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Abstract—Our research continues an investigation using neural
models to generate and extract keywords from lengthy texts,
using data from the REAL repository and author-provided
keywords.

Previously, we tested three models: fastText for keyword
extraction as a multi-label classification baseline, a fine-tuned
Hungarian language model PULI GPT-3SX for keyword gener-
ation, and a further trained Llama-2-7B-32K model.

In this study, we fine-tuned a new model, the PULI LlumiX
32K model with the same data, combining Hungarian language
knowledge with Llama-2-7B-32K’s 32,000-token input capacity.

We assessed the generation of new, relevant keywords by the
models compared to author-provided keywords and those not
present in the text. The PULI LlumiX 32K model outperformed
both the PULI GPT-3SX language model and Llama-2-7B-32K
model. For keywords not present in the text, PULI LlumiX 32K
and Llama-2-7B-32K generated approximately 20%, similar to
author keywords. PULI GPT-3SX had a higher ratio of about
30%. Some new keywords were relevant, while others were
inaccurate due to erroneous phrases.

Index Terms—PULI LlumiX 32K, generated keywords, fine-
tuning, author-provided keywords, Llama-2-7B-32K, PULI GPT-
3SX, Hungarian language model

I. INTRODUCTION

Keywords play a significant role in structuring texts, catego-
rizing information, and facilitating easier navigation between
texts. In the case of scientific publications, articles, and profes-
sional texts, keywords not only serve to summarize content but
also aid in the discovery of texts for search engines and library
catalogs. Additionally, they can be useful in terminological
work. However, selecting and determining keywords is not
always a simple task.

Keywords manually provided by authors often rely on their
own professional background knowledge [1] [2] and are not
necessarily based solely on the frequency of occurrence in
texts, which can sometimes lead to keywords that are not nec-
essarily characteristic or common. This is important because
keywords play a prominent role in mapping the conceptual
framework of texts and the specific domain.

In recent years, neural large language models, such as GPT-
3 [3] and BERT [4] have brought revolutionary changes to

language processing. These models are capable of interpreting
language in a complex manner and making predictions about
the relationship between words and texts.

The application of generative systems offers the opportunity
to create keywords that may not or only partially appear in the
text, which could represent a breakthrough in this field.

II. RELATED WORK

Keyword extraction has a long history. Various methods
have emerged to address the problem, following technological
advancements tailored to specific goals (e.g., information
extraction, text mining, or even terminology extraction to
facilitate terminological work).

Keyword extraction, using author-provided keywords, was
already explored from Hungarian scientific publications in
2010 by Berend and Farkas [5]. The author-provided keywords
were expanded with a feature set, and supervised machine
learning was applied with this training data.

Keyword extraction can also be interpreted as a classifi-
cation task, where the keywords are elements of a large or
even open-ended label set in the training data [6]. An example
of this is the Hungarian keyword and label extraction system
developed by Yang and colleagues [7], which was fine-tuned
with texts from the weekly HVG.

Over the years, there has been a growing demand for
keywords not only to be extracted from the text but also to
incorporate external knowledge to obtain new insights beyond
extraction. An example of this is the MAUI method [8]
where external knowledge is sourced from Wikipedia. In the
Hungarian context, research has used Wikipedia as external
knowledge in labeling tasks [5].

However, large language models go beyond solely relying
on the text or using an external database (e.g., Wikipedia or
even a terminology database) for keyword generation. Among
multilingual models, Llama models are currently popular,
which also have Hungarian knowledge. Currently, there are
two Llama families, LLaMA [9] and Llama-2 [10]. Both
families contain multiple differently sized large language mod-
els. The Llama-2 models were trained on a corpus of 2 trillion
tokens.979-8-3503- 8788-9/24/$31.00 © 2024 IEEE
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Currently, there are four large language models available
for the Hungarian language. HILANCO-GPTX1 is a 6.7 bil-
lion parameter, English-Hungarian bilingual GPT-NeoX model
as well as the PULI large language models, including the
Hungarian-language, also 6.7 billion parameter PULI GPT-
3SX [3]. Additionally the trilingual (Hungarian-English-
Chinese) 7.67 billion parameter PULI GPTrio [11] GPT
models, and the PULI LlumiX 32K, a Llama-2 model fine-
tuned with a 32K context window for the Hungarian language
can come in handy.

Our research predecessors [12] compared the keywords
extracted by fastText with those generated by the Hungarian
language model PULI (GPT-3) and the Llama 2 model. The
results indicated that the outcomes of the language models
were more promising than those of fastText. Additionally,
it was found that the Llama 2 model with a 32,000-token
input, by being able to learn from entire long texts, achieved
significantly higher accuracy and coverage than the 2048-token
input PULI model.

III. TRAINING DATA

The teaching material coincided with the teaching material
used in the previous study [12] in order to compare the
results. For the sake of completeness of the study, we also
describe here how we compiled the teaching material. The
REAL repository’s articles2 were used. During compilation,
materials from after 2010 were processed, assuming that
keyword addition became common around this time. A total
of 29,502 files were obtained, which were Hungarian-language
articles published after 2010 on various scientific topics; from
these, 9,226 articles contained the ”kulcssz*” (keyw*) pattern
based on our pre-filtering. The materials from the REAL
repository are available for download in PDF format. Using
the Tesseract OCR engine version 5.03 developed by Google,
we converted the PDF materials into txt format. Among the
9,226 articles, we used 1,146 texts where the script found and
extracted the keywords provided by the author from the OCR-
ed text. In cases where the number of keywords was very high,
we manually verified them and excluded the conference pro-
ceedings from the corpus. The texts that remained alongside
the extracted keywords no longer contained the keywords.

For our research, we divided the corpus into training and
test data. To do this, we shuffled the corpus and separated
1,000 articles for training and 145 articles for testing.

The key characteristics of the author-provided key-
words/phrases found in the articles are as follows:

• Number of unique keywords/phrases: 5,546
• Number of unique words: 5,382
• Average length of key expression: 1.63
• Average number of keywords per document: 4.70
Table I and Table II displays the key characteristics of the

articles, as well as the properties after tokenization using the

1https://hilanco.github.io
2http://real.mtak.hu
3https://github.com/tesseract-ocr

models we employed. It can be observed that we worked
with articles averaging around 5,000 words. To determine the
number of sentences, we utilized the HuSpaCy tool [13]. No
tokenizer was used during the original text measurement; we
only relied on HuSpaCy for sentence counting.

TABLE I
KEY PROPERTIES OF DOCUMENTS 1.

Tokens Avg. token count/ doc.
Average Median

Original text 5,632,804 4,915.19 4,611.5
PULI GPT-3SX 11,078,832 9,667.39 9,181.0
Llama-2-7B-32K 18,029,175 15,732.26 14,924.0
PULI LlumiX 32K 18,029,175 15,732.26 14,924.0

TABLE II
KEY PROPERTIES OF DOCUMENTS 2.

Sentences Avg. sent. count/ doc.
Average Median

Original text 295,900 258.20 242.5

In Table I, the token counts after tokenization for the models
are shown. There is a significant difference between the text
segmentation of the two models; the Hungarian language
PULI model breaks down the text much less compared to the
English-centric Llama-2 and PULI LlumiX 32K models.

IV. METHODS

The models used in previous research were fastText, PULI
GPT-3SX, and Llama-2-7B-32K. We provide their descriptions
based on the published study [12].

• fastText [14], [15]: The development of Meta Re-
search4 aimed at efficient training of word representation
and text classification models. Its performance in text
classification competes with other deep learning-based
solutions and is extremely fast. Pre-trained word vectors
are available on the platform for 294 different languages,
trained from Wikipedia texts. For our experiment, we
utilized the pre-trained model for the Hungarian language.
It is capable of processing texts of any length.

• PULI GPT-3SX [3]: The Hungarian language GPT-
NeoX model [16] trained by the HUN-REN Language
Research Centre5. The model is comprised of 6.7 billion
parameters and was pre-trained on a corpus of over 32
billion words. It is capable of handling 2048 input tokens.

• Llama-2-7B-32K [10]: Together6 is equipped with 7
billion parameters. During fine-tuning, the model’s input
length was extended to 32768 using the position inter-
polation method [17]. This allows for the processing of
long documents.

4https://research.facebook.com
5https://nytud.hu
6https://www.together.ai
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A. PULI LlumiX 32K model

PULI LlumiX 32K7 model was trained by the HUN-REN
Hungarian Research Centre for Linguistics8. The main advan-
tages of this model include an expanded context window of
32,768 tokens, enabling the processing of entire documents for
our task. Additionally, it offers superior Hungarian language
capabilities compared to the original Llama2 model.

The PULI LlumiX 32K model is a multiple further pre-
trained Llama-2 7B model [9]. First, the Together9 fine-tuned
a LLaMA-2-7B-32K long context language model from the
Llama-2 7B model. The model has been extended to a context
length of 32,768 with position interpolation. Subsequently, the
LLaMA-2-7B-32K model was continuously pretrained on a
Hungarian dataset. The corpus consisted of 7.9 billion words,
exclusively comprising long documents exceeding 5000 words
in length. During the Hungarian pretraining phase, the first half
epoch exclusively utilized the Hungarian dataset. However,
in the second half epoch, English corpora were mixed into
the training data. The English dataset10 consisted of 2 billion
words from the Long Context QA and 78 million words from
BookSum.

V. EXPERIMENTS

The experiments conducted with the three models are sum-
marized based on the published study [12].

• fastText: To train the model, we continued training the
pre-trained Hungarian language model for the classifica-
tion task. Vector representation size to 300 dimensions,
’wordNgrams’ parameter: 3, multi-label classification
feature set, learning rate: 1.0 and the model trained up to
100 epochs.

• PULI GPT-3SX: We fine-tuned the model utilizing the
implementation of Stanford Alpaca (see [18]) and em-
ployed the instruction-following prompt template (see
Table III). We reduced the text of the articles to 512
words. Hyperparameters: 4 batch/GPU (8 GPUs total);
’gradient accumulation steps’: 4; learning rate: 2e-5;
’warmup ratio’: 0.03; deepspeed optimization; bf16. 3
epochs achieved the best result.

• Llama-2-7B-32K: We did not perform preprocessing.
For the experiment, we fine-tuned the model named
togethercomputer/LLaMA-2-7B-32K11 using the imple-
mentation of OpenChatKit [19]. Hyperparameters: 4
batch/GPU (8 GPUs total); learning rate: 2e-5; fp16;
epochs: 10. We finally set it to 10 epochs. The prompt
template can be seen in Table III.

A. Experiment of PULI LlumiX 32K model

In our experiment, we fine-tuned the PULI LlumiX 32K
model for the keyword generation task. For this task, we

7https://huggingface.co/NYTK/PULI-LlumiX-32K
8https://nytud.hu
9https://www.together.ai
10https://huggingface.co/datasets/togethercomputer/Long-Data-Collections
11https://huggingface.co/togethercomputer/LLaMA-2-7B-32K

TABLE III
PROMPT TEMPLATE

Stanford Alpaca
Az alábbiakban egy utası́tást találsz, amely leı́r egy feladatot, amelyhez
egy bemenetet is mellékelünk, hogy további összefüggéseket adjon. Írj
egy választ, amely megfelelően teljesı́ti a feladatot! (Below you’ll find
an instruction describing a task, along with an input provided to offer
further context. Write a response that adequately fulfills the task!)
### Instruct:
Generálj kulcsszavakat az alábbi szöveg alapján! (Generate keywords
based on the provided text!)
### Input:
[content of the article]
### Answer:
[keywords]

OpenChatKit
[content of the article]
<Q>: Generálj kulcsszavakat a megadott szöveg alapján! (Generate
keywords based on the provided text!)
<A>: [keywords]

utilized the same prompt template as in the Llama2 experiment
(see Table III). For the fine-tuning task, we utilized the
OpenChatKit implementation12. The hyperparameters were set
similar to those used in the Llama-2-7B-32K experiment: 4
batches per GPU (8 GPUs in total); learning rate of 2e-5,
mixed precision training (fp16), and 10 epochs.

VI. RESULTS

Table IV, the results of our models are shown. For compara-
bility, we configured fastText to generate 5 labels for each doc-
ument. It can be observed that all generative models learned
approximately how many labels to generate for the articles.
The results indicate that PULI LlumiX 32K achieved the best
result, although the improvement is no longer outstanding,
unlike the improvement between PULI GPT-3SX and fastText,
as well as between Llama-2-7B-32K and PULI GPT-3SX.

TABLE IV
RESULTS

Precision Recall F-score Avg # of tags
fastText (100 epoch) 5.57 14.1 7.99 5
PULI GPT-3SX 14.64 13.89 14.26 4.94
Llama-2-7B-32K 38.45 35.12 36.71 4.77
PULI LlumiX 32K 41.05 38.79 39.89 4.92

A. New keywords

Author-provided keywords often do not rely on term fre-
quency - unlike statistically-based keywords - and do not
adhere to the vocabulary found in the text corpus [1]. Dodé
also points out that the occurrence of manually provided
keywords in the text is not necessarily frequent [2]. In the
corpus he examined, 37% of the keywords appear fewer than
twice in the texts.

In our research, we examined the generated keywords that
were new compared to the author-provided keywords, as
well as those that did not appear in the text. In our text

12https://github.com/togethercomputer/OpenChatKit
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searches, we counted verbatim matches after converting the
text to lowercase. Table V shows the number of new keywords
compared to the author-provided keywords.

TABLE V
NEW KEYWORDS COMPARED TO THE AUTHOR-PROVIDED KEYWORDS

New keywords (total) New keywords/ doc (avg)
PULI GPT-3SX 536 4.19
Llama-2-7B-32K 384 2.62
PULI LlumiX 32K 391 2.88

The Table VI provides an example of new but still relevant
keywords generated by language models, primarily PULI GPT-
3SX. The Llama-2-7B-32K and PULI LlumiX 32K models
also generated new keywords, but they were not as innovative
or creative as PULI GPT-3SX. These models tended to adhere
more closely to the keywords provided by the author.

TABLE VI
EXAMPLE 1.

Keywords

author-provided hı́gtrágya, edc, ösztrogénhatás,
hormonkészı́tmények, ivarzásindukálás

fastText talaj, prevenció, talajosztályozás, prevalencia,
megújuló energia

PULI GPT-3SX hormonok, endoösztrogének,
ösztrogénhatású vegyületek, xenoösztrogének

Llama-2-7B-32K trágya, edc, ösztrogénhatás, hormonkezelések,
ivarzásindukció

PULI LlumiX 32K trágya, edc, ösztrogénhatás,
hormonkészı́tmények, ivarzásindukció

As shown in Table VII, PULI GPT-3SX generated more
new keywords that did not appear in the text: 10% more than
what is characteristic for the author’s keywords. Both Llama-
2-7B-32K and PULI LlumiX 32K show similar ratios to the
author’s keywords, with approximately 20% of the keywords
not appearing in the text.

TABLE VII
RATIOS OF GENERATED KEYWORDS (OCCUR AND DO NOT OCCUR IN THE

TEXT)

occur in the text not occur in the text
author-provided 583 (76.4%) 180 (23.6%)
PULI GPT-3SX 486 (67.3%) 236 (32.7%)
Llama-2-7B-32K 396 (76.6%) 163 (23.4%)
PULI
LlumiX 32K 391 (79.2%) 145 (20.2%)

In Table VIII there are a few examples of generated
keywords that do not appear in the text. In Table VIII, the
cases where new keywords are generated compared to the
author’s provided keywords and do not appear in the text are
highlighted in bold. These results are also shown as models
in Table IX.

B. Conclusion

The PULI LlumiX 32K and the Llama-2-7B-32K models
learned to identify keywords from long texts, while the PULI
GPT-3SX model generated many creative and mostly relevant

TABLE VIII
EXAMPLE 2.

occur in the text not occur in the text

author-provided
herpes zoster,
övsömör,
bárányhimlő

reinfekció, reaktı́válódás

PULI GPT-3SX
herpes zoster,
humán
herpeszvı́rus

humán
herpeszvı́rus-vı́rusok,
humán
herpeszvı́rus-fertőzés,
humán herpeszvı́rus-

Llama-2-7B-32K herpes zoster,
bárányhimlő újfertőzés, reaktiváció

PULI
LlumiX 32K

herpes zoster,
bárányhimlő,
reaktiválódás

újrafertőződés

TABLE IX
NUMBER OF KEYWORDS THAT NEITHER APPEAR IN THE TEXT NOR MATCH

THE AUTHOR’S KEYWORDS

No. of new keywords
not occur in texts

PULI GPT-3SX 236 (32.7%)
Llama-2-7B-32K 148 (21.2%)
PULI
LlumiX 32K 129 (18%)

keywords. As for the generated keywords not present in the
text, in the cases of PULI LlumiX 32K and Llama-2-7B-
32K, the ratio was approximately 20%, similar to the author’s
keywords (23.6%). For PULI GPT-3SX, the ratio was higher
(32.7%). Within these, we examined how many keywords
neither appeared in the text nor among the author’s keywords.
The ratios were similar here as well: around 20% for the
Llama-2-7B-32K and PULI LlumiX 32K models, and around
30% for PULI GPT-3SX. This means that the majority of
the keywords generated by the models which are not in the
texts (in the case of PULI GPT-3SX, all of them) do not
appear among the author’s keywords either, so they are novel
compared to both the author and the text.

Among the new keywords not occurring in the text, some
were relevant (for example, synonyms of the keywords pro-
vided by the author), but there were some cases where the
search was inadequate, and erroneous phrases (truncated end-
ings, spelling errors or foreign language elements) were why
they did not appear in the text. Additionally, the generation
of multi-element structures (e.g., jánoshalmi késő középkori
templom ’late medieval church in Jánoshalom’) can also be a
reason for the novelty.

These models offer promising solutions to the challenges
of keyword extraction. Keyword generation opens up new
horizons for most applications that use keywords, but in the
long run, also for terminology through the representation of
texts and domain content.
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(MSZNY 2010). Szeged, Hungary: Szegedi Tudományegyetem, Infor-
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