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Abstract

The chemistry of molecular clouds is a complex system influenced by wide scale of

different factors; amongst them one of the most important is the turbulent diffusion.

Whilst the previous improved models laid emphasis on the chemistry, we wish to

examine the turbulence with special regard to the superdiffusion.
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1 Introduction

The determination of fractial abundances of the constituents of molecular clouds
has a long history. After the initial steady state gas-phase chemistry model
of Herbst & Klemperer (1973) several (pseudo-)time-dependent models with
fixed profiles of physical parameters were developed, considering more and more
chemical reactions, however in the absence of photodissociation (Leung et al.,
1984; Herbst & Leung, 1989; Millar & Herbst, 1990). Moreover, these mod-
els produced the observed fractional abundances (particularly in the case of C
and complex organic molecules) too early and reaching the steady state these
decreased notably below the expected values. However, the consideration of tur-
bulence in later works solved these problems, significantly altering steady state
abundances and radial profiles of the more important species (Xie et al., 1995).
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Since then, these models have been refined: Willacy et al. (2002) demonstrated
that HI is a tracer of turbulent diffusion and refined the ion-neutral reaction
scheme, as well as took into account the gas-grains interaction and H2 and CO
self-shielding; Yate & Millar (2003) integrated in the model of Xie et al. (1995)
the grain accretion effects and adsorption onto grains.

We examined the role of anomalous diffusion, namely how superdiffusion
alters the evolved fractional abundances. After presenting a model with ini-
tial simplifying assumptions we conclude that the problem deserves the further
studies.

2 Turbulence and anomalous diffusion

We would like to study the diffusive transport of certain species in a turbulent
cloud using mixing length theory. Let nH2

the number density of hydrogen,
ni the number density and fi the fractional abundance of tracer i. Thus its
diffusion equation is:

∂ni

∂t
= D

∂

∂r
[
∂

∂r
ni − fi

∂

∂r
nH2

] + Si, (1)

where Si is the source and sink term, which comes from the chemistry reaction-
scheme, and D is the diffusion coefficient, whose determination is fundamental.

It is known from the observations that there is an approximately power-low
relation between the internal velocity dispersion and the size (or mass) of the
cloud (Larson, 1980; Leung et al., 1982). Whilst the turbulent velocity is usually
estimated to be approximately 1 km s−1 in the case of a typical molecular cloud,
the values of the correlation length vary on a larger scale in the different papers.
Xie et al. (1995) define about 10% of the cloud as the correlation length, which
is approximately 0.1-0.5 pc. Yate & Millar (2003) prefer smaller values than
0.5 pc, what they reckon as an upper limit, while in highly fragmented clouds
they figure that the mixing length is between 0.003 and 0.03 pc. Hence these
authors get different values of diffusivity, 3x1022 - 2x1023 and 1021 - 1023 cm2s−1,
respectively.

The diffusion velocity of each species, thus the diffusion timescale, too, de-
pend on its density scale heights being altered continuously by the chemical
reactions, moreover it depends on the cloud radius and is influenced by the ex-
ternal radiation field (Xie et al., 1995). Hence, in the case of diffusion timescales
only an upper limit can be given by R2/D. To estimate the timescales we need
to define the turbulent flux of a tracer after Xie et al. (1995):



Superdiffusion and fractional abundances 181

φi = Dni
1

H
, (2)

where H = ( 1

Hi
− 1

HH2

)−1 is the relative density scale height, which one can

calculate by the density scale height of hydrogen HH2
and the different tracers

Hi (Hj = −nj(
dnj

dr )−1, where j = {i, H2}). Thus the diffusion velocity and the

diffusion timescale are given on scale H vd ∼ D
H and τc ∼ H2

D , respectively. This
timescale is comparable with the chemical timescale, both are around 106 years,
but at higher densities the transport timescale exceeds the chemical timescale,
so there is less effect of the turbulence (Scalo & Elmegreen, 2004).

It can be seen that the diffusion and the chemistry form a very complex
system, so one needs to make some simplification, for example to use constant
diffusivity over the whole cloud. We can take into account eddies with different
sizes using superdiffusion, namely the eddies exceeding the separation r do not
contribute to the further separation of fluid parcels at separation r.

The equation that describes the rms separation of two tracers

r = 2Ktζ, (3)

can be rewritten to get a unique relation between r and t (r = 2K ′(r)t1/2),
so we can formally introduce a ’scale-dependent diffusion coefficient’ (Petrovay,
2001):

D(r) = K ′2 = K1/ζr2−1/ζ . (4)

One can speak about a simple diffusion process if ζ = 1

2
, while the case ζ 6= 1

2

corresponds to anomalous diffusion: superdiffusion if ζ > 1

2
and subdiffusion if

ζ < 1

2
.

3 Our results

At first we studied a simplified problem, neglecting the chemical processes and
estimating the source term by means of the diffusionless solution based on re-
laxation timescales in referenced papers. Our cloud is spherically symmetrical,
the density of H2 is constant and we look for a stationary solution. Thus the
equation of diffusion:

∂n

∂t
= D∇2n + S, where S =

n0 − n

τc
, (5)
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Figure 1: Number density of a tracer as a function of the radius. The solid line

represents the initial (or diffusionless) state, the dashed line the diffusive case and the

dotted line the superdiffusive case. The upright dashed lines represent the inner and

outer computational domain of the cloud. Left: Gaussian, D = 1023cm2s−1, τc =

106year Right: Gaussian with lower standard deviation, D = 1.2x1023cm2s−1, τc =

106year

n0 is the diffusionless equilibrium solution of number density of the tracer and τc

is the characteristic time. Transforming the initial partial differential equation
into the Fourier space we get

∂n̂

∂t
= −Dk2n̂ + Ŝ, where Ŝ =

n̂0 − n̂

τc
, (6)

finally we find the stationary solution of this equation:

n̂ =
n̂0

1 + τcDk2
. (7)

To make the Fourier transform we apply the theorem that an n dimensional
Fourier transform can be replaced a one dimensional Hankel transform, if the
transformable function depends only on r =

√

∑

x2

i (Sneddon (1951)). So in
the case of n = 3 the transformation formulae are:

n̂(k) =

∫

∞

0

r
3

2 n(r)J 1

2

(kr)dr and n(r) =

∫

∞

0

k
3

2 n̂(k))J 1

2

(kr)dk. (8)
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Figure 2: Abundances of a tracer as a function of the radius. Line coding as in Fig.

1. τc = 106year, the diffusivities are 4x1022 (A), 1023 (B) and 1.6x1023 (C) cm2s−1

Left: Gaussian Right: Gaussian with lower standard deviation

In the superdiffusive case we assumed Kolmogorov spectra (ζ = 3

2
) and

scaled the turbulent diffusivity according to the formula D = D0(
k
k0

)−
4

3 . We
only needed defining k0 to know what size of eddies can assign to D0, in the
simple diffusive case used diffusion coefficient.

To simplify the calculations we made the equations dimensionless and ap-
proximated the initial density distribution of the tracer with Gaussian distri-
butions. One of them has the same value at the outer border of the cloud like
the real reciprocal distribution, but the total mass of it greater, the other has
the same total mass, but its outer border is at the half of the real value. We
performed our calculations with different diffusivities and characteristic times
in both cases, concentrating particularly on the difference between the diffusive
and superdiffusive case.

The results from the Gaussian distribution approximation show that further
studies are warranted because the difference between these two cases approaches
a factor of two in certain parts of the cloud. This can be seen better on the
Gaussian distribution with lower standard deviation (see Fig. 1). It is also
visible that with increasing diffusivity the difference between the diffusive and
superdiffusive cases also increases (see Fig. 2). However this difference is the
largest in the innermost part of the cloud; there, as we have mentioned above,
the turbulence has little effect, so our approximation is less suitable within the
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Figure 3: Abundances of a tracer as a function of the radius. Line coding as in Fig.

1. Left: Gaussian with lower standard deviation, D = 1023cm2s−1, the characteristic

times are 106 (A), 7.6x105 (B) and 1.2x105 (C) year. Right: real, τc = 106 year,

D = 1023cm2s−1

radius 1017 cm. The difference between the two cases also increases with larger
characteristic time (see Fig. 3 on the left side). Finally we made our calculations
using a real reciprocal number density profile of a tracer, after Xie et al. (1995),
within the above mentioned radius with constant density. The obtained results
show that in this case also there are similar remarkable differences (see Fig. 3
on the right side).

4 Conclusion

We studied the effect of the superdiffusion on fractional abundances in molecular
clouds using a simplified model. Approximating the initial tracer distribution
with a Gaussian, and using constant density of H2, the received results show
that there are significant differences between the diffusive and superdiffusive
case. In the future we plan to study this question dropping the assumption
of a constant distribution of H2 - since a gradient in the density of the main
component affects the fractional abundance of a tracer (see Equation (1), where
fi = ni/nH2

) - looking for a non-stationary solution of the diffusion equation.
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