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ABSTRACT This paper presents a comprehensive study on the identification and analysis of Service
Degradation (SD) events within a university dormitory network, leveraging LAN data to develop a robust
methodology applicable to diverse networking environments. Employing statistical techniques, such as
Interquartile Range (IQR) and Z-score analyses, we detect significant deviations in network performance—
specifically, extreme delays and jitter—that indicate potential SD. Themethodologywas rigorously validated
in various settings, demonstrating minimal deviations in results and reinforcing the approach’s consistency
and reliability. Initial tests conducted in a university dormitory environment suggest the model’s potential
applicability in both residential and enterprise networks, thus broadening its utility. By refining the detection
and understanding of SD indicators, this research contributes systematic methodological applications and
a valuable annotated dataset to the field. This groundwork enables network administrators to enhance
service quality preemptively, offering significant implications for future research and practical applications
in network management.

INDEX TERMS Delay and jitter analysis, network performance, service degradation, quality of experience.

I. INTRODUCTION
In the era of relentless digitization, computer networks
underpin our everyday digital interactions, enabling high-
definition streaming, real-time gaming, and collaborative
online services. As digital demands escalate, the expec-
tation for networks to deliver uninterrupted, high-quality
experiences grows concurrently. However, network service
degradation (SD) [1] threatens these expectations by reducing
network performance, thereby compromising the digital
experience.

SD can arise from various sources such as network
congestion, hardware failures, software glitches, external
interference, and malicious attacks [2], [3], [4], [5], [6].
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These factors contribute to a range of symptoms including
increased latency, packet loss, reduced throughput, jitter, and
frequent connection drops, all of which significantly impact
user experience. This research specifically focuses on latency
as a critical aspect of SD. The challenge lies in accurately
identifying and analyzing the key characteristics of latency-
related degradation within network environments.

Research efforts in detecting SD span diverse fields,
including campus and residential networks [7], [8],
microservice-based applications and time-sensitive net-
works [9], [10]. Recent studies have highlighted latency
as a reliable indicator of service quality degradation,
particularly in online gaming [11] and video streaming [12].
Some researchers even consider SD as a potential strategic
resource management tactic [13], [14], [15], [16]. While
these studies provide valuable insights, significant gaps
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remain in accurately diagnosing SD in computer networks,
especially in environments highly susceptible to degrada-
tion. Furthermore, to the best of our knowledge, there
exists no publicly available dataset with SD annotations,
hindering the development and validation of SD detection
methods.

Building upon these foundational studies, our research
employs Packet Inter-Arrival Time (PIAT) analysis in a
university dormitory network setting—an environment par-
ticularly susceptible to SD—to focus on latency and jitter as a
principal indicators of SD. We specifically target TCP flows
and LAN segments, where PIAT, analyzed through Z-score
and Interquartile Range (IQR) methods, provides critical
insights into response latency without the confounding
effects of end-device delays. Our methodology has proven
robust when tested across various network environments,
suggesting its applicability beyond the initial university
dormitory setting. The identified SD events correlate strongly
with potential impacts on the Quality of Experience (QoE),
indicating areas for network improvement and further
research. Crucially, our work also provides a dataset of real-
world IP flows with labeled latency-induced SD annotations,
addressing a significant gap in the field.

The main contributions of this paper are threefold:

1) We present a robust methodology for detecting SD
events in network flows. By applying empirical heuris-
tics across all application categories, we effectively
identify and label these events, thereby enhancing the
understanding of SD within networked environments.
Corresponding digital artifacts are provided as supple-
mentary materials to support the replicability of our
analysis.

2) Our work distinguishes itself by utilizing PIAT analysis
focused specifically on LAN-side service degradation.
This approach isolates latency effects intrinsic to the
local network segment, which are often overlooked
in broader network studies, enabling more precise
detection and understanding of SD causes and effects.

3) We provide a labeled dataset of network flows with
identified SD events, serving as a valuable resource
for further research into network service degrada-
tion. This dataset, alongside additional digital artifacts
related to data analysis, offers researchers a rich
base for developing and testing new hypotheses and
methodologies.

This study not only enhances our understanding of SD
but also offers valuable insights that can contribute to
improving network performance and security. The findings
are particularly beneficial for applications in constrained
monitoring environments, such as ISP home routers, where
IP flows are typically observed only up to a certain packet
threshold before being transitioned to hardware acceleration.
This process segments the flow and reduces visibility, which
ultimately limits the timely observability and subsequent
action taken to address critical network behaviors such as SD.

The rest of this paper is organized as follows: Section II
discusses related work relevant in the context of our
study. Section III provides a comprehensiveness overview
of the dataset. Section IV introduces foundational principles
relevant to our approach, including latency considerations,
analysis of LAN and WAN segments, and the use of PIAT
as the key metric, along with our data filtering strategies.
Section V delves into our methodological approach, lever-
aging IQR and Z-Score methods to detect both singular and
prolonged SD events. Section VI explores the robustness
and applicability of our methods across various settings.
Section VII summarizes our findings and their implications,
while discusses limitations. The paper concludes with
Section VIII.

II. RELATED WORK
Research efforts aimed at detecting SD have explored a
diverse array of fields, though only a limited number
of studies directly intersect with our specific domain of
interest. Early work by Bremler-Barr et al. [5] explored the
predictability of Internet SDs by analyzing round-trip time
deviations, laying the groundwork for future studies in this
field.

Several studies have focused on detecting and predicting
SD using various network metrics. Abdelkefi et al. [6]
proposed a method, which uses end-to-end delay and loss
measurements to assess Internet path service quality. Their
approach effectively detects abrupt changes and identifies
service-level events, demonstrating the feasibility of service
quality assessment based solely on end-to-endmeasurements.
In a similar vein, Wu et al. [7] proposed a real-time packet
loss monitoring system to address network quality of SD.

Machine learning techniques have been increasingly
applied to network performance prediction. Hardegen et al. [8]
employed Deep Neural Networks to predict throughput and
duration of flows in a campus network, showcasing the
potential of machine learning in network flow analysis. Our
work builds on this trend, applying statistical methods in
campus network to detect SD.

In service-based systems, Traini et al. [9] demonstrated
how recognizing patterns in latency could be instrumental in
diagnosing performance issues, while Cortellessa et al. [10]
focused on detecting latency degradation patterns in
microservice-based applications. Through a case study,
the effectiveness of their approach in detecting artificially
injected latency degradation patterns was demonstrated.
In contrast, our work relies solely on passive measurement
without injecting probe packets, bringing the research closer
to real-world applications by analyzing unaltered network
behavior.

Latency has been identified as a crucial indicator
of SD, particularly in specific application domains.
Amaral et al. [11] investigated the impact of network
impairments on video quality in cloud gaming, developing
an algorithm to predict real-time visual degradations based
on accumulated latency. Similarly, Li et al. [12] introduced
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FIGURE 1. High-level topology of the measured network.

an adaptive bit rate algorithm for enhancing user QoE in low-
latency live video streaming. These studies underscore the
importance of latency as a key metric in SD detection, which
aligns with our focus on PIAT analysis.

Some researchers have explored the concept of controlled
SD as a resource management strategy. Xian et al. [13] and
Hou et al. [14] proposed algorithms for predictive resource
allocation in optical data center networks, using controlled
SD to manage network overloads. These studies balance
service quality and resource utilization, approach SD from
a different perspective.

In the context of cloud computing, Pons et al. [15] intro-
duced an approach to detect inter-VM interference and esti-
mate performance degradation in public cloud environments.
Their approach for performance estimation is tailored to
cloud settings, contrasting with our methodology, which is
applied to a campus network.

Our research distinguishes itself in several key aspects.
Firstly, we specifically target TCP flows in LAN envi-
ronments, an area that has received limited attention in
previous studies. By employing PIAT analysis in a university
dormitory network setting, we focus on latency and jitter as a
principal indicators of SD in a context particularly susceptible
to degradation. While aligning with previous studies in
recognizing latency as a key metric for SD identification, our
approach uniquely targets the internal network segment to
provide indications of potential SD.

Moreover, our work addresses a significant gap in the field
by providing a novel, annotated dataset of IP flows with
labeled latency-induced SD instances. To the best of our
knowledge, this is the first publicly available dataset of its
kind, offering a valuable resource for future research in SD
detection. This dataset, combined with our methodological
approach using Z-score and IQR methods for PIAT analysis,
provides a comprehensive framework for understanding and
detecting SD in LAN environments.

III. DATASET
The dataset utilized in our study comprises network traffic
data from a university dormitory network. The network’s
topology, as shown in Fig. 1, provides a high-level overview,
abstracting specific details like the nature of network
connections and internal building topology into simplified
representations. Three primary locationswithin the dormitory
network are depicted, each based on the physical grouping
of buildings. Location 1, positioned on university premises,
serves as the uplink router site where traffic was captured
via a Switched Port Analyzer. Location 2 is situated a few
kilometers away on the city outskirts, and Location 3 is
located in a different town, connected through multiple hops
as indicated by a dotted line in the figure.

A. FLOW MEASUREMENT
For network flow measurement, we employed the NFStream
tool [17] configured as follows:

• We captured only IPv4 TCP traffic; the rationale for this
choice is explained in Section IV-D.

• Flow expiration settings were configured to terminate
all flows after 2 minutes of inactivity following the
last received packet, or after 30 minutes regardless of
activity.

• Packet size accounting was configured to include the
IP header, but tunnel decoding was not enabled for this
measurement.

• The nDPI library [18] was used to dissect up to
20 packets for Layer 7 visibility, which allowed us to
identify application usage and other specific data.

• We analyzed statistical features such as packet size,
PIAT, and packets with various TCP flags. Statistical
measures (minimum, maximum, mean, standard devi-
ation) were calculated for traffic in both directions—
source to destination and vice versa—and combined.
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TABLE 1. Characteristics of the Captured Network Flow Data.

• Our custom NFPlugin [17] managed the expiration
of TCP flows based on their natural termination.
Specifically, a flow is terminated after an ACK that
follows two FIN packets and does not carry a FIN itself.
Additionally, any flow that begins with a FIN or RST
packet is also terminated, diverging from the standard
TCP three-way handshake process.

B. TEMPORAL CHARACTERISTICS
Network traffic was measured over the course of one week,
specifically during the evening hours. Each session lasted
approximately 40-50 minutes, depending on the volume
of traffic captured that day. Table 1 details the specific
measurement windows and durations for each day, as well
as the daily flow counts and the minimum, maximum, mean,
and standard deviation for flow arrival and data throughput
rates.

Fig. 2a illustrates the daily flow arrival rate per second,
showing considerable variability. Generally, the flow arrival
rates averaged around 900-1000 flows per second, with a
standard deviation of approximately 250. Notable spikes
in the data, with peaks exceeding 3500 flows per second,
indicate periods of intense activity or bursts of flow arrivals.
While the rate frequently remained below 1500 flows per
second between these peaks, lower burst arrival rates were
observed on Wednesday and Friday, though the average rates
were consistent with other days. This pattern suggests inter-
mittent periods of heightened activity amid generally steadier
or lower rates of flow arrivals. Factors contributing to these
fluctuations could include typical network usage patterns,
scheduled events such as database updates, or anomalies
within the monitored network. These peaks may highlight
potential instances of SD.

Fig. 2b illustrates the data transfer rates observed during
the measurement period. Generally, rates were relatively
low, often remaining below 5,000 MiBps. However, notable
exceptions include spikes that exceeded 30,000 MiBps,
particularly around 19:50 on Thursday and again at the
same time the following day, suggesting a common cause.

These spikes were abrupt and short-lived, indicating brief
periods of very high data transfer activity before return-
ing to the baseline level. On average, data rates varied
between 200-300 MiBps, with a standard deviation ranging
from 1400 to 2400 MiBps. The distribution and magnitude
of these spikes suggest irregular and potentially unpredictable
bursts in data transmission, possibly due to activities such as
scheduled data transfers, network backups, or streaming of
high-definition media.

Further analysis in Fig. 2c reveals that the significant spikes
around 19:50 on both Thursday and Friday predominantly
correspond to inbound traffic, with negligible outbound
traffic. This pattern of high download activity with minimal
uploads was consistent across all notable spikes, hinting at a
heavy inbound data flow.

Interestingly, the flow arrival rate and the data rate do
not appear closely correlated. While both metrics experience
spikes, they occur at different times; the data rate peaks when
the flow arrival rate is at normal levels and vice versa. This
divergence could indicate scenarios where a high volume of
transferred bytes accompanies a relatively low number of
flows, potentially suggestive of an attack scenario.

Fig. 3 presents the Empirical Cumulative Distribution
Function (ECDF) plots for three key flow features: packet
count, flow size (in bytes), and flow duration (in millisec-
onds). The packet count plot reveals that over 90% of flows
consist of fewer than 100 packets, predominantly resulting
in shorter flows. Notably, more than a quarter of all flows
contain just a single packet, and only a small fraction of flows
extend to millions of packets. The flow size ECDF exhibits
a similar but more gradual trend; nearly 40% of the flows
transfer less than 100 bytes in total, and over 90% contain
no more than 10 KB of data. In contrast, the flow duration
ECDF illustrates that while many flows are short in terms of
packet count and size, the duration of flows increases more
gradually, with the longest flows exceeding 15 minutes.

Given our focus on analyzing delays that result in SD
events in flows, very short flows, specifically thosewith fewer
than two packets (indicating no response was received or
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FIGURE 2. Daily distribution of temporal features during the week.

FIGURE 3. ECDF plots for packet count, flow size and flow duration.

sent), are excluded from our analysis. Additionally, flows
were filtered based on the confidence level [18] determined
by nDPI. The confidence level, indicated by a numeric value,

reflects the certainty of the categorization; a higher number
signifies greater confidence. Specifically, Level 6—achieved
through Deep Packet Inspection rather than heuristic methods
such as port-based approaches or correlations based on
previous sessions—denotes the highest confidence and was
the threshold for retaining data in our study. After applying
these filters, approximately 40% of the flows from Monday
to Thursday and 32% of Friday’s traffic were retained for
further analysis. The counts of flows retained post-filtering
are detailed in Table 1.

C. FEATURE CHARACTERISTICS
In addition to temporal features, we analyzed the distribution
of various categorical and numerical attributes, as shown
in Fig. 4. An examination of traffic directionality (Fig. 4a)
reveals that the overwhelming majority of flows originated
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FIGURE 4. Cardinality distribution of dataset features.

from within the LAN and were directed towards WAN,
with these non-reversed flows outnumbering reversed flows
by an order of magnitude. Daily analyses show that while
the volume of reversed flows remained constant throughout
the week, non-reversed flows varied significantly. Closer
inspection of the reversed flows indicated that they predom-
inantly consisted of TLS and RDP traffic directed towards
a specific host, characterized by highly consistent packet
order and sizes. Notably, the majority of these reversed
flows originated from a single external host, potentially
representing deliberate connections to an open RDP port,
though they may also reflect typical Internet background
noise.

Fig. 4b demonstrates that while the location with the
highest traffic cardinality varied daily, 12A, 22A, 23, and
32 consistently reported high traffic volumes throughout
the week. Here, the encoding convention follows a specific
pattern: the first number represents the location, the second
denotes the building, and the last letter signifies the block,
as outlined in Fig. 1. For instance, 12A corresponds to
Location 1-Building 2-Block A, while 32 corresponds to

Location 3-Building 2. There was also a notable amount of
traffic from locationally non-assigned sources. Conversely,
11C consistently recorded the lowest traffic, with only a few
thousand flows each day.

When traffic is grouped by location (Fig. 4c), Location
2 emerges as the predominant source of flows, generating
over 500,000 flows daily and exceeding 3 million flows in
total for the week. Given that Location 2 houses the largest
number of buildings and students, such high traffic volumes
are expected. The data shows that traffic from Location 2
consistently surpassed that from all other locations combined
throughout the week.

In our examination of the application category cardinal-
ity within the captured traffic, significant variances were
observed. For instance, categories such as Web consistently
showed high activity levels, with data points exceeding
500,000 daily and peaking at 800,000 on two occasions.
In stark contrast, categories like IoT-Scada, Shopping, and
Mining registered exceedingly low activity, with fewer than
50 data points each. Intermediate levels of activity were
noted in other categories, ranging from several thousand
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to tens of thousands of data points. Fig. 4d illustrates the
cumulative distribution of application category cardinalities
across the dataset. Additionally, the application names were
also analyzed, providing a more granular view of the types
of flows present, which could be pivotal for more detailed
investigations.

Fig. 4e presents the distribution of flow expiration types.
Predominantly, flows were terminated through natural TCP
expiration (indicated by −1 on the plot), which involves the
standard FIN-ACK sequence in TCP connection termina-
tions. Approximately 200,000 flows daily expired due to idle
timeout (marked by 0 on the plot), occurring when no packets
were received after two minutes of inactivity. Active timeout,
which forcibly ends flows after 30 minutes regardless of
activity, was a rare occurrence, affecting only a few thousand
flows each day (indicated by 1 on the plot).

Finally, the distribution of connection types, as detailed
in Fig. 4f, reveals that the majority of traffic originated
from wired connections, accounting for over 4 million flows.
Notably, around 500,000 flows were initiated by devices
recognized as wireless, while a substantial number of flows
lacked specific connection type information.

D. DATASET AVAILABILITY
In the spirit of fostering reproducibility and encouraging open
scientific collaboration, we are making our dataset publicly
available [19].

To comply with GDPR, IP addresses and MAC addresses,
which could be used to identify specific students, were
anonymized using the blake2b algorithm [20]. Nonetheless,
original IP range data was retained to annotate each flowwith
its location within the dormitory network. This setup not only
preserves privacy but also provides crucial contextual infor-
mation about the flow origins and destinations. Additionally,
we distinguished whether the traffic was initiated by LAN
hosts or directed towards the LAN, and identified whether
the traffic originated wirelessly or via a wired connection,
using the applicable addressing policy. This detailed dataset
facilitates a deeper understanding of network dynamics and
supports robust analysis of SD and other network issues.

Furthermore, to aid in the transparency and reproducibility
of our research, we are also sharing the Jupyter Notebook
file [19] used for analyzing the dataset. By providing these
resources, we aim to support ongoing research in network
flow analysis and contribute to the broader advancement of
knowledge in this field.

IV. FOUNDATIONAL CONCEPTS AND PREPARATORY
CONSIDERATIONS
A. THE LATENCY-SERVICE DEGRADATION NEXUS
In today’s digital landscape, where online services from
entertainment streaming to business conferencing are perva-
sive, understanding network performance is crucial. Latency
stands as a primary metric for assessing this performance and

is defined mathematically as:

Latency (L) = Time (T2)− Time (T1). (1)

Here:
• T1 represents the time when an action or request is
initiated.

• T2 is the time when a response is received.
Generally speaking, latency plays a crucial role in network

analysis for several reasons. As a quantifiable measure of
network responsiveness, latency serves as an objective metric
for comparing different network configurations or tracking
performance over time. Additionally, latency analysis serves
as a powerful diagnostic tool, allowing network administra-
tors to identify potential issues such as network congestion,
hardware failures, or inefficient routing.

In the context of our study, we focus on latency’s critical
role in user experience and service quality. We utilize
latency as a key indicator of service degradation. It directly
impacts user experience quality, with even slight increases
potentially leading to noticeable SD [11], [12]. This impact
is particularly evident in applications ranging from online
gaming to video conferencing, where responsiveness is key
to user satisfaction.

We represent SD1S as a function of increased latency1L:

1S = f (1L), (2)

where, f denotes the function that quantifies how service
quality diminishes as latency increases. This present research
aims to precisely identify this function while exploring other
contributing variables.

While latency provides insight into network delay, jitter
helps us understand the stability of this delay over time. Thus,
complementary to latency, we also consider jitter, which is
defined as the variability in latency over successive intervals.
We define jitter mathematically as:

Jitter (J) = Latency (L2)− Latency (L1), (3)

where:
• L1 is the latency measured at an earlier time point.
• L2 is the latency measured at a subsequent time point.
Jitter is important in network analysis as it captures the

consistency of network performance. High jitter can lead to
packet loss and degraded service quality, especially in real-
time applications. In our work, we examine both latency
and jitter to provide a comprehensive view of network
performance and to identify more severe instances of SD.

B. VERTICAL SEPARATION OF TRAFFIC INTO LAN AND
WAN SEGMENTS
From the vantage point of a network edge, which serves as the
observation point in our study, network flows can be clearly
divided into two principal directions: towards the LAN and
towards the WAN. We term this as vertical separation, which
is imperative for several reasons:
• By focusing on LAN-side traffic, we can isolate and
study the behavior of the local network without the
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confounding effects of external factors. This allows for
more precise identification of issues within the network
administrator’s control.

• LAN-side measurements provide a more accurate
representation of the network’s actual performance
capabilities, as they are not influenced by internet
congestion or routing inefficiencies beyond the local
network.

• Separating LAN andWAN traffic enables more efficient
troubleshooting. Issues identified in LAN-side traffic
can be addressed directly by local network administra-
tors, while WAN-side issues may require coordination
with internet service providers.

Fig. 5 demonstrates the concept of vertical separation, with
the diagram showing how traffic flows are divided. WAN
components are highlighted in orange, representing delays
and interactions that occur outside the local network’s imme-
diate control. Conversely, LAN components are depicted in
blue, illustrating the internal network dynamics. Arrows in
the figure indicate the direction of packet traffic, moving
between LAN and WAN endpoints, thus providing a visual
representation of how data traverses these network segments.

FIGURE 5. Visual representation of network traffic flow depicting the
vertical separation between WAN and LAN delays. Packets are illustrated
with arrows indicating direction, and specific packets meeting latency
measurement conditions are highlighted with a thick purple border.

As external factors beyond the network provider’s control,
which occur on the WAN side, can adversely affect analysis
results, we focus in our study only on LAN-side delays to
understand local network conditions accurately. By employ-
ing this vertical separation in our analysis, we can develop
a more nuanced understanding of network performance and
service degradation, particularly within the context of LAN
environments where local network conditions play a crucial
role in user experience.

C. PACKET INTER-ARRIVAL TIME
PIAT quantifies the time interval between the arrivals of two
consecutive packets within a network flow at the flow meter.
For a sequence of packet arrival times t1, t2, . . . , tn, PIAT for
the i-th packet is mathematically defined as:

PIATi = ti − ti−1

for i > 1, with PIAT1 = 0 indicating no preceding packet for
the first in the sequence.

In general, PIAT plays a crucial role in network analysis
by providing detailed insights into traffic patterns. It enables
the identification of both regular and irregular packet
transmission behaviors, which is particularly valuable for
understanding the characteristics of different applications
and protocols. Fluctuations in PIAT can serve as indicators
of network conditions; for instance, increases in PIAT
may signal network congestion or bottlenecks, as packets
experience longer queuing times under increased network
load. In time-sensitive applications such as VoIP or online
gaming, maintaining consistent and low PIATs is essential for
ensuring high quality of service for users.

In the context of service degradation detection, PIAT
analysis offers a more granular perspective on network per-
formance compared to aggregate metrics. This fine-grained
view allows for the detection of subtle degradations thatmight
go unnoticedwith coarsermeasurements. Our study leverages
PIAT due to this precision and effectiveness. By analyzing
PIAT patterns, we aim to enhance our understanding of
network dynamics and improve the accuracy of service
degradation detection.

D. LEVERAGING PIAT FOR LATENCY ESTIMATION
In our methodology, we utilize PIAT, measured in millisec-
onds, as a key metric for discerning network latency. PIAT
values, along with packet direction and size measured in
bytes, are captured as part of the Sub-Packet-Length-Time
(SPLT) features measured by NFStream. These three features
provide packet-level insights for the first n packets of each
flow. For our study, we have set the recording of SPLT
features to the maximum supported value of 255.

Traffic often appears as a burst of multiple packets;
therefore, our analysis focuses on the time interval between
the arrival of the last packet in such a burst (in the incoming
direction) and the first outgoing packet that responds to this
burst within the same flow. In Fig. 5, instances meeting these
conditions are highlighted with a distinct purple border.

Our methodology leverages the unique positioning of our
measurement point at the network edge, which allows us to
focus specifically on LAN-side latency. We operate under
the assumption that delays caused by local endpoints are
negligible compared to those induced by broader network
conditions. By selectively analyzing TCP flows at this
edge point, we ensure the PIAT values used reflect the
time difference between the receipt of the last packet from
the WAN side and the transmission of the corresponding
TCP acknowledgment. This duration is indicative of the
time traffic spends within the local network, effectively
representing LAN-side latency.

This approach provides several advantages. Firstly,
by focusing on the LAN-side component of RTT, we elim-
inate the impact of external internet congestion and WAN-
related issues that can obscure local network performance.
Secondly, this localized measurement allows for a more
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Algorithm 1 Identifying LAN Delay
1: procedure id_lan_delay(dir, prev_dir, reversed)
2: if reversed then
3: ▷ dir: dst2src (LAN2WAN),

prev_dir: src2dst (WAN2LAN) ◁

4: return dir = 0 and prev_dir = 1
5: ▷ dir: src2dst (LAN2WAN),

prev_dir: dst2src (WAN2LAN) ◁

6: return dir = 1 and prev_dir = 0

Algorithm 2 Vertical Separation of Flows
1: procedure vert_sep(splt_dir, splt_piat)
2: D← []
3: prev_dir←−1
4: for idx, dir in enumerate(splt_dir) do
5: if idx = 0 then
6: prev_dir← dir
7: else
8: ▷ Examining the dir and prev_dir we only

take into account the response to the last
packet in the case of a burst ◁

9: if id_lan_delay(dir, prev_dir, reversed) then
10: D← D + splt_piat[idx]
11: prev_dir← dir
12: return D

precise evaluation of LANperformance, as it’s not affected by
variable delays in the broader internet. Lastly, by analyzing
the packet inter-arrival times of closely succeeding outgoing
and incoming packets at the network edge, we gain detailed
insights into the behavior of the local network that would be
difficult to discern from end-to-end measurements.

This edge-based, LAN-focused approach enables us to
detect and analyze SD events with greater precision, provid-
ing a novel perspective on network performance evaluation.

Algorithms 1 and 2 illustrate the steps involved in
extracting PIAT values that pertain to LAN-side delays.
While a similar analysis could also be conducted for LAN-
to-WAN traffic, our focus remains on the LAN side due to
its potential to provide detailed insights with fewer privacy
concerns within a controlledmonitoring environment. Under-
standing these internal dynamics lays a foundation for future
methodologies that could extend to monitoring WAN-side
behaviors.

The identification of LAN-side delays significantly nar-
rows down the set of PIAT values compared to the original
dataset. We discard flows with fewer than two LAN-side
delays from further analysis because they lack sufficient
LAN-side delays to calculate jitter, which is crucial for our
service degradation detection methodology. This filtering
step results in a dataset that only includes flows with at least
two LAN-side delays, as shown in Table 1.
The impact of this filtering on our dataset characteristics is

substantial and multifaceted:

• Upon analyzing the temporal characteristics of this
filtered dataset, we observed a notable decrease in
flow arrival rates—from an average of approximately
1000 flows per second to around 400 flows per
second–along with a more consistent distribution over
time. Although some spikes in arrival rate persist, the
overall data rate has slightly decreased, maintaining
similar patterns to those observed prior to filtering.

• The proportion of flowswith very few packets decreased
significantly; initially, almost 40% of flows contained
only one packet, whereas now, only 20% contain fewer
than ten packets. This shift towards more substantial
flows enhances the reliability of our analysis.

• The flow size has become more consolidated, with only
20% of flows containing less than 1 KB of data, down
from 60% before filtering. This change provides a more
representative view of typical network interactions.

• We observe fewer short-lived flows, with less than
5% lasting under 10 milliseconds compared to over
40% previously. This shift allows for more meaningful
analysis of network behavior over time.

Despite these reductions, the overall pattern of the ECDF
plots remains unchanged (refer to the digital artifacts at [19]),
suggesting that the main characteristics of the data were
retained despite the narrower dataset scope. This consistency
is crucial as it indicates that while we have focused our
analysis on more substantial network interactions, we have
maintained the overall distribution patterns of our data.

It is important to note that even if the discarded flows
had been retained, we would not have been able to utilize
them effectively in our analysis. By definition (Equation 3),
jitter calculation requires at least two LAN delays. Therefore,
by excluding these flows, we do not lose any information
that would influence our jitter-based analysis of service
degradation.

The implications of this filtering on our analysis are
significant:
• It improves the reliability of our jitter calculations and
subsequent service degradation detection by ensuring
we have sufficient data points for each flow.

• It provides a more representative view of significant net-
work interactions, potentially leading to more accurate
insights into network behavior.

• While we may miss some short-lived or small-
scale network events, we believe the benefits of this
approach–namely, reduced noise and more meaningful
data–outweigh this limitation for our specific research
goals.

This filtered dataset, with its focus on more substantial
and longer-duration flows, forms the foundation of our sub-
sequent analysis and service degradation detection methods.

E. REDUCED DATA VIEW COVERAGE
A reduction in dataset size can undeniably impact the quality
of data used for SD analysis. To validate the integrity of
our filtered dataset and ensure that it remains representative
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of overall network behavior, we assess its coverage. High
coverage would indicate that the majority of flows are
captured within the initial scope of 255 packets of flows,
an essential criterion given our reliance on SPLT values for
PIAT-based latency analysis.

FIGURE 6. SPLT Coverage of the flow.

Fig. 6 shows that a significant majority of the flows are
fully encompassed within the initial SPLT values correspond-
ing to the first 255 packets. Nevertheless, a few thousand
longer flows exceed this packet limit, indicating partial
coverage. Despite this, such partially covered flows constitute
less than 5% of the total. Conversely, approximately 30%
of flows are partially covered, while the vast majority either
enjoy full coverage or are nearly fully covered.

Another metric to consider is the ratio of LAN delay
durations to the remaining WAN delays in the measured
flows, as illustrated in Fig. 7. The analysis reveals that LAN
delays are generally less prevalent than WAN delays, with
some flows exhibiting significantly higher proportions of
LAN delays. For 40% of the flows, LAN delays contribute
almost nothing to their overall duration, indicating minimal
LAN-side delays.

This analysis reassures us that, despite the dataset
reduction, the primary characteristics and a substantial
portion of the network dynamics are retained and adequately
represented within the adjusted scope of our study.

V. METHODOLOGY FOR IDENTIFYING SERVICE
DEGRADATION
In this section, we investigate the occurrence of SD events
within the dataset, initially focusing on data from the most
populous Location 2 and limiting our analysis to the first
three days to serve as a quasi-training set. This phase helps
establish thresholds for classifying SD events based on
Interquartile Range (IQR) and Z-score analyses, which are
detailed later.

We define SD as a statistically significant deviation
from typical flow latency behavior, characterized by notable
increases in latency and jitter. The thresholds for identifying

these deviations are tailored to the specific requirements of
different application categories. For instance, even minimal
increases in latency might constitute SD in delay-sensitive
applications like voice calls or remote desktop interactions,
where timing is critical. Conversely, for activities such as
downloading, where latency sensitivity is lower, an increase
in delay may not be as perceptible.

FIGURE 7. LAN delay coverage of the flow.

Additionally, we explore prolonged SD events, defined
as extended periods where deviations in latency and jitter
persist. An SD event in this context is identified as a
contiguous series of delays, starting with an initial outlier
in jitter followed by subsequent delays that also qualify as
outliers. This approach seeks to capture sequences where
delays not only spike unexpectedly but also remain elevated
above the established anomaly threshold. We further examine
scenarios where, despite significant and sustained increases
in delays, the flow continues to exhibit high jitter, maintaining
levels above the SD threshold.

To ensure robustness and mitigate risks such as overfitting
or unreliable threshold estimations, our analysis prioritizes
application categories with sufficient data volume. Specif-
ically, we focus on categories that have recorded at least
50,000 flows at Location 2. This criterion coincidentally
aligns with the top six application categories in the entire
dataset, which include: Web, Social Network, Download,
Cloud, Network, and Collaborative.

Table 2 presents the LAN delay counts following this
selection step. Notably, Web traffic constitutes the majority
of the data, overshadowing the other categories. However,
the remaining categories still provide a substantial number of
samples, adequate for conducting reliable statistical analysis.

A. INTERQUARTILE RANGE ANALYSIS
To evaluate the distribution of delays across various applica-
tion categories, we utilized boxplots, as depicted in Fig. 8.
To enhance visibility of differences across distributions, the
y-axis is set to a logarithmic scale. The boxplots are ordered in
descending sequence based on the volume of delay samples,
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TABLE 2. Count of LAN delays per Application Category for Location 2.

and mean values are denoted by orange rectangles on each
plot.

The analysis reveals distinct distribution patterns within
the application categories, categorizing them into two groups
based on delay characteristics. Categories such as Download
andNetwork typically show delays not exceeding 10millisec-
onds, while others like Cloud often exceed 100 milliseconds
at their upper whisker, with delays extending into the
tens of milliseconds range. Notably, Cloud, Download, and
Network also display delays in the sub-millisecond range,
with medians set at 1 millisecond. Due to limitations in
NFStream’s measurement capabilities, delays under one
millisecond are recorded as 0 milliseconds. The mean delays
for Download and Network are notably below one second,
which is significantly lower compared to other categories
where means reach several seconds, largely due to the
presence of outliers as determined by Interquartile Range
Analysis (IQR) analysis.

FIGURE 8. Distribution of LAN delay and jitter per application category.

Jitter distribution aligns closely with the observed delay
patterns across all categories, with each showing a median
jitter that matches or is lower than the median delay. The
first quartile frequently registers at 0 milliseconds, indicating

a significant occurrence of consistent delays (no jitter).
Contrarily, Social Network flows display slightly longer
jitters compared to delays, especially evident in the third
quartile, upper whisker, and mean values.

Outliers, critical for identifying SD events, are evident
across all categories and range from a few milliseconds to
over 100 seconds. Detailed quantification of these outliers,
including their impact on service quality, is presented in
Table 3.

TABLE 3. Outlier Statistics for Location 2.

B. Z-SCORE ANALYSIS
Next, we utilize Z-score analysis to detect outliers in our
dataset, particularly focusing on unusually large delays
indicative of SD. Positive Z-scores, which signify values
above the mean, are of particular interest as they represent
potential SD events. We adopt standard thresholds, consid-
ering Z-scores greater than 2 or 3 as significant, with the
specific threshold dependent on the application category’s
sensitivity to delays.

Fig. 8 presents delay and jitter means marked with orange
diamonds and their corresponding Z-scores depicted by
horizontal lines for all studied application categories at
Z = 1, Z = 2, and Z = 3. These illustrate the degree to
which specific measures deviate from the mean in standard
deviation increments. The mean and standard deviation
values crucial for these calculations are detailed in Table 4,
highlighting that Z-scores typically mirror the distribution of
mean values. For example, more sensitive categories such
as Web, Social Network, Cloud, and Collaborative have
Z-score thresholds with Z = 3 extending beyond 20 seconds.
Conversely, the Download category’s threshold is just under
10 seconds, while Network exceeds this slightly in both delay
and jitter.

TABLE 4. Mean and Standard Deviation Values for Each Application
Category.
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Fig. 8 clearly demonstrates the stringent nature of Z-
score analysis compared to IQR analysis. While IQR may
flag a higher number of singular delay SD events (marked
with black circles as outliers beyond the whiskers) due to
its sensitivity to the lower limit, Z-score analysis bases
its findings on deviations from the mean delay values,
which are generally higher. Consequently, Z-score analysis
results in fewer identified outliers. As shown in Table 3
for Z = 3, events exceeding this Z-score threshold are
considered significant. In line with standard practices in
anomaly detection, we adopt Z = 3 as the threshold for our
Z-score analysis.

C. EXAMINING PROLONGED SD EVENTS
SD events may manifest not only as singular delay and/or
jitter outliers but also as prolonged sequences of consecutive
outliers. To identify these sequences, we have developed an
algorithm, outlined in Algorithm 3, that groups contiguous
delays into a single SD event if all delays are recognized as
outliers for a period defined by Minimum Sequence Length
(MIN_SEQ_LEN), with an optional consideration for jitters.
The algorithm operates as follows:
(i) It iterates through all delay samples in a flow.
(ii) If the jitter and delays are high (previously identified as

singular SD points), it initiates an SD sequence.
(iii) The SD sequence continues as long as the delays (SDd)

remain high, and optionally, if require_jitter
_for_sequence is enabled, the jitter (SDj) must also
remain high.

(iv) The sequence concludes when the traffic returns to
normal, capturing the start and end indexes of the
corresponding LAN delays marking the SD event.

Fig. 9 illustrates an example of an SD event for an
application category requiring a minimum sequence length
(MIN_SEQ_LEN) of 2. While an earlier LAN delay may also
be an outlier, the absence of sufficient jitter and a subsequent
outlier disqualifies it as an independent SD event.

This methodology allows us to assess SD events across
all application categories, utilizing outliers identified by both
IQR and Z-score analyses. We explore variations with the
require_jitter_for_sequence option both enabled
and disabled. Tables 5 and 6 present the counts of SD events
and the percentage of total SD event time relative to the
entire duration of the flow for each category. Only sequences
meeting or exceeding the stipulated minimum length are
considered in the final count of SD events. Longer sequences,
even though they extend beyond this threshold, are counted
as a single event.

We observe a decreasing trend in the number of SD events
and their duration coverage as the minimum sequence length
(MIN_SEQ_LEN) requirement is increased. Notably, with
Z-score analysis, the initial count and coverage of SD events
are significantly lower compared to those identified through
IQR analysis. A similar pattern of counts and coverages is
reached by MIN_SEQ_LEN = 3 for most categories, except
for the Web category, which shows a consistent pattern with

Algorithm 3 Identifying LAN Delay
1: procedure find_SD_sequences(SDd_list, SDj_list,

MIN_SEQ_LEN, require_jitter_for_sequence)
2: for i, (SDd, SDj) in enumerate(zip(SDd_list,

SDj_list)) do
3: if require_jitter_for_sequence then
4: seq_condition← SDd and SDj
5: else
6: seq_condition← SDd
7: if (sequence_length = 0 and SDj and SDd) or

(sequence_length > 0 and seq_condition) then
8: sequence_length← sequence_length + 1
9: else
10: if sequence_length ≥MIN_SEQ_LEN then
11: start← i - sequence_length
12: end← i
13: sequences.append((start, end))
14: seq_SD_list[start: end]← [True] * (end -

start)
15: if sequence_length > 0 then:
16: sequence_length← 0
17: ▷ If the last sequence goes until the end ◁

18: if sequence_length ≥MIN_SEQ_LEN then
19: start← len(SDd_list) - sequence_length
20: end← len(SDd_list)
21: sequences.append((start, end))
22: seq_SD_list[start: end]← [True] * (end - start)
23: return [sequences, seq_SD_list]

FIGURE 9. A sample SD event when MIN_SEQ_LEN = 2 and
require_jitter_for_sequence = False.

IQR analysis, indicating more prolonged and extreme SD
events in this category that are detectable by both methods.

The reduction in SD events is neither linear nor uniform
across different application categories and the two outlier
identification methods. IQR analysis generally shows a
steadier decrease in SD events, whereas Z-score analysis
often experiences abrupt declines in SD event counts and
coverage, which then stabilizes. This behavior varies by
application category at different MIN_SEQ_LEN values—
Download, Network, and Social Network at 2; Cloud at
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TABLE 5. SD Event Count and Coverage Statistics for Different Minimum Sequence Lengths with require_jitter_for_sequence option turned OFF.

TABLE 6. SD Event Count and Coverage Statistics for Different Minimum Sequence Lengths with require_jitter_for_sequence option turned ON.

3; Collaborative at 8. Interestingly, the Web category does
not exhibit such a drastic drop, suggesting a characteristic
resilience in the length of its SD events.

Additionally, when examining SD events identified
by delay-jitter outliers compared to those identified
by delay outliers alone, we observe similar patterns.
At MIN_SEQ_LEN = 1, the number of SD events is
slightly higher, attributed to shorter but more frequent
sequences disrupted by periods of low jitter, leading to a
decrease in overall SD coverage. As the required sequence
length increases, the count of SD events sharply declines,
necessitating longer sequences for classification as an SD
event. With IQR analysis, by MIN_SEQ_LEN = 10,
we observe coverage levels previously seen only at lengths
of 25, with most categories falling below 5% except for
Network, which maintains over 10% coverage. Conversely,
for Z-score analysis incorporating jitter requirements,
no SD sequences are identified in any category beyond
MIN_SEQ_LEN = 5. Indeed, by MIN_SEQ_LEN = 4,

only one SD event remains, and even at lengths of 2 and 3,
only a handful of SD events are present. This suggests that a
dual requirement for high delay and high jitter may be overly
restrictive for identifying SD events in this context.

We have made the code for the detailed analysis discussed
in this section, including a comprehensive set of plots,
available as digital artifacts [19].

D. OUTLIER THRESHOLDS FOR RELIABLE SD DETECTION
For setting the outlier identification threshold, we opt for
the Z-Score method, which provides a more conservative
estimate, resulting in lower false positive rates. To determine
the Minimum Sequence Length for SD events, we adopt an
empirical approach, selecting a unique sequence length for
each application category that reduces the SD coverage rate
to below 10%. These thresholds are highlighted in Table 5 in
red, indicating the first instance where coverage percentages
drop below this critical threshold. The specific values for
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TABLE 7. Minimum Sequence Lengths for SD Event Identification per
Application Category.

FIGURE 10. Distribution of the delay composition of SD events.

each category are summarized in Table 7, aiming to further
minimize false positive SD events.

These sequence lengths correlate with the noticeable
declines in SD coverage discussed earlier in Section V-C.
The selected LAN delays for these thresholds are depicted
in Fig. 10, which contrasts the LAN delay points identified in
each application category by the most stringent IQR analysis
(requiring a minimum of 25 consecutive high LAN delay
and jitter) against those identified by the chosen Z-score
method. This comparison illustrates that while IQR analysis
tends to identify many comparatively minor delays as part of
prolonged SD events, Z-Score analysis selectively identifies
more extreme values by default, emphasizing its stricter
criteria.

E. EFFECTIVENESS OF Z-SCORE ANALYSIS IN
IDENTIFYING SD EVENTS
In this section, we analyze various statistics of the SD events
identified using the chosen Z-score method. Fig. 11 presents
the distribution of SD event counts across flows. The y-
axis, represented on a logarithmic scale, indicates the number
of flows, while the x-axis shows the number of SD events,
ranging from 0 to over 14. The majority of flows either have

FIGURE 11. Distribution of number of SD events across flows.

no SD events or only a few, with an ECDF plot revealing that
approximately 99% of flows contain at most one SD event,
making multiple events within a single flow exceedingly rare.

Table 8 details the number of flows, number of SD events,
and the number of flows with at least one SD event across all
application categories, alongside the proportion of flows with
SD events relative to the total number of flows. Consistent
with Fig. 11, only a small fraction of flows contain multiple
SD events, as indicated by the slight difference between
Total SD Events and Flows with SD. The proportion of
flows experiencing SD remains below 1% for all categories,
marginally exceeding this threshold only in theWeb category,
which accounts for the majority of identified SD events.

TABLE 8. Distribution of SD Events Across Application Categories.

FIGURE 12. Distribution of number of SD events across flows.

Fig. 12 illustrates the temporal distribution of SD events,
with the x-axis displaying time in milliseconds and the
y-axis depicting the number of SD events at each time
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point. This plot aims to determine whether SD events are
evenly distributed over time or if certain periods contain
higher concentrations of events. Notable spikes and valleys
in the data suggest moments where SD event counts were
significantly higher or lower, with Monday showing frequent
fluctuations, but the most intense activity observed on
Wednesday just before the measurement period concluded.
This could indicate a specific time when network distur-
bances were more pronounced, affecting multiple flows.
Additionally, a common trend on all days is a marked
decrease in SD events towards the end of the measurement
period, possibly reflecting characteristics of the measurement
timeframe or the impact of the measurement process itself,
such as truncating ongoing flows.

VI. GENERALIZABILITY
With the insights gained from our analysis at Location
2, in this section, we extend the Z-score analysis for SD
identification to Location 1 and Location 3. This extension
aims to examine the consistency of delay characteristics
and SD events across different locations, thereby assessing
the generalizability of our approach. For each location,
we calculate Z-scores for delay and jitter across all samples,
identifying outliers where Z > 3. Following the established
methodology from Location 2, we search for sequences of
SD events initiated by outliers in delay and jitter, where
high delay behavior persists. We then determine the smallest
MIN_SEQ_LEN that reduces the coverage of these events
below 10% for each category, comparing these values with
those derived from Location 2. The findings and their
implications for generalizability are detailed in Section VI-A.
To validate our approach, we apply the same analytical

steps to the remaining holdout portion of the dataset, which
includes flow data from the last two days of the experiment
(Thursday and Friday). These days were chosen because they
exhibited similar flow-arrival rates and data rates as observed
previously (see Fig. 2). By analyzing the outcomes, we aim to
confirm the consistency of the observed patterns and validate
the applicability of our defined methodology during these
periods. The results of this validation process are explored
in Section VI-B.

TABLE 9. Count of LAN delays per Application Category for All Locations.

A. CROSS-LOCATION VALIDATION OF SERVICE
DEGRADATION
To ensure consistency in our analysis, we continue to focus
on the same application categories as those analyzed in data

FIGURE 13. Application category cardinality for all locations.

from Location 2. Fig. 13 compares the flow counts across
the three locations, from which we find that only the Web
and Social Network categories at Location 1 and Location
3 meet the 50,000 flow count threshold set in our original
analysis. Lower flow counts in the other categories may
influence SD event characteristics, skewing them toward the
behavior observed in fewer flow records, which may not be
as representative as those derived from higher flow counts.
Despite these limitations, we proceed with the analysis for all
previously chosen categories—Web, Social Network, Cloud,
Network, Download, and Collaborative—keeping in mind
that the results for categories with lower sample counts
may be less reliable. By examining the differences in SD
event requirements between categories with varying flow
counts, we aim to assess whether the 50,000 flow threshold
is justifiable or could potentially be lowered.

The LAN delay counts across all application categories
(see Table 9) exhibit similar patterns to the flow count
statistics, albeit falling short of the delay counts observed at
Location 2. Notably, Location 3 shows significantly lower
counts compared to Location 1, except for the Social Network
category.

Fig. 14 and Table 10 depict the delay and jitter distributions
for Location 1 and Location 3, revealing patterns virtually
identical to those at Location 2. The distributions across
application categories maintain similar relative delays, with
only minor differences: at Location 1, Web delays occa-
sionally dip below 1 millisecond, and at Location 3, the
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FIGURE 14. Distribution of LAN delay and jitter for Location 1 and Location 3.

TABLE 10. Mean and standard deviation values for each application category.

75th-percentile of Network delays stay below 1 ms, with
only outliers exceeding this threshold. These observations
suggest that while lower flow counts might slightly bias the
results towards lower delays, the fundamental characteristics
of delay distribution are preserved, even with significantly
reduced data volumes.

Interestingly, Location 3 experiences consistently higher
delay values across all categories, with the 25th-percentile
values increasing by several milliseconds, leading to a
broader distribution in jitter. This pattern could reflect
the unique network traffic characteristics of Location 3,
possibly due to its more remote location compared to the
other sites, which are within the same municipality. Despite
these variances, the higher percentiles, mean values, and Z-
scores show comparable characteristics, affirming the overall
pattern consistency.

To delve deeper into longer SD events characterized by
consecutive high delays, we replicate the specific scenario

analyzed at Location 2. In this scenario, an SD event begins
with an outlying delay and jitter (Z-score > 3), with the
high delay persisting throughout the event. We progressively
increase the minimum sequence length required to qualify
as an SD event, analyzing both the number and coverage
percentage of these events. The results of this extended
analysis are presented in Table 11.

Although the total counts of SD events decrease signif-
icantly when stricter criteria are applied, the coverage per-
centages exhibit a decay pattern very similar to that observed
at Location 2, differing by only a few percentage points.
Furthermore, when examining key thresholds–specifically,
points where coverage falls below 10% and where significant
drops in coverage occur—we identify the same critical
sequence lengths as those previously established in Table 7.

This consistency across different locations not only
confirms that extreme traffic patterns leading to SD events
are comparable, if not identical, across the three locations,
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TABLE 11. SD event count and coverage statistics for different minimum sequence lengths with require_jitter_for_sequence option turned OFF
using the Z-Score identification method.

but it also validates the robustness of our analytical approach.
Moreover, it suggests that this methodology can effectively
be applied to application categories with significantly lower
flow counts, reinforcing the reliability and appropriateness of
our chosen methods for analyzing SD events.

B. SERVICE DEGRADATION VALIDATION VIA HOLDOUT
SET
For our SD event analyses thus far, we have utilized
data from the first three measurement days designated as
training data. To extend our validation, we leverage the
data from the last two days as testing data in a model
training-testing scenario. This test data allows us to validate
our SD event identification approach by comparing results
across different days, similar to our analyses across various
locations. By tallying the results and quantifying differences
in thresholds and MIN_SEQ_LEN, we aim to confirm the
robustness and consistency of our methodology.

We have chosen not to include delay and jitter distribution
plots for the test data from the three locations in this
document due to their high similarity to the training
data distributions. However, to ensure transparency and
facilitate further research, we provide the code for our
detailed analysis, including a comprehensive set of plots,
as digital artifacts [19]. Upon examining the delay and jitter
distributions in the test data, we observe highly similar
patterns to those in the training data, albeit with slight
variations in median values. Notable changes between the
training and testing datasets for all locations include:
• Location 1 displays slightly higher Web delays paired
with lower jitter, an increase in lower-end Social Net-
work delays, and lower delays in the Cloud, Download,
and Network categories, along with correspondingly
lower jitter distributions.

• Location 2 shows virtually identical distributions with a
broader spread in jitter within the Network category.

• Location 3 retains the higher delay and jitter distribution
observed during the training phase due to its geo-
graphical distance, yet maintains highly similar patterns,
with the notable exception of increased Download and
Network delays and jitter.

These observations suggest that our methodology yields
consistent and reliable results across different testing con-
ditions, further validating the soundness of our chosen
analytical approach.
Table 12 illustrates the relative differences (expressed as

percentages) between the measured mean and standard devi-
ation across all locations, upon which the Z-Score method
bases its outlier detection. These differences are color-
coded according to their magnitude, with larger deviations
highlighted in darker shades of red.
Examining the mean and standard deviation statistics for

delay and jitter, we observe the most significant deviation
in the delay mean: a 45% decrease in the Network category
at Location 2. The most substantial change in jitter mean
occurred in the Collaborative category at Location 1, where
the average jitter was over 75% higher compared to the
training data. The greatest changes in standard deviation
were 31% for delay and 42% for jitter, both observed in
the Collaborative category at Location 1 and Location 3,
respectively. The Collaborative category generally exhibited
the most variability in delay and jitter changes between
the training and test data, with other notable variations in
the Social Network and Cloud categories. Changes in other
categories were slight or negligible.
These differences were fairly evenly distributed across

the three locations, with Location 1 experiencing the most
significant changes. When testing for the optimal minimum
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TABLE 12. Mean and standard deviation for each application category in
the test data given as a relative percentage difference to training data.

sequence length using the same parameters, the exact same
thresholds as those determined from the training data were
obtained. Table 13 details the coverage percentages for all
three locations and all six application categories analyzed.
Despite slight variations in the exact SD event coverage
percentages, the MIN_SEQ_LEN for all categories was
consistent across all locations, with the significant decrease in
coverage dipping below 10% at matching minimum sequence
lengths. The distribution of these results was identical to
that observed in the training data (see Table 7), confirming
the reliability and consistency of our methodology across
different datasets.

VII. DISCUSSION
A. CAUSES AND TRIGGERING EVENTS OF SD
SD in network traffic is influenced by a variety of factors,
which can broadly be categorized into network conditions,
hardware limitations, and application behaviors. Understand-
ing these triggers is crucial for diagnosing and mitigating
SD, and our PIAT analysis methodology provides valuable
insights into detecting and characterizing these events.

1) NETWORK CONGESTION
One of the primary causes of SD is network congestion,
where the demand for bandwidth exceeds the network’s
capacity to handle it. This leads to increased packet loss,
higher latency, and jitter. Research has shown that congestion
can be caused by both consistent high traffic volumes and
sudden traffic spikes, often exacerbated by applications
with high bandwidth requirements. In our PIAT analysis,
congestion often manifests as increased variability in packet
inter-arrival times, particularly during peak usage hours.

2) HARDWARE LIMITATIONS
Edge devices and network infrastructure often have finite
processing and bandwidth capabilities. When these devices
reach their performance limits, they can become bottlenocks,

causing delays and packet loss. This is particularly pertinent
in residential and small business networks, where the
hardware might not be equipped to handle large volumes of
data traffic efficiently. Our focus on LAN-side latency allows
us to isolate these hardware-related issues from broader
network problems, as evidenced by consistent patterns of
increased PIAT values across multiple flows.

3) APPLICATION BEHAVIOR
Certain applications, especially those requiring real-time data
transmission like video streaming, online gaming, and VoIP,
can place significant demands on network resources. These
applications are sensitive to latency and jitter, and their
use can lead to observable SD patterns under suboptimal
network conditions. In our labeled dataset, we have observed
distinctive PIAT patterns associated with different types of
applications, allowing for more nuanced SD detection.

To address these issues, network administrators and service
providers must consider both the optimization of network
infrastructure and the management of traffic loads. Under-
standing the specific causes and conditions that lead to SD
allows for more targeted interventions and improved network
performance. Our work contributes to this understanding
by providing a detailed, empirical basis for identifying and
characterizing SD events in real-world network traffic.

B. FACTORS IN TRANSPORT LAYER CONTRIBUTING TO SD
The Transport layer, particularly TCP, plays a critical role
in ensuring reliable data transmission across networks.
However, TCP’s mechanisms can sometimes contribute to
SD, especially under certain network conditions.

1) CONGESTION CONTROL MECHANISMS
TCP uses congestion control algorithms, such as TCP Reno
and TCP Cubic, to manage network congestion by adjusting
the rate of data transmission. While these algorithms are
designed to prevent network collapse, they can also lead to
increased latency and reduced throughput during congestion
events. For instance, TCP’s slow start and congestion
avoidance phases can delay data transmission, especially in
high-latency networks.

2) RETRANSMISSION STRATEGIES
TCP’s reliance on retransmission for error recovery, using
mechanisms like retransmission timeouts (RTOs) and dupli-
cate acknowledgments, can increase latency, particularly in
lossy networks. The time taken to detect packet loss and
retransmit lost packets can cause delays, contributing to jitter
and inconsistent throughput.

3) FLOW CONTROL
TCP’s flow control mechanisms, primarily through the
advertised window size, regulate the amount of data that
can be sent before requiring an acknowledgment. While this
prevents the sender from overwhelming the receiver, it can
also limit throughput in cases where the receiver’s window
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size is constrained, leading to suboptimal data flow and
potential SD.

Our PIAT-based approach to SD detection can help identify
instances where such protocol-level issues are contributing
to degraded service quality. This understanding can guide
network administrators in fine-tuning protocol parameters or
considering alternative protocols for specific use cases.

C. LIMITATIONS AND FUTURE WORK
While our study offers valuable insights into latency-induced
SD in LAN environments, particularly within a university
dormitory setting, it is important to recognize its limitations
and outline areas for future research.

1) FOCUS ON LAN TRAFFIC
Our research was conducted using LAN data from a
university dormitory, which may exhibit network traffic
characteristics distinct from other environments such as
home networks, small-office/home-office settings, or large
enterprise networks. These environments often encounter
different resource constraints that could affect the detection
and analysis of SD events differently.

We hypothesized that our dataset provides a hybrid
representation of residential and institutional network
traffic–merging casual internet usage by residents with
university-related activities such as accessing cloud resources
or remote sessions. By leveraging data that potentially spans
multiple domains, our aim was to enhance the robustness
and applicability of our SD event identification method
to both home and enterprise environments. However, this
assumption is speculative and requires further empirical
validation. Future research could therefore explore adapting
our methodology to broader network contexts such as WANs
orMANs, as well as testing its applicability in large enterprise
settings where SD detection could yield benefits in terms of
financial and resource management.

2) SIMULATION-BASED EXTENSION
While our study utilized real-world data, future research
could also benefit from simulation-based studies that model
various network types (e.g., WAN, MAN, wireless) using
protocols like TCP. These simulations could provide insights
into the broader applicability of our SD detection methods
across diverse network environments.

3) COMPARATIVE ANALYSIS
Due to the novelty of our approach in addressing latency-
induced SD in LAN settings, we had limited opportunities for
direct comparisons with existing methodologies. As the field
evolves, future studies could conduct comparative analyses
with emerging approaches to SD detection, enhancing the
robustness and credibility of our findings.

4) TEMPORAL VARIATIONS AND DATA COLLECTION
Our study evaluated the generalizability of our findings by
applying the methodology in different locations (various dor-

TABLE 13. SD event coverage statistics (cov.%) for different minimum
sequence lengths with require_jitter_for_sequence option turned
OFF using the Z-Score method run on the test data (L1, L2 and L3 stand
for Locations 1, 2 and 3 respectively).

mitories within the university) and at various times. Despite
some variations, the data confirmed the model’s validity
within the current settings. Our findings also demonstrated
that the methodology is effective even with considerably
lower flow counts, indicating potential applicability in
smaller environments.

However, to rigorously confirm the robustness of our
method, future work might extend to other settings to provide
a more comprehensive understanding of SD patterns across
varying network loads. For example, collecting data from
more diverse locations (e.g., different universities, residential
areas, or corporate environments) and at different times (e.g.,
off-peak periods such as vacation time) could help validate
the broader generalizability of our findings.

5) NETWORK TOPOLOGY CONSIDERATIONS
While our study provides valuable insights into SD in typical
LAN configurations, it does not extensively explore the
impact of various network topologies or imbalanced end-
user connections to Layer-2 switches. Future research could
investigate how different network layouts and topologies
affect SD occurrences and detection, potentially leading to
more nuanced and effective detection strategies.

6) IMPACT ON USER QOE
Our empirical definition of SD events is based on the
occurrence of prolonged incidents characterized by sta-
tistically extreme delays and jitter, aiming to identify
events that significantly impact perceived network service
quality. However, we did not directly assess whether
these identified SD events translate to actual impacts on
user QoE. Investigating this relationship would require a
more controlled experiment or the integration of expert
knowledge, which remains an area for future explo-
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ration. Our method provides a conservative statistical
framework that operates effectively in an unsupervised
manner.

These limitations highlight opportunities for future
research to build upon our findings, extending the appli-
cability of our SD detection methodology across a wider
range of network environments and conditions. By addressing
these limitations, future studies can enhance the robustness,
applicability, and accuracy of SD detection techniques.

VIII. CONCLUSION
This study has explored the identification and analysis of
service degradation events using LAN data from a university
dormitory setting, aiming to develop a methodology that
could be applicable to a variety of network environments. Our
approach, centered on the detection of statistically significant
deviations in network performance (specifically, extreme
delays and jitter), has demonstrated potential applicability not
only in similar institutional settings but also in residential and
possibly enterprise networks.

The robustness of the methodology was validated by
applying it across different locations and at different times,
with results showing minimal deviation, thus underscoring
the effectiveness of the SD event identification process. This
consistency highlights our model’s potential as a reliable
tool for network administrators to preemptively address and
manage network service quality issues. While our findings
offer promising directions for network service management
and SD detection, they also pave the way for subsequent
studies to refine and expand on the groundwork laid here.

Our future work aims to validate our method’s efficacy
across broader contexts and network configurations, ensuring
its robustness and adaptability in diverse environments.
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