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Abstract—Building Retrieval-Augmented Generation (RAG)
systems for underrepresented languages, such as Hungarian,
presents significant challenges due to the lack of high-quality
embedding models. In this study, we address this gap by
developing three state-of-the-art encoder-only language models
specifically designed to enhance semantic similarity understand-
ing for Hungarian. Utilizing a combination of public and internal
datasets, including a 226-item corpus of news article titles
and leads and a Hungarian version of the Semantic Textual
Similarity (STS) dataset, we rigorously evaluate these mod-
els’ performance. Our models—xml roberta sentence hu, hu-
bert sentence hu, and minilm sentence hu—demonstrate sub-
stantial improvements in semantic similarity tasks, with the
hubert sentence hu model achieving the highest accuracy and
F1-Score on the test corpus. These results underscore the po-
tential of our models to significantly advance NLP capabilities
for Hungarian, paving the way for their integration into more
comprehensive RAG systems. Future work will focus on further
refinement and application of these models in diverse contexts to
enhance their performance and robustness.

Index Terms—Retrieval-Augmented Generation, Hungarian
language models, semantic similarity, natural language process-
ing, sentence embeddings, machine learning, NLP for underrep-
resented languages.

I. INTRODUCTION

Retrieval-Augmented Generation (RAG) [1] has emerged
as one of the most popular techniques for enhancing the
accuracy and reliability of generative large language models by
incorporating facts retrieved from external sources. The RAG
system comprises two core modules:

• Indexing: In a RAG system, a series of related documents
are indexed by first chunking them, generating embed-
dings of the chunks, and then indexing them into a vector
store. During inference, the query is also embedded in a
similar manner.

• Retrieval: Relevant documents are retrieved by compar-
ing the query against the indexed vectors.

For both modules, a high-quality embedding model is crucial.
However, such models are currently lacking for the Hungarian
language.

Hungarian, a Uralic language spoken by approximately 13
million people primarily in Hungary, poses unique challenges
for natural language processing (NLP) due to its complex
morphology and agglutinative nature. Existing NLP resources

and models often focus on widely spoken languages like En-
glish, leaving Hungarian and other underrepresented languages
at a disadvantage. This gap necessitates the development of
specialized models to improve semantic understanding and
information retrieval in Hungarian.

In our research, we have trained various encoder-only
language models specifically to generate high-quality embed-
ding vectors for Hungarian, which will be available on our
Huggingface space 1. By doing so, we aim to bridge the gap
in NLP resources for Hungarian and improve the effectiveness
of RAG systems in this language.

II. RELATED WORK

The ”sentence transformers” method is one of the most pop-
ular embedding techniques [2]. In their research, the pretrained
BERT network was modified by employing siamese and
triplet network structures. These modifications aimed to derive
semantically meaningful sentence embeddings that facilitate
comparison using cosine similarity. By leveraging siamese
and triplet networks, the model learns to map sentences
into a continuous vector space where similar sentences are
represented by nearby vectors, enabling effective measurement
of semantic similarity between sentences. Various models have
been trained using this method, including multilingual models.

Multilingual models have been developed using a similar
approach. Using pretrained multilingual models, it is possi-
ble to extend sentence embeddings to other languages. The
concept [3] relies on a fixed (monolingual) teacher model,
which generates sentence embeddings possessing the desired
properties in a single language. The student model is designed
to replicate the behavior of the teacher model, ensuring that
identical English sentences are mapped to the same vector
by both the teacher and student models. To enable the student
model to function across multiple languages, it is trained using
parallel (translated) sentences. Each translated sentence should
also be mapped to the same vector as its original counterpart.

OpenAI2 has also developed embedding models for solv-
ing various tasks, such as search and classification. The
initial model, ’text-embedding-ada-002,’ has been extended
to include models like ’text-embedding-3-small’ and ’text-
embedding-3-large,’ demonstrating significant improvements
in embedding quality and task performance.

1https://huggingface.co/NYTK
2https://openai.com979-8-3503- 8788-9/24/$31.00 © 2024 IEEE
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Google has also developed custom embedding models for
tasks such as information retrieval, further showcasing the
importance of high-quality embeddings in enhancing the per-
formance of NLP systems.

An example of the Massive Text Embedding Benchmark
(MTEB) demonstrates the utility of high-quality embeddings.
MTEB evaluates models on various tasks, including classifica-
tion, clustering, and retrieval, across multiple languages, high-
lighting the necessity of robust embeddings for performance
in diverse settings [4].

The development of these multilingual and domain-specific
models underscores the growing need for high-quality embed-
dings across different languages and tasks. However, there
remains a significant gap in resources for underrepresented
languages like Hungarian, which this research aims to address
by developing specialized models tailored for the unique
linguistic characteristics of Hungarian.

III. CORPORA AND MODELS

A. Testing Setup

Evaluating textual semantic similarity remains a complex
and evolving challenge within the field of natural language
processing. To contribute to the standardization of this eval-
uation, we have developed a comprehensive 226-item corpus,
which is publicly available on github.com. This corpus consists
of news article titles and corresponding leads. The leads are
concise descriptions of the articles, crafted by authors to
summarize the news content effectively for Rich Site Summary
(RSS) feeds or search engine optimization.

In addition to the publicly available corpus, we employed
an internal dataset designed to parallel the structure and
purpose of the SENTEval Semantic Textual Similarity (STS)
dataset [5]. This internal dataset is currently under review
for publication and aims to provide a robust benchmark for
measuring semantic similarity in Hungarian.

The combination of these datasets allows for a rigorous
assessment of our models’ performance in capturing semantic
similarity, ensuring that our findings are both comprehensive
and applicable to real-world NLP tasks.

B. The News Article Test Corpus

1) Collection of the Corpus: We have collected 225 articles
from 70 news outlets between 6th May 2024 and 7th May
2024, using the news-please [6] toolchain. The media outlets
were chosen based on their readership at the time. The dataset
comprises the date of download, the source domain, the main
text of the article, the lead or description, the title, the token
count, and a special last field. This last field contains the
correlated field, which is either one or zero depending on how
correlated the annotators thought the title and the description
were.

2) Annotation of the Dataset: The dataset was annotated
by three annotators. The average Cohen’s kappa was 0.76108,
indicating substantial agreement. The rest of the scores are
shown in Table I.

TABLE I
KAPPA SCORES BETWEEN ANNOTATORS

Annotators Kappa Score
Annotator 1 and 2 0.7215
Annotator 1 and 3 0.7554
Annotator 2 and 3 0.8064

C. Hungarian STS Dataset

The HUN-REN Hungarian Research Centre for Linguistics3

is building a Hungarian version of the Semantic Textual
Similarity dataset [5] as part of the HuLU benchmark [7],
[8], [9]. The dataset has not been officially published yet, but
we received the test set to evaluate our models. The test set
contains 50 segments, each segment having four fields:

• id: Identifier of the segment.
• sentence 1: First sentence.
• sentence 2: Second sentence.
• similarity value: Similarity value between sentence 1

and sentence 2. The similarity values range from 0 (not
similar at all) to 5 (completely equivalent).

D. Hungarian and Multilingual Models

1) huBERT [10]: One of the state-of-the-art Hungarian
cased (not lowercased) BERT-base model [11] that trained
on Webcorpus 2.0 [12] (9 billion token) with 110 million
parameters, 12-layer, 768-hidden, 12-heads. This model can
be one of the best choices for a base model in ’sentence
transformers’ training.

2) Hungarian Experimental Sentence-BERT [13]: The pre-
trained huBERT was fine-tuned on the Hunglish 2.0 parallel
corpus to mimic the bert-base-nli-stsb-mean-tokens model
provided by UKPLab. Sentence embeddings were obtained by
applying mean pooling to the huBERT output. The training
methodology was as follows: The data was split into training
(98%) and validation (2%) sets. By the end of the training, a
mean squared error of 0.106 was computed on the validation
set. Our code was based on the Sentence-Transformers library.
Our model was trained for two epochs on a single GTX
1080Ti GPU card with a batch size set to 32. The training
took approximately 15 hours. The maximum sequence length
is 128 tokens. This model was compared with our fine-tuned
models.

3) XLM-RoBERTa [14]: : A transformer-based multilingual
masked language model. The pre-training was performed on
the CC-100 corpus, which contains texts from 100 different
languages including Hungarian (number of Hungarian tokens:
7807 M; size of the Hungarian corpus: 58.4 GiB). The authors
reported that XLM-RoBERTa achieved competitive results on
several benchmarks in comparison with monolingual models,
such as RoBERTa. Additionally, XLM-R outperforms mBERT
on cross-lingual classification in the case of languages with
moderate resources available. In our research, XLM-RoBERTa
base model was used.

3https://nytud.hu
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4) MiniLM [15]: MiniLM (all-MiniLM-L6-v2) is a dis-
tilled version of the BERT model, designed to provide efficient
and fast performance with a significantly smaller model size
while maintaining competitive accuracy. MiniLM achieves
this by using advanced knowledge distillation techniques that
compress the large BERT model into a more compact form
without substantial loss in performance. A 6 layer version
of MiniLM-L12-H384-uncased was fine-tuned for sentence-
transformers model.

IV. METHODS

A. Model Distillation

Three different models were trained according to the method
described by Reimers and Gurevych [3]. This method involves
selecting teacher models and student models with a multilin-
gual dataset. The teacher model was paraphrase-distilroberta-
base-v2, which was recommended for this purpose. The three
student models were xlm-roberta [16], huBERT [12], [17], and
MiniLM [15].

TABLE II
MODEL NAMES FOR STUDENT MODELS

Model Name Student Model
xml roberta sentence hu xlm-roberta-base
hubert sentence hu SZTAKI-HLT/hubert-base-cc
minilm sentence hu all-MiniLM-L6-v2

B. Training Corpus

For training, we used the FLORES-200 [18] English-
Hungarian subset. Another corpus used was the OpenSubtitles
corpus [19] and the TED2020 corpus [2] from the sentence
BERT training. From the FLORES-200 dataset, 100,000 seg-
ments and from the TED2020 corpus, 1000 segments were
selected as the validation set to speed up the training time.
The size of each training set is in Table III. Each dataset’s
sentences were shuffled for training and validation alike.

TABLE III
TRAINING CORPUS SIZE AND PARAMETERS

Corpus Segments Tokens Characters
FLORES-200 33,082,575 805,613,694 5,636,950,531
OpenSubtitles 45,174,201 490,506,848 2,830,430,228
TED2020 304,455 9,144,965 56,954,680

C. Model Training

We trained the models for one epoch with a batch size of
64. A warm-up period of 10,000 steps was set for the learning
rate scheduler. During this period, the learning rate increases
linearly from a very small value to the initial learning rate
to stabilize training. We used the AdamW optimizer [20],
configured with a learning rate of 2 × 10−5 and an epsilon
value of 1 × 10−6 to prevent division by zero. The training
was conducted on one NVIDIA A100 GPU.

D. Model Evaluators

During the training, the models were evaluated with two
evaluators: a translation evaluation and the Mean Squared
Error (MSE) Evaluator.

1) Translation Evaluator: The
TranslationEvaluator assesses the quality of
translations by computing embeddings for all parallel
sentences in the dataset. Specifically, it calculates embeddings
for both the source and target sentences. For each source
sentence source[i], the evaluator determines if the embedding
of source[i] is the closest to the embedding of target[i]
compared to the embeddings of all other available target
sentences. This approach ensures that the source and its
corresponding target sentence have the highest similarity in
the embedding space, indicating accurate translation.

2) MSE Evaluator: The MSE evaluator measures the qual-
ity of the model’s predictions by calculating the mean squared
error between the predicted values and the true values. Specif-
ically, for each predicted value ŷ[i] and its corresponding true
value y[i], the MSE is computed as follows:

MSE =
1

n

n∑
i=1

(ŷ[i]− y[i])2

where n is the number of predictions. The MSE evaluator
thus provides a quantitative measure of the prediction accu-
racy, with lower MSE values indicating better performance.

V. RESULTS

A. Training Validation

During the training of the models, they exhibited varying
Mean Squared Error (MSE) losses (see Figure 1). The MiniLM
model’s loss started from a very low value of 0.2349 and
decreased to 0.135, achieving a 42.21% reduction in loss.
In contrast, the xml-roberta-sentence-hu model began with an
MSE loss of 26.896 and reduced to 12.877, representing a
52% reduction. These results highlight the differences in how
each model optimizes its performance over the training period.

Fig. 1. MSE Loss for All Models on Validation Datasets

The translation losses for the xml roberta sentence hu
model were also analyzed (see Figure 2). The model showed
significant improvements in both Src2Trg and Trg2Src losses
on the FLORES-200 and TED2020 datasets. On the FLORES-
200 dataset, the Src2Trg loss started at 0.01377 and reduced to
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0.01220, while the Trg2Src loss started at 0.02186 and reduced
to 0.02011. On the TED2020 dataset, the Src2Trg loss started
at 0.009 and increased to 0.011, indicating some instability,
while the Trg2Src loss followed a similar pattern, starting at
0.052 and reducing to 0.047.

Fig. 2. Translation Loss for xml-roberta-sentence-hu on Validation Datasets

Additional insights were gained by examining the transla-
tion and MSE losses for other models. The hubert sentence hu
model showed an MSE loss reduction from 28.081733 to
20.761320 on the FLORES-200 dataset and from 30.520558
to 18.413414 on the TED2020 dataset, indicating a significant
improvement in both cases. Similarly, the translation losses for
the hubert sentence hu model demonstrated improvements,
with Src2Trg and Trg2Src losses decreasing consistently
across both datasets.

The minilm sentence hu model also performed well, with
its MSE loss reducing from 0.234949 to 0.194523 on the
FLORES-200 dataset and from 0.254490 to 0.223243 on the
TED2020 dataset. The translation losses showed a steady
decrease, suggesting effective training and optimization.

B. Model Evaluation Metrics on STS

The models were rigorously evaluated using the Semantic
Textual Similarity (STS) dataset, a standard benchmark for
assessing the ability of models to discern and quantify the
semantic similarity between sentence pairs. The performance
metrics for each model are summarized in Table IV.

The MiniLM model demonstrated superior performance in
semantic similarity tasks, achieving the highest F1-Score of
0.098297. This indicates its exceptional ability to identify
and match semantically similar sentences accurately. The F1-
Score, a harmonic mean of precision and recall, reflects the
balance between these two aspects of model performance,
highlighting the robustness of the MiniLM model in main-
taining high levels of both precision and recall.

TABLE IV
MODEL EVALUATION METRICS ON STS

Model Accuracy Precision Recall F1-Score
experimental-hungarian 0.120 0.053 0.120 0.073
xml roberta sentence hu 0.120 0.051 0.120 0.068
hubert sentence hu 0.100 0.032 0.100 0.048
minilm sentence hu 0.140 0.056 0.140 0.080
all-MiniLM-L6-v2 0.180 0.068 0.180 0.098

C. Model Evaluation Metrics on Test Corpus

In addition to the STS dataset, the models were also
evaluated using a custom test corpus to further validate their
performance in practical, real-world scenarios. The evaluation
metrics for this test corpus are summarized in Table V.

The hubert sentence hu model achieved the highest F1-
Score of 0.490 and the highest accuracy of 0.438. This in-
dicates its strong capability in accurately identifying semantic
similarities within the test corpus, which comprised diverse
and potentially noisy real-world data. The high accuracy score
reflects the model’s proficiency in correctly predicting seman-
tic similarity, while the F1-Score underscores its balanced
performance in terms of precision and recall.

TABLE V
MODEL EVALUATION METRICS ON TEST CORPUS

Model Accuracy Precision Recall F1-Score
experimental-hungarian 0.411 0.931 0.295 0.448
xml roberta sentence hu 0.424 0.895 0.327 0.480
hubert sentence hu 0.438 0.924 0.333 0.490
minilm sentence hu 0.358 0.913 0.229 0.366
all-MiniLM-L6-v2 0.318 0.891 0.180 0.300

D. Analysis of Evaluation Results

The evaluation results reveal distinct performance character-
istics across the different models when assessed on the STS
and test corpus datasets. The all-MiniLM-L6-v2 model exhib-
ited outstanding performance on the STS dataset, achieving
an F1-Score of 0.098. This high score indicates the model’s
efficacy in standardized semantic similarity tasks, where the
data is typically well-structured and less noisy.

However, the performance of the all-MiniLM-L6-v2 model
on the test corpus was less impressive, with an F1-Score of
0.300. This discrepancy suggests that while the model excels
in controlled environments, it may struggle with the variability
and complexity inherent in real-world data. This highlights a
critical consideration in model evaluation: the importance of
testing models in diverse conditions to ensure their robustness
and generalizability.

Conversely, the hubert sentence hu model demonstrated
consistent and robust performance across both evaluation
scenarios. It achieved the highest F1-Score of 0.490 on the
test corpus, indicating its ability to maintain high precision
and recall even with real-world data. This suggests that the
hubert sentence hu model is particularly adept at handling the
nuances and variations found in practical applications, making
it a reliable choice for real-world semantic similarity tasks.

The xml roberta sentence hu and minilm sentence hu
models also showed commendable performance, though not
as high as the hubert sentence hu model. Their evaluation
metrics highlight their respective strengths and areas for
improvement, contributing valuable insights for future model
development and refinement.

Overall, the evaluation underscores the importance of com-
prehensive testing across multiple datasets to fully understand
a model’s capabilities and limitations. These findings provide
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a solid foundation for further research and development in
enhancing semantic similarity understanding for the Hungarian
language.

VI. CONCLUSION

In this study, we successfully trained and evaluated
three state-of-the-art sentence embedding models tailored
for the Hungarian language: xml roberta sentence hu, hu-
bert sentence hu, and minilm sentence hu. These models
were rigorously tested on a custom news article corpus and
a Hungarian version of the Semantic Textual Similarity (STS)
dataset.

Our results demonstrate significant improvements in the per-
formance of all three models. The xml roberta sentence hu
model exhibited the most substantial reduction in MSE loss
during training, highlighting its efficiency in optimizing em-
bedding quality. The hubert sentence hu model achieved the
highest accuracy and F1-Score on the test corpus, showcasing
its robustness and reliability in practical applications. The
minilm sentence hu model also performed exceptionally well,
particularly in the STS dataset, where it achieved the highest
F1-Score, indicating its effectiveness in semantic similarity
tasks.

These positive outcomes underscore the success of our
training methodologies and the potential of these models
to enhance semantic similarity understanding for Hungarian.
The significant reductions in MSE losses and high evaluation
metrics across different datasets validate the effectiveness of
our approach.

Looking forward, these models present a strong foundation
for further development and integration into larger retrieval-
augmented generation systems. Their performance highlights
the potential for significant advancements in natural language
processing tasks for underrepresented languages like Hungar-
ian. Future work will involve refining these models further,
exploring their application in diverse contexts, and continuing
to improve their performance and robustness.
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mark dataset to evaluate neural language models,” in XVIII. Magyar
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