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Abstract

The angular and the radial parts of the dynamics of the perturbed Kepler motion are

separable in many important cases. In this paper we study the radial motion and its

parametrizations. We develop in detail a generalized eccentric anomaly parametriza-

tion and a procedure of computing a generic class of integrals based on the residue

theorem. We apply the formalism to determine various contributions to the luminosity

of a compact binary.

1 Introduction

The main sources of the gravitational radiation to be detected by Earth-based
observatories (LIGO, VIRGO, TAMA and GEO) are compact binaries. The
Laser Interferometer Space Antenna (LISA) will also detect gravitational waves
from colliding galactic black holes. Compact binaries are composed of black
holes and/or neutron stars. In such systems, a highly accurate description would
include the spin-spin (SS) interaction [Barker & O’Connell (1979)], the magnetic
dipole-magnetic dipole moments (DD) contribution [Ioka & Taniguchi (2000)]
and the quadrupole-monopole effect (QM) [Poisson (1998)]. The parametriza-
tion of the radial motion for them are presented in [Gergely (2000)], [Vasúth,
Keresztes, Mihály, Gergely (2003)], and [Gergely & Keresztes (2003)].
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The method for solving a wide class of the perturbed Keplerian radial mo-
tions is worked out in [Gergely, Perjés, Vasúth (2000)]. For this purpose two
(the true and eccentric anomaly) parametrization were introduced. The method
can be further generalized for an even wider class of perturbed Keplerian radial
motions (see: [Gergely, Keresztes, Mikóczi (2006)]).

2 The perturbed Kepler motion

The so-called radial equations for SS, DD and QM interactions are given in
[Keresztes, Mikóczi , Gergely (2005)]. The radial equation of the generalized
perturbed Kepler motion we consider here [Gergely, Keresztes, Mikóczi (2006)]
is

ṙ2 =
2E

µ
+

2Gm

r
−

L2

µ2r2
+

p
∑

i=0

ϕi(χ)

µ2ri
(1)

where ϕi(χ) characterize the perturbative terms and they are periodic functions
of the true anomaly:

ϕi (χ) =

∞
∑

j=0

(fij + gij cosχ) sinj χ . (2)

The expression ϕi(χ) given above is equivalent with a generic Fourier series
[Gergely, Keresztes, Mikóczi (2006)]. The coefficients fij and gij can be
expressed in terms of the coefficients of the Fourier expansion as well. The
last term in Eq. (5) contains the generic perturbing Brumberg force [Brum-
berg (1991)], the spin-orbit interaction for compact binaries [Rieth and Schafer
(1997); Gergely, Perjés, Vasúth (1998)], and the SS, DD and QM contributions.
The energy E and angular momentum L refer to the perturbed motion. From
the condition ṙ2 = 0 we find the turning points rmax

min

:
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−2E
±

1

2µA0

p
∑

i=0

ϕ±

i (χ)

[
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, (3)

where A0 =
(

G2m2µ2 + 2EL2/µ
)1/2

is the magnitude of the Laplace-Runge-

Lenz vector belonging to the perturbed motion characterized by E and L. ϕ−

i =
ϕi(0), ϕ+

i = ϕi(π) are small coefficients. With these turning points is possible
to introduce the generalized true anomaly parametrization of the radial motion,
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r (χ) as
2

r
=

1 + cosχ

rmin

+
1 − cosχ

rmax

. (4)

Integrals of the type
∫ T

0

ω(χ)

r2+n
dt (5)

frequently occur. Here ω(χ) is the same type of periodic function of the true
anomaly as ϕi (χ), and T is the radial period of the motion.

For constant values of ϕi and n ≥ 0 these integrals can be evaluated in terms
of a complex true anomaly variable z = exp (iχ) by using the residue theorem.
The only pole is in the origin (z = 0) [Gergely, Perjés, Vasúth (2000)]. For the
class n < 0 a complex eccentric anomaly parameter can be used and then the
poles are in the origin and in

w1 =

(

Gmµ2 −
√

−2µEL2

Gmµ2 +
√

−2µEL2

)1/2

, (6)

however the latter occurs only rarely in physical applications (see:[Gergely,
Perjés, Vasúth (2000)]).

3 Generalized perturbed Kepler motion with the

eccentric anomaly parametrization

We introduce the r (ξ) eccentric anomaly parametrization in the same way as
in [Gergely, Perjés, Vasúth (2000)]:

2r = (1 + cos ξ)rmin + (1 − cos ξ)rmax . (7)

We use the relations between the true and eccentric anomaly (4), (7)

cosχ =
Gmµ cos ξ −A0

Gmµ−A0 cos ξ
, sinχ =

√

−2EL2

µ sin ξ

Gmµ−A0 cos ξ
. (8)

Thus we can express ϕi as the function of ξ:

ϕi (ξ) =

∞
∑

j=0

(

fij + gij
Gmµ cos ξ −A0

Gmµ−A0 cos ξ

)(

−2EL2 sin ξ

Gmµ2 −A0µ cos ξ

)j

. (9)
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Employing the eccentric anomaly parametrization (7), the integrals (5) could
be evaluated as

∫ 2π

0

ω(ξ)

rn+1

(

1

r

dt

dξ

)

dξ . (10)

For n′ ≡ −n− 1 ≥ 0 we apply the binomial expansion

(2r)
n′

=
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∑

k=0

(

k
n′

)

rk
minr

n′
−k

max (1 + cos ξ)k(1 − cos ξ)n′
−k , (11)

leading to a polynomial in cos ξ. From the radial equation (5) using the eccentric
anomaly parametrization (7) to leading order we obtain:

1
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with

Ωi
±=

( µ

L2

)i−2
[

ϕ+

i (Gmµ−A0)
i−2±ϕ−

i (Gmµ+A0)
i−2
]

. (13)

The bracket becomes proportional to sin2 ξ in (12) if the following two conditions
are satisfied:

p
∑

i=0

µi

L2i
(Gmµ±A0)

i
(fi1 ± gi1) = 0 . (14)

With conditions (14) satisfied, using the parametrization (7), the integrand
of (10) becomes regular. The conditions are fulfilled in the case of the SS,
DD and QM interactions. Introducing the complex variable w = exp (iξ), the
integral of (10) contains only two poles: the origin and the w1 (see:[Gergely,
Perjés, Vasúth (2000)]). We have proven for the n < 0 case:

Theorem: For all perturbed Kepler motions characterized by the radial
equation (5), with periodic perturbing functions ϕi(ξ) obeying the conditions
(14), and for arbitrary periodic functions ω(ξ), the integrals (10) are given by
the residue in the origin and in the w1 [Gergely, Perjés, Vasúth (2000)]. on w
complex plane.

In the next section we apply the above method for computing different con-
tributions to the luminosity of compact binaries.
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4 Application for some compact binaries

Peters and Mathews [Peters and Mathews (1963)] computed the luminosity
of the compact binaries in the Kepler motion (Newtonian case) with orbital
parameters:

LN =
G4m3µ2

15c5a5(1 − e2)7/2

(

37e4 + 292e2 + 96
)

, (15)

where a the semi-major axis and e the eccentricity. The form of ϕi (ξ) can be
derived for all of the SS, QM and DD contributions. We can then compute the
various contributions to the luminosity (−〈dE/dt〉, the time-averaged energy
loss over one radial period). These are:

LS1S1
=

G4m2µS1S2

480c7a7(1 − e2)10/2

[

c1 sinκ1 sinκ2 cos 2(ψ0 − ψ̄)

+c2 cosκ1 cosκ2 + c3 cos γ

]

,

LQM =
G4m5µ

60c5a7(1 − e2)10/2

×

2
∑

i=1

pi

[(

c4(3 sin2 κi − 2) + c5 sin2 κi cos δi
)]

,

LDD =
G3m2µd1d2

30c5a7(1 − e2)10/2
[c4A0 − c5B0] , (16)

where we have denoted by Si the spin magnitudes, by di the magnitudes of
the magetic dipoles, by pi the quadrupole moment scalars and by A0, B0, δi,
γ, ψ0, ψ̄, κi auxiliary angular quantities defined in [Gergely (2000)], [Vasúth,
Keresztes, Mihály, Gergely (2003)] and [Gergely & Keresztes (2003)]. The
constants c1..5 are

ci =

3
∑

j=0

Cije
2j , (17)

with coefficients Cij given in Tab. 1.

5 Summary

We have introduced a generalized eccentric anomaly parametrization for the
perturbed Kepler motion. We have proved that even for the generic perturbation



68 B. Mikóczi, Z. Keresztes

Table 1: The coefficients in the Cij.

i\
j 0 1 2 3

1 0 131344 127888 7593
2 -124864 -450656 -215544 -8532
3 42048 154272 75528 3084
4 0 8208 7988 474
5 2600 9376 4479 -177

functions ϕi(ξ) there are no new poles as compared to [Gergely, Perjés, Vasúth
(2000)]. The method of integration can be widely employed in the case of
compact binaries. We have applied the procedure to compute the SS, QM and
DD contributions to the luminosity of a compact binary.
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