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Abstract

In this paper we calculate the luminosity distance - redshift relation for a special type

of flat Friedmann branes with cosmological constant. This special case is singled out by

its simplicity, the luminosity distance being given in terms of elementary functions. We

compare our analytical result with the expresssion of the luminosity distance for the flat

Friedmann-Lemaitre-Robertson-Walker (FLRW) universe and discuss the differences.
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1 Introduction

[Randall and Sundrum (1999)] suggested a new model for the gravitational
interaction acting in five non-compact dimensions, the fifth dimension being
warped. In brane cosmological models, emerging as generalizations of [Randall
and Sundrum (1999)], our observable universe is a four-dimensional space-time
hypersurface (the brane), which has cosmological symmetries and is embedded
in the warped five-dimensional bulk. The standard model interactions are con-
fined to the brane, but gravitational dynamics is modified as compared with
general relativity, at least at high energies (also at late times in the so-called
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induced gravity models). Consequently, the luminosity - redshift relation is also
changed.

The relation between the luminosity distance and redshift is a powerful tool
of the cosmology and has a long history of its own [Perlick (2004); Padmanabhan
(2004)]. In general relativity, a milestone was the work of Mattig [Mattig (1958)],
in which this relation has been derived for the FLRW universe with vanishing
cosmological constant.

In Section 2 we discuss various luminosity distance - redshift relations. Sub-
section 2.1 contains the definition of the radial coordinate distance. In Subsec-
tion 2.2 we use a standard method for the calculation of the luminosity distance
[Starobinsky (2000)] in a FLRW universe with cosmological constant. The result
cannot be represented by elementary functions as it contains elliptic integrals
of the first kind.

In Subsection 2.3 we calculate the luminosity distance - redshift relation for
the flat Friedmann brane embeded in Z2 symmetrically into the five-dimensional
Schwarzschild-anti de Sitter space-time (5D SADS). For a special value of the
brane tension, this relation becomes even simpler than in general relativity,
containing only elementary functions. We briefly discuss the assumptions which
led to this special case. We compare the luminosity distance - redshift relations
for flat Friedmann brane and for FRLW universe with cosmological constant in
the Concluding Remarks.

2 Luminosity distance - redshift relations

We define the luminosity distance [Padmanabhan (2004)] in terms of the lumi-
nosity L and the flux F as:

dL(z) =
( L

4πF

)
1

2

= a0(η0 − η)(1 + z) . (1)

Here a0 represents the value of the scale factor at present time, η0 − η is the
radial coordinate distance of the source, and z is the redshift. In order to find
the luminosity distance - redshift relation, first we need to calculate the radial
coordinate distance.

2.1 The radial coordinate distance

Current observational data indicates [Liddle (2003)] that the universe is spatially
flat. Thus, in this subsection we calculate the radial coordinate distance for the
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spatially flat Friedmann metric:

ds2 = −c2dτ2 − a2(τ)[dη2 − η2(dθ2 + sin2θdϕ2)] . (2)

Light rays, perceived by Earth-based observers, travel along null radial
geodesics:

ds2 = dθ = dϕ = 0 . (3)

Using (3) we can express the radial distance from the metric:

η0 − η =

∫ η0

η

dη =

∫ t0

t

c dτ

a(τ)
=

∫ a0

a

c da

a2H(a)
. (4)

In the last equality we changed from the time variable t to the scale factor a as
integration variable and H denotes the Hubble parameter. In the above formula
the evolution of Hubble parameter is different in the FLRW universe and for a
Friedmann brane.

2.2 The luminosity distance-redshift relation for flat

FLRW universe with cosmological constant

For the flat FLRW, the Friedmann equation which gives to the evolution of the
Hubble parameter is

H2 =
( ȧ

a

)2

=
κ2ρ

3
+

Λ

3
, (5)

where ρ denotes the density of matter, Λ the cosmological constant, and κ2 =
8πG. If we divide this equation with the square of the Hubble constant (the
present value of the Hubble parameter) H2

0 , we obtain:

H2

H2
0

= Ωρ

a3
0

a3
+ ΩΛ , (6)

where we have introduced
Ωρ =

ρ0

3H2
0

, (7)

ΩΛ =
Λ

3H2
0

. (8)

Knowing the evolution of the Hubble parameter, Eq. (5) the luminosity is found
as

dL(z) =
c(1 + z)

3
1

4 H0Ω
1

3

Λ
Ω

1

6

Λ

· [F(ϕ0, ε) − F(ϕ, ε)] , (9)
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where

ϕ0 = arccos

(

1 −
√

3
)

· Ω
1

3

Λ
+ Ω

1

3

ρ

(

1 +
√

3
)

· Ω
1

3

Λ
+ Ω

1

3

ρ

, (10)

ϕ = arccos

(

1 −
√

3
)

· Ω
1

3

Λ
+ Ω

1

3
ρ

(

1 + z)
(

1 +
√

3
)

· Ω
1

3

Λ
+ Ω

1

3
ρ

(

1 + z)
, (11)

and

ε =
1

2
+

√
3

4
. (12)

The function F(ϕ, ε) is the elliptic integral of first kind, with the variable ϕ
and the argument ε. We can see that even in the general relativistic case, the
luminosity distance - redshift relation can be given only in terms of elliptic
functions.

2.3 Flat Friedmann brane

The metric on the Friedmann brane is the same as in the case of FLRW uni-
verse, thus we can use the previous method for the calculation of the radial
coordinate distance. Only the evolution of the Hubble parameter is different for
a Friedmann brane embedded symmetrically into the 5D SADS space-time (for
the most generic form of this equation see [Gergely (2003)]):

H2 =
κ2ρ

3
· (1 +

ρ

2λ
) +

Λ

3
+

2m̄

a4
. (13)

New source terms arise as compared to (5) from the assumptions that our uni-
verse is a brane and there are identical black holes with mass m̄ in both bulk
regions. Here λ is the brane tension. We introduce the following notations:

Ωλ =
ρ2κ2

6λH2
0

, (14)

Ωd =
2m̄

a4
0

. (15)

The radial distance, after a short rearrangement, is

η0 − η =
c

H0Ω
1

2

Λ

∫ a0

a

a da
[(

a3 +
Ωρa3

0

2ΩΛ

)2

+
(

Ωλ

ΩΛ
− Ω2

ρ

4Ω2

Λ

)

a6
0

+ Ωd

ΩΛ
a4
0
a2

]
1

2

. (16)
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Table 1: The values of ΩΛ and brane tension.

ΩΛ λ(10−60TeV 4)

0.704 41.065
0.025 1.509

In general, this integral leads to elliptic functions, however in the special case,
when both the second and the third terms in the denominator vanish, is can
be given in terms of elementary functions. For this, two conditions have to be
satisfied. The first is

Ωd = 0 . (17)

This assumption is realistic at late times because Ωd is proportional to a4
0. Its

direct implication is that the brane, rather than being embedded into the 5D
SADS space-time, is embedded into a five-dimensional anti de Sitter (5D ADS)
bulk. The second assumption is

Ωλ = Ω2

ρ/(4ΩΛ) , (18)

or equivalently
κ2λ = 2Λ . (19)

As observational evidence suggest Ωρ = 0.27 and for flat universe, we have
ΩΛ+Ωλ+Ωρ = 1, a quadratic equation for Ωλ emerges. Both solutions of this
quadratic equation are positive. The values of ΩΛ and λ are collected in Table 1.
We note that these values of the brane tension are much below the minimal value
of λ predicted to be 1(TeV )4 [Maartens (2004)]. However with the conditions
(17) and (18) satisfied, the luminosity distance has a very simple expression:

dL =
1

6

c(1 + z)

2
−1

3 H0Ω
1

3

ρ Ω
1

6

Λ

{

(ln
(1 − h + h2)[1 + h(1 + z)]2

[1 − h(1 + z) − h2(1 + z)2](1 + h)2
+

+ 2
√

3[arctan

√
3

3

( 2

h
− 1

)

− arctan

√
3

3

(2

h
(1 + z) − 1

)}

, (20)

where we have introduced:

h =
( Ωρ

2ΩΛ

)
1

3

. (21)
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Figure 1: Left: The luminosity distance plotted as function of redshift in the range

z = 0..10. The upper curve represents the solution for FLRW universe, the middle and

the lowest are for the Friedmann brane with ΩΛ=0.704 and 0.025, respectively. Right:

The same, in the range z = 0..2.

3 Concluding remarks

We have derived the analytical expressions of the luminosity distances for both
a flat FLRW universe with cosmological constant and a Friedmann brane em-
bedded into 5D ADS bulk. These expressions are substantially different, as they
depend on the Friedmann equation. In the case of the Friedmann brane we have
imposed two simplifying assumptions yielding the luminosity distance in terms
of elementary functions. There are two values of the cosmological constants
and of the brane tension, which are in accordance with these assumptions. The
higher value of the ΩΛ (see: Table 1 ) is very close to today’s preferred value
[Liddle (2003)].

The luminosity distances as function of redshift for all three cases is repre-
sented in Fig. 1. On the two plots, dL is represented from z = 0 to z = 10
and z = 0 to z = 2, respectively. The motivation for the second graph is that
supernova observations extend nowadays up to z = 2. On the plots, we see that
all three luminosity distances grow monotonically with increasing redshift. The
steepest curve belongs to the FLRW universe. The middle curve is for the case
of the brane with the higher value of the cosmological constant. This curve, in
the range z = 0..2, is extremely close to one pertinent to a flat FLRW universe.

Since the values of both brane tensions are much below the theoretically
predicted limit, our brane model qualifies as a ”toy model”. The constraints on
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brane tension [see: Maartens (2004)] imply that Ωλ should be small. Nowadays,
Ωd is also small, being proportional to a4

0. Thus a perturbative treatment can
give rise to a more realistic solution for the luminosity distance for Friedmann
brane models [see: Keresztes et al. (2006)]. However, such realistic solutions
for the luminosity distance will be more complicated than the correponding
expressions in general relativity.
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