID scenario and the CL model is depicted in

Fig. 5a. This comparison reveals a wide range of accuracy

levels among different clients in the FL model, highlight-

ing the variability in local model performances. Despite

these differences, the aggregated global FL model shows a

general trend of increasing accuracy across the rounds,

albeit with some fluctuations.

The most significant of these fluctuations occurs in

round 6, where the FL model experiences a temporary drop

in validation accuracy, followed by a recovery and subse-

quent improvement. Key factors contributing to this fluc-

tuation include the interplay of the distinct characteristics

of Client 2’s training set compared to the validation set

used in round 6, potential temporal overfitting due to

Fig. 4 Stacked bar plots representing the distribution of application

types within the dataset chunks under IID and non-IID conditions.

The x axis enumerates the dataset chunks from 1 to 60, and the y axis
quantifies the counts of each application type. Distinct colors in the

bar plots correspond to different application types, as identified in the

legend. For non-IID scenarios, validation chunks (every sixth chunk)

feature a uniform application type distribution to match that of the IID

chunks, ensuring consistency for model validation

Table 2 Overview of IID and

non-IID data conditions in the

designed FL scenarios

Condition IID non-IID-A non-IID-B non-IID-C

Each chunk has identical sample size U 9 9 9

Each chunk has identical application distribution U U 9 9

Each chunk has identical application count U U U 9
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intensive learning on specific, non-generalizable patterns,

the inherent stochasticity stemming from mini-batch gra-

dient descent, and the adaptive learning rate mechanism of

the Adam optimizer. These elements collectively con-

tribute to the complex, nonlinear, and somewhat unpre-

dictable nature of neural network training. Such a dynamic

process can lead models through periods of suboptimal

performance before they achieve improved generalization.

Notably, the general trend of the FL model, while not

exceeding, remains close to the CL model’s performance,

underscoring the potential of FL’s collaborative training to

achieve results comparable to CL. The oscillations in

accuracy among individual FL clients highlight the vari-

ability of local data, yet the global FL model’s ability to

maintain close proximity to the CL model’s accuracy

suggests effective incremental learning integration. Quan-

titatively, the FL model’s validation accuracy ranged from

a minimum of 90:38% in round 1 to a maximum of 96:65%

in round 10. This is in comparison to the CL model, which

achieved an accuracy of 98:50% at its final epoch. This

showcases the feasibility of FL in scenarios, where data is

not only distributed evenly but also continuously evolving.

Such adaptability makes FL particularly relevant in con-

texts where data privacy is crucial and data sources are

decentralized, confirming its applicability in preserving

data integrity while still benefiting from collaborative

learning dynamics.

The validation loss showed in Fig. 5b aligns with the

insights gleaned from the accuracy analysis, showcasing

the FL model’s trend toward improved generalization as it

advances through the federated rounds. While there are

episodes of increased loss corresponding to specific

epochs, particularly during round 6 as noted above, these

do not disrupt the overall decreasing trend.

Despite the variability in loss among individual FL

clients, the FL model as a whole maintains a downward

trajectory in validation loss across the rounds. It approa-

ches the level of loss exhibited by the CL model, indicative

of the robust nature of the FL framework. This ability to

recover from loss spikes and mirror the CL model’s loss

profile underscores the effectiveness of incremental col-

laborative training within the FL paradigm. Although the

FL model does not outperform the CL model in terms of

lower loss, its consistent proximity to the CL model’s

performance suggests that FL is well-poised to achieve

degrees of generalization and stability comparable to cen-

tralized approaches.

7.1.2 Non-IID-A scenario

The non-IID-A scenario, characterized by variable sample

sizes across chunks while preserving the distribution of

application types, presents a unique challenge that

surprisingly results in a more stable learning curve for the

FL model, as evidenced by validation accuracy (Fig. 5c)

and loss (Fig. 5d).

Unlike the IID scenario, where larger accuracy fluctua-

tions were observed, the non-IID-A scenario exhibits a

smoother improvement trajectory in validation accuracy

across federated rounds. This stems from a marked

reduction in variability among clients, especially notice-

able in later rounds. A similar pattern of stability is evident

in the validation loss.

This unexpected stability, with significant fluctuations

like the dip observed in round 6 of the IID scenario notably

absent, suggests a potentially beneficial impact of non-IID

conditions on FL dynamics. The methodical approach to

generating non-IID chunks, employing systematic sam-

pling techniques with tools such as Python’s Pandas

|sample()| function and NumPy’s |random.choice()|,

contributed to a more balanced and representative distri-

bution of samples across clients. This approach likely

facilitated a more effective aggregation of local models

into the global model, thereby enhancing the overall effi-

ciency of the learning process. Indeed, our re-evaluation of

the IID scenario—where the dataset was first shuffled using

the Pandas |shuffle()| function prior to chunking—has

confirmed that such mechanisms can considerably influ-

ence the outcomes. The results, as demonstrated in [28],

show improved performance across all metrics. Over the

course of 10 federated learning rounds, the model achieved

a minimum validation accuracy of 91:39% in round 1, with

a peak of 97:09% in round 10.

The improvement in performance under the non-IID-A

scenario could be attributed to the way FL algorithms

handle data heterogeneity. In an IID setting, the assumption

of uniform data distribution might lead to overfitting

specific patterns that are not universally representative,

thus causing fluctuations in model performance. Con-

versely, the non-IID-A scenario’s variable sample sizes

across chunks introduce a form of regularization, forcing

the model to learn from a broader spectrum of data char-

acteristics. This can lead to a more generalized model that

performs better on unseen data, as reflected in the valida-

tion metrics.

Moreover, the absence of significant dips in model

performance suggests that the FL model’s learning process

is less susceptible to the overfitting of non-generalizable

patterns, a common pitfall in the IID scenario. This sug-

gests that non-IID data, when carefully managed, can

potentially enhance the model’s ability to generalize.

Overall, the global FL model demonstrates a consistent

performance improvement over the federated rounds, also

in the non-IID-A scenario, echoing the trends observed in

the IID scenario. This consistency confirms the model’s
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capability to adapt and learn effectively from decentralized

and diverse datasets.

7.1.3 Non-IID-B scenario

In the non-IID-B scenario, our analysis underscores the

pronounced variability in client performance, a direct

consequence of the challenging non-IID conditions where

each chunk brings variable sample sizes and distributions

(a) IID scenario validation accuracy. (b) IID scenario validation loss.

(c) non-IID-A scenario validation accuracy. (d) non-IID-A scenario validation loss.

(e) non-IID-B scenario validation accuracy. (f) non-IID-B scenario validation loss.

(g) non-IID-C scenario validation accuracy. (h) non-IID-C scenario validation loss.

Fig. 5 Comparison of the FL model’s performance against the CL

model across four distinct scenarios: IID, non-IID-A, non-IID-B, and

non-IID-C. a, c, e, g Depict the validation accuracy, and b, d, f, and
h showcase the validation loss for each scenario, highlighting the

variability, stability, and generalization capabilities of the FL model

in diverse data conditions. Each scenario illustrates the impact of data

distribution on the learning dynamics, with the FL model’s perfor-

mance measured against the consistent benchmark of the CL model
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across application types. Validation accuracy (Fig. 5e) and

loss (Fig. 5f) vividly illustrate this variability, highlighting

the diverse learning trajectories of individual clients.

Despite these challenges, the global FL model demon-

strates remarkable adaptability and resilience.

Notable fluctuations in performance, particularly observed

in rounds 3 and 7, demonstrate the FL model’s robustness

in navigating through the complexities of heterogeneous

data distributions.

The journey of the FL model in this scenario is char-

acterized by its ability to gradually bridge the performance

variability among clients, showcasing a steady conver-

gence toward improved accuracy and reduced loss. This

progression is pivotal, as it illustrates the model’s capacity

to synthesize disparate local learnings into a cohesive and

effective global model. Impressively, despite the initial

disparities and intermittent fluctuations, the FL model’s

performance eventually aligns closely with that of the CL

model, achieving a minimum validation accuracy of

63:81% in round 1 and peaking at 94:79% in round 5. This

performance sheds light on the potential of federated

learning to leverage decentralized, diverse datasets effec-

tively and achieving outcomes comparable to centralized

approaches, even under the stringent conditions posed by

the non-IID-B scenario.

This scenario reaffirms the viability of FL as a robust

framework for collaborative learning, capable of over-

coming the intrinsic challenges posed by non-IID data

distributions and achieving parity with centralized learning

benchmarks.

7.1.4 Non-IID-C scenario

For the non-IID-C scenario, as evidenced by Fig. 5 and h,

we observe the FL model clearly underperforming com-

pared to CL. This scenario introduces an additional layer of

complexity, with some application types being absent from

certain chunks, challenging the FL model’s ability to learn

effectively across all application types.

A particularly noteworthy observation is the significant

performance spike observed in the FL model in round 7,

where it reached a maximum validation accuracy of

94:96%. This sudden increase suggests that the specific

data distribution in this round may have serendipitously

complemented the model’s strengths or compensated for its

weaknesses, resulting in an unusually high performance.

However, this level of performance was not maintained in

the subsequent rounds, exposing the sensitivity of the FL

model to the distribution and diversity of client data. Over

the course of 10 federated rounds, the minimum validation

accuracy of 48:41% was observed in round 5. This instance

highlights the crucial role of data diversity in achieving

stable and consistent model performance across different

federated learning rounds.

The lower overall performance in the non-IID-C sce-

nario can be attributed to the limitations inherent in the FL

setup, where each client employs an identical neural net-

work architecture. This uniformity becomes a bottleneck

when the data distribution lacks representation for all

application types, leading to certain neurons (correspond-

ing to the absent application types) remaining inactive

during training. Conversely, the validation chunks include

all application types, introducing a discrepancy between

the training and validation phases. This mismatch poses

significant challenges for the FL model, as it struggles to

generalize across the full spectrum of application types due

to the skewed training data.

In essence, the non-IID-C scenario accentuates the

criticality of diverse and representative data in training

robust FL models. The absence of comprehensive data

representation hinders the model’s ability to generalize

effectively, resulting in performance discrepancies when

compared to more balanced or centralized learning envi-

ronments. This scenario serves as a poignant reminder of

the complexities and limitations of applying FL in envi-

ronments characterized by significant data distribution

variances.

7.2 Model performance

Figure 6 presents the precision, recall, accuracy, and F1-

score metrics of the FL model, compared against their CL

counterparts. For reference, we also include the accuracy

presented in Fig. 5, to facilitate better interpretability and

comprehensibility of the achieved performance. For clearer

visual representation, FL model results are shown for every

FedAvg update (bottom x axis), while CL model results are

shown for every fifth epoch (top x axis).

The performance metrics reinforce the observations

made in Sect. 7.1, providing additional evidence of the FL

models’ effective learning and generalization across dif-

ferent scenarios. Despite not matching the CL model’s

performance, the FL models yield competitive results,

particularly noteworthy given the inherent challenges in FL

setups.

In the IID scenario, the FL model achieved peak per-

formance with a precision of 96:45%, recall of 96:86%, and

an F1-score of 96:64%. For the non-IID-A scenario, the

model demonstrated even higher precision at 97:28%,

albeit with a slightly lower recall of 96:28%, culminating

in an F1-score of 96:76%. In the more challenging non-IID-

B scenario, the FL model still maintained commendable

performance levels, with a precision of 95:70%, recall of

92:93%, and an F1-score of 94:15%. Comparatively, the FL

models’ performance approaches that of the CL model,
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which achieved precision, recall, and F1-scores of 98:66%,

97:71%, and 98:17%, respectively. This closeness in per-

formance metrics, particularly in challenging non-IID

environments, reinforces the potential of federated learning

as a feasible and privacy-respecting approach in decen-

tralized scenarios.

However, in the non-IID-C scenario (despite reaching a

peak performance with a precision of 95:82%, a recall of

89:96%, and an F1-score of 91:63% in round 7), the

inability to sustain this performance underlines the

importance of data diversity and representation. This

underlines the crucial role diverse and representative

training data play in developing robust FL models, espe-

cially in complicated data landscapes.

From Fig. 6a–d, the slight discrepancies observed

between precision, recall, accuracy, and F1-score metrics

are attributable to the inherent nature of FL’s decentralized

learning process. In FL, the aggregation of diverse local

updates to form a global model can lead to slight deviations

in performance metrics due to the varying characteristics of

local datasets. However, these variations are marginal,

Fig. 6 Comparison of model performance metrics—precision, recall, accuracy, and F1-score—between global FL models and CL across four

scenarios: IID, non-IID-A, non-IID-B, and non-IID-C
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Fig. 7 Normalized confusion matrices for the FL model across four scenarios: IID, non-IID-A, non-IID-B, and non-IID-C, all evaluated at the

last state of the model, compared against the CL model
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affirming the FL models’ ability to effectively learn and

generalize from decentralized and heterogeneous datasets.

Overall, these insights underscore the nuanced yet

promising role of FL in leveraging decentralized data for

collaborative and incremental learning. They not only

highlight FL’s capabilities and areas ripe for enhancement

but also affirm its feasibility as an alternative to conven-

tional CL methodologies, especially pertinent in scenarios

requiring data privacy and, thus, separate data silos.

7.3 Classification performance

The normalized confusion matrices in Fig. 7 offer a com-

prehensive view of the classification capabilities of the FL

model across four scenarios: IID, non-IID-A, non-IID-B,

and non-IID-C, with each evaluated at their final training

stage, compared against the CL model. Each matrix illus-

trates the model’s performance in accurately classifying

traffic patterns into ten distinct application types—

‘TLS.TikTok,’ ‘QUIC.YouTube,’ ‘BitTorrent,’

‘TLS.Facebook,’ ‘HTTP,’ ‘Discord,’ ‘STUN,’

‘QUIC.Instagram,’ ‘RDP,’ and ‘WhatsApp.’ The x axis

represents the predicted labels, while the y axis represents

the actual labels across the ten network applications. The

color intensity is proportional to the prediction accuracy,

with darker shades indicating higher accuracy. The matrix

provides insight into the performance of the model in each

class, as well as the misclassifications between classes.

From Fig. 7, we observe a high degree of accuracy in

classifying most of the applications, as indicated by the

high proportions along the diagonal of the matrices.

In the IID (Fig. 7a) and non-IID-A (Fig. 7b) scenarios,

the confusion matrices demonstrate a high degree of

accuracy across all application types, with minimal mis-

classifications. This outcome shows the FL model’s capa-

bility to learn effectively from evenly distributed and

representative data. Additionally, the FL model also

adeptly manages the complexities in model training intro-

duced through varied sample sizes across chunks, main-

taining a competitive edge in classification accuracy. In

both cases, the models closely mirror the performance of

the centralized model (Fig. 7e).

The non-IID-B scenario, characterized by greater vari-

ability in performance improvement due to the more

challenging non-IID conditions, including variable sample

sizes and distributions, reveals the FL model’s resilience

(Fig. 7c). The confusion matrix for this scenario uncovers

specific areas of misclassification, notably between

TLS.TikTok and TLS.Facebook. Given that both applica-

tions utilize TLS for secure communication, distinguishing

between their traffic patterns is inherently challenging.

Despite these misclassification instances, the FL model’s

overall performance in the non-IID-B scenario

demonstrates its capacity to adjust and learn from highly

heterogeneous data, affirming the potential of federated

learning in complex real-world applications.

The non-IID-C scenario poses the most significant

challenge, marked by the absence of certain application

types in training chunks. This limitation is evident in the

FL model’s inferiority to the centralized model (Fig. 7d).

Overall, the confusion matrices for the IID, non-IID-A,

and non-IID-B scenarios affirm the nuanced yet promising

capabilities of federated learning. While challenges persist,

particularly in the more complex non-IID-C scenario, FL

models demonstrate a remarkable capacity for adaptation

and learning. These findings emphasize the potential of

federated learning as a viable and effective approach for

collaborative and privacy-preserving machine learning

across decentralized data landscapes.

8 Discussion

Our evaluation validates that FL for network traffic flow

classification offers a compelling and privacy-aware alter-

native to traditional methods. While the CL model showed

consistently superior performance, the FL approach

demonstrated commendable outcomes within a few train-

ing iterations, especially under the IID, non-IID-A, and

non-IID-B scenarios; a consistent performance, closely

approximating the scores of the CL model.

High variability in client accuracies and losses stems

from the learning paradigm and data distribution type. In

FL, clients retain their data while jointly training and

learning a shared model, leading to differing local model

performances owing to the diversity in local datasets and

learning parameters. Despite this variability, server-side

aggregation of these diverse local updates led to an

enhanced global model, demonstrated by its stable and low

loss. This variability further emphasizes the resilience and

adaptability of FL in managing diverse, decentralized data

distributions, attesting to its applicability in real-world

scenarios where data privacy is critical.

Our experiment was conducted with five clients, a

comparatively smaller number than typical FL studies

involving dozens or hundreds of clients. This decision was

grounded in the nature of our data, and the practical

implications of our research, especially considering that

our clients represent complex computer networks with

hundreds of thousands of communication endpoints. In FL

literature, this scenario is known as cross-silo learning,

where keeping actual data stowed away and conducting

joint learning in a privacy-preserving manner is a strong

requirement. We aimed to maintain realism in our experi-

ment by keeping the client count comparatively low.

Consequently, our results offer insights into the robustness
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of FL, even under challenging data distribution scenarios,

justifying its potential for network traffic flow

classification.

In FL setups, typically, only a subset of all clients is

involved in local model training and global model evalu-

ation owing to communication overhead, privacy concerns,

and computational capacity constraints. However, relying

solely on a subset of clients for training and validation may

introduce model bias and diminish robustness, depending

on data quality and availability at the participating clients.

This concern is particularly critical in scenarios with non-

IID data, where diverse training and validation inputs are

vital for model generalization and performance assessment.

Such an approach might not fully capture the FL models’

potential under varied data distributions.

In our study, we, therefore, chose to train the local

model involving all clients and evaluate the aggregated FL

model exclusively on the server side to maintain a focused

approach to performance assessment, although this method

diverges from real-world practices. Future research should

explore the effects of partial client participation on the FL

models’ performance, including the bias-variance trade-off.

Investigating these dynamics can uncover methods to

enhance FL systems, particularly in contexts where full

client engagement is impractical. Understanding these

aspects can provide valuable insights for designing more

robust FL strategies.

Our research affirms the value of further exploring the

application of FL to network traffic flow classification.

While our study’s breadth was expanded by the moderate

client count and exploration of both IID and non-IID sce-

narios, there are yet unexplored areas. Future studies might

investigate the impacts of increasing client numbers or

more intricate non-IID scenarios without compromising the

realism of the context.

It is true that FL provides some privacy protection by

design, yet there exists a growing related literature

revealing that some characteristics can be inferred about

individual training datasets from the respective gradients.

Potential attacks include model inversion [29], member-

ship inference [58], reconstruction attack [69], (hyper)pa-

rameter inference [62], and property inference [48]. In

turn, techniques such as differential privacy (DP, [19]) and

secure aggregation (SA, [46]) can be applied to counter

these attacks. DP comes with a hard privacy guarantee but

at the expense of utility loss; even SA has been shown to be

vulnerable to a quality inference attack, where the quality

of the individual training datasets could be derived [55].

Add the array of ever-improving cryptographical solutions

such as secure multiparty computation [27], and it is clear

that the level of privacy protection provided by

collaborative learning mechanisms is still being researched

actively.

In summary, our findings endorse FL as a privacy-pre-

serving alternative for network traffic flow classification,

providing significant implications for enhancing data pri-

vacy in network analytics, especially where sharing raw

data might present security or privacy concerns.

9 Conclusion

This paper has delved into the novel utilization of FL for

multi-class traffic flow classification, seeking to overcome

the challenges posed by data privacy regulations. By

enabling the incremental training of ML models on local

datasets without the necessity of sharing raw data, FL

offers a potent solution for traffic classification that

respects privacy concerns.

In a comprehensive comparison of FL to CL, we

investigated both IID and non-IID data distribution sce-

narios. Our findings underscore the robust performance of

the FL model, which, even under non-IID conditions,

remains resilient, and effective.

The achieved results support the potential of federated

learning for contributing significantly to the future of traffic

flow classification, offering a high-performing, privacy-

preserving method even in challenging contexts. Further-

more, this work paves the way for additional research into

other potential applications of FL in various network

management and security tasks; this is underpinned by a

large novel traffic flow dataset shared with the research

community.

Several challenges still exist in implementing FL for

TFC, including issues related to communication overhead,

algorithm convergence, and model personalization. We

anticipate that future research will continue to explore and

refine these aspects.
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19. Desfontaines D, Pejó B (2020) Sok: Differential privacies. Pro-

ceedings on privacy enhancing technologies

20. Dijkhuizen NV, Ham JVD (2018) A survey of network traffic

anonymisation techniques and implementations. ACM Comput

Surv. https://doi.org/10.1145/3182660

21. Dixon L, Ristenpart T, Shrimpton T (2016) Network traffic

obfuscation and automated internet censorship. IEEE Secur Pri-

vacy 14(6):43–53. https://doi.org/10.1109/MSP.2016.121

22. Draper-Gil G, Lashkari AH, Mamun MSI, et al (2016) Charac-

terization of encrypted and VPN traffic using time-related fea-

tures. In: Proceedings of the 2nd international conference on

information systems security and privacy. SCITEPRESS - Sci-

ence and and Technology Publications, https://doi.org/10.5220/

0005740704070414, https://www.unb.ca/cic/datasets/vpn.html

23. Engelen G, Rimmer V, Joosen W (2021) Troubleshooting an

intrusion detection dataset: the cicids2017 case study. In: 2021

IEEE security and privacy workshops (SPW), IEEE, pp 7–12

24. Erman J, Arlitt M, Mahanti A (2006a) Traffic classification using

clustering algorithms. In: Proceedings of the 2006 SIGCOMM

workshop on mining network data, pp 281–286

25. Erman J, Mahanti A, Arlitt M (2006b) Qrp05-4: Internet traffic

identification using machine learning. In: IEEE Globecom 2006,

IEEE, pp 1–6

26. Este A, Gringoli F, Salgarelli L (2009) Support vector machines

for tcp traffic classification. Comput Netw 53(14):2476–2490

27. Fereidooni H, Marchal S, Miettinen M, et al (2021) Safelearn:

Secure aggregation for private federated learning. In: 2021 IEEE

security and privacy workshops (SPW), pp 56–62, https://doi.org/

10.1109/SPW53761.2021.00017

28. FlowFrontiers (2024) https://github.com/FlowFrontiers/IFL

forTFC/blob/main/4-evaluate-fl-iid-shuffled.ipynb, Accessed on

21 Feb 2024

29. Fredrikson M, Jha S, Ristenpart T (2015) Model inversion attacks

that exploit confidence information and basic countermeasures.

In: Proceedings of the 22nd ACM SIGSAC conference on com-

puter and communications security

20422 Neural Computing and Applications (2024) 36:20401–20424

123

https://github.com/FlowFrontiers/IFLforTFC
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/smartcomp55677.2022.00055
https://doi.org/10.1109/smartcomp55677.2022.00055
https://doi.org/10.1145/3310231
https://doi.org/10.1016/j.jnca.2021.102985
https://doi.org/10.1016/j.jnca.2021.102985
https://doi.org/10.1109/ACCESS.2020.3022862
https://doi.org/10.1016/j.comnet.2021.108719
https://doi.org/10.1016/j.comnet.2021.108719
https://doi.org/10.48550/ARXIV.2007.14390
https://doi.org/10.48550/ARXIV.2007.14390
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1186/s13174-018-0087-2
https://doi.org/10.1016/j.comnet.2014.11.001
https://doi.org/10.1016/j.comnet.2018.09.005
https://doi.org/10.1016/j.comnet.2018.09.005
https://doi.org/10.1145/3182660
https://doi.org/10.1109/MSP.2016.121
https://doi.org/10.5220/0005740704070414
https://doi.org/10.5220/0005740704070414
https://www.unb.ca/cic/datasets/vpn.html
https://doi.org/10.1109/SPW53761.2021.00017
https://doi.org/10.1109/SPW53761.2021.00017
https://github.com/FlowFrontiers/IFLforTFC/blob/main/4-evaluate-fl-iid-shuffled.ipynb
https://github.com/FlowFrontiers/IFLforTFC/blob/main/4-evaluate-fl-iid-shuffled.ipynb


30. Geurts P, Ernst D, Wehenkel L (2006) Extremely randomized

trees. Mach Learn 63(1):3–42. https://doi.org/10.1007/s10994-

006-6226-1

31. Goldsteen A, Ezov G, Shmelkin R et al (2022) Anonymizing

machine learning models. In: Garcia-Alfaro J, Muñoz-Tapia JL,
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33. Hofstede R, Čeleda P, Trammell B et al (2014) Flow monitoring

explained: from packet capture to data analysis with netflow and

ipfix. IEEE Commun Surv Tutor 16(4):2037–2064. https://doi.

org/10.1109/COMST.2014.2321898

34. Jin Z, Liang Z, He M et al (2023) A federated semi-supervised

learning approach for network traffic classification. Int J Netw

Manag. https://doi.org/10.1002/nem.2222

35. Kairouz P, McMahan HB, Avent B, et al (2021) Advances and

open problems in federated learning. Foundations and Trends� in

Machine Learning 14(1–2):1–210. https://doi.org/10.1561/

2200000083

36. Lanvin M, Gimenez PF, Han Y, et al (2023) Errors in the CI-

CIDS2017 dataset and the significant differences in detection

performances it makes. In: Lecture Notes in Computer Science.

Springer Nature Switzerland, p 18–33, https://doi.org/10.1007/

978-3-031-31108-6_2

37. Lashkari AH, Gil GD, Mamun MSI, et al (2017) Characterization

of tor traffic using time based features. In: Proceedings of the 3rd

international conference on information systems security and

privacy. SCITEPRESS - Science and Technology Publica-

tions,https://doi.org/10.5220/0006105602530262, https://www.

unb.ca/cic/datasets/tor.html

38. Lashkari AH, Kaur G, Rahali A (2020) DIDarknet: A contem-

porary approach to detect and characterize the darknet traffic

using deep image learning. In: 2020 the 10th International con-

ference on communication and network security. ACM, https://

doi.org/10.1145/3442520.3442521, https://www.unb.ca/cic/data

sets/darknet2020.html

39. Lee S, Levanti K, Kim HS (2014) Network monitoring: present

and future. Comput Netw 65:84–98. https://doi.org/10.1016/j.

comnet.2014.03.007

40. Li B, Springer J, Bebis G et al (2013) A survey of network flow

applications. J Netw Comput Appl 36(2):567–581. https://doi.

org/10.1016/j.jnca.2012.12.020

41. Li T, Li N (2009) On the tradeoff between privacy and utility in

data publishing. In: Proceedings of the 15th ACM SIGKDD

international conference on knowledge discovery and data min-

ing. Association for Computing Machinery, New York, NY,

USA, KDD ’09, p 517-526, https://doi.org/10.1145/1557019.

1557079

42. Liu L, Engelen G, Lynar T, et al (2022) Error prevalence in nids

datasets: A case study on cic-ids-2017 and cse-cic-ids-2018. In:

2022 IEEE conference on communications and network security

(CNS), pp 254–262, https://doi.org/10.1109/CNS56114.2022.

9947235

43. Liu Y, Li W, Li YC (2007) Network traffic classification using

k-means clustering. In: Second international multi-symposiums

on computer and computational sciences (IMSCCS 2007), IEEE,

pp 360–365

44. Majeed U, Khan LU, Hong CS (2020) Cross-silo horizontal

federated learning for flow-based time-related-features oriented

traffic classification. In: 2020 21st Asia-Pacific network opera-

tions and management symposium (APNOMS). IEEE, https://doi.

org/10.23919/apnoms50412.2020.9236971

45. McMahan B, Moore E, Ramage D, et al (2017a) Communica-

tion-Efficient Learning of Deep Networks from Decentralized

Data. In: Singh A, Zhu J (eds) Proceedings of the 20th interna-

tional conference on artificial intelligence and statistics, pro-

ceedings of machine learning research, vol 54. PMLR,

pp 1273–1282, https://proceedings.mlr.press/v54/mcmahan17a.

html

46. McMahan B, Moore E, Ramage D, et al (2017b) Communica-

tion-Efficient Learning of Deep Networks from Decentralized

Data. In: Singh A, Zhu J (eds) Proceedings of the 20th Interna-

tional conference on artificial intelligence and statistics, pro-

ceedings of machine learning research, vol 54. PMLR,

pp 1273–1282, https://proceedings.mlr.press/v54/mcmahan17a.

html

47. van der Mei R, van den Berg H, Ganchev I, et al (2018) State of

the art and research challenges in the area of autonomous control

for a reliable internet of services. In: Lecture Notes in Computer

Science. Springer International Publishing, p 1–22, https://doi.

org/10.1007/978-3-319-90415-3_1

48. Melis L, Song C, De Cristofaro E, et al (2019) Exploiting unin-

tended feature leakage in collaborative learning. In: 2019 IEEE

Symposium on Security and Privacy (SP), IEEE

49. Mijumbi R, Serrat J, Gorricho JL et al (2016) Network function

virtualization: state-of-the-art and research challenges. IEEE

Commun Surv Tutor 18(1):236–262. https://doi.org/10.1109/

COMST.2015.2477041

50. Moore A, Zuev D, Crogan M (2005) Discriminators for use in

flow-based classification. Tech. Rep. RR-05-13, University of

Cambridge, https://www.cl.cam.ac.uk/research/srg/netos/pro

jects/archive/nprobe/data/papers/sigmetrics/index.html

51. Moore AW, Zuev D (2005) Internet traffic classification using

bayesian analysis techniques. In: Proceedings of the 2005 ACM

SIGMETRICS international conference on Measurement and

modeling of computer systems. ACM, https://doi.org/10.1145/

1064212.1064220

52. Mun H, Lee Y (2021) Internet traffic classification with federated

learning. Electronics 10(1):27. https://doi.org/10.3390/

electronics10010027

53. Nguyen TT, Armitage G (2008) A survey of techniques for

internet traffic classification using machine learning. IEEE

Commun Surv Tutor 10(4):56–76. https://doi.org/10.1109/SURV.

2008.080406

54. Pau G, Bakhshi T (2017) State of the art and recent research

advances in software defined networking. Wirel Commun Mob

Comput 2017:7191647. https://doi.org/10.1155/2017/7191647
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