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Abstract

We briefly discuss the Hamiltonian formalism of the Kantowski-Sachs space-times with

vacuum, anisotropic fluid and two cross-streaming radiation field sources. For these

models a cosmological time is introduced. New constraints are found in which the fluid

momenta are separated from the rest of the variables. In consequence their Poisson

brackets give an Abelian algebra.
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1 Introduction

The Kantowski-Sachs (hereafter KS) cosmologies have two symmetry proper-
ties, the spherical symmetry and the invariance under spatial translations. The
vacuum solution for this line element is equivalent to the inner Schwarzschild
space-time and exact solutions were also found in presence of some matter fields
for homogenous cosmological models. Kantowski and Sachs [Kantowski and
Sachs (1966)] provided solutions for dust space-times but later on KS geome-
tries with other matter sources were found, such as scalar fields [Barrow et al.
(1997)], prefect fluid [Collins (1977)] and anisotropic fluid [Gergely (1999)] and
exotic fluid [Gergely (2002)] models. Here we give a short overview of the Hamil-
tonian theory of the KS cosmology in the case of vacuum and anisotropic fluid
sources. We employ the equivalence of the latter with the model consisting of
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two, in- and outgoing radiation streams in a stellar atmosphere. We introduce a
cosmological time for the space-time containing colliding radiation streams and
introduce new constraints. These results might represent an important step in
carrying out a consistent canonical quantization and in building up KS quantum
cosmologies.

2 Vacuum Kantowski-Sachs space-times

The line element of KS space-times is given by

ds2 = −dτ2 + H (τ) dh2 + R2 (τ) dΩ2 , (1)

where τ is the cosmological time, h a radial coordinate and dΩ2 is the metric
on the unit sphere. For vacuum this metric can be written the form

ds2 = −dη2 + b2 tan2 ηdh2 + R2dΩ2 , (2)

where we introduced the angle parameter η,

τ = a (η + sin η cos η) + c a, b, c ∈ IR ,

usually employed in homogenous, spherically symmetric cosmologies. With the
coordinate transformation R(η) = a cos2 η the solution (2) can be cast into the
form of the Schwarzschild metric

ds2 = −F (R)dT 2 + F−1(R)dR2 + R2dΩ2 , F (R) = (1 − 2M/R) , (3)

where R < 2M and T = bh are the time- and space-like coordinates, respec-
tively.

The canonical formalism of KS space-times is therefore equivalent to that of
the Schwarzschild solution. In the Hamiltonian theory of Schwarzschild black
holes we use a foliation consisting of spherical surfaces characterized by a con-
stant time parameter t, which is identified to the Schwarzschild time T [Kuchař
(1994)]. The geometry induced on these three-spheres has the form

dσ2 = Λ2(r)dr2 + R2(r)dΩ2 ,

where the functions Λ and R were chosen as canonical coordinates. Then their
conjugated momenta PΛ and PR are derived from the action specified for the
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Schwarzschild space-time [Kuchař (1994)] written in terms of the canonical vari-
ables,

PΛ = −N−1R(Ṙ−R′N r) , PR = −N−1[Λ(Ṙ−R′N r) + R(Λ̇− (ΛN r)′)] .

The Legendre transformation of the Lagrangian gives the Hamiltonian

HG = PΛΛ̇ + PRṘ + NHG + N rHG
r (4)

with super-Hamiltonian and supermomentum constraints

HG = R−1PRPΛ + R−2ΛP 2

Λ
/2 + Λ−1RR′′

− Λ−2RR′Λ′ − Λ−1R′2/2 − Λ/2 ,

HG
r = PRR′ − ΛP ′

Λ
.

The basics of the Hamiltonian formulation do not change if we couple matter
fields to gravity. We only have to enlarge the phase space of gravity by including
the canonical variables of the matter sources. After decomposing the matter
action we can derive the Hamiltonian for the matter fields as well. Then the
constraint equations of gravity must be supplemented with those of the matter
fields, which gives the full of set constraints on the total system.

3 Kantowski-Sachs cosmologies with

anisotropic fluid

Exact solutions for KS space-times with anisotropic fluid sources have also been
found in the form

ds2 = −2aeL2

RdL2 + aeL2

R−1dZ2 + R2dΩ2 , a = −1 , (5)

where

−R = a(eL2

− 2LΦB) , ΦB = B +

∫ L

ex2

dx ,

and L and Z are the time and the radial coordinates [Gergely (1999)]. The
time dependence of the metric components shows that the KS cosmology with
anisotropic fluid is not static. By considering the time evolution of the radial
length R(L) and the co-moving energy density of the Universe, we see that the
KS Universe has a finite lifetime with an initial and a final singularity.
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Anisotropic fluids can be considered as superpositions of two cross-flowing
null dust streams [Letelier (1980)]. Thus the action of an anisotropic fluid with
the co-moving density ρ, the four velocity Uα of the fluid particles and a vector
field Xα describing the direction of the pressure forces is given by

SF = −1

2

∫

dx4
√
−gρ(UαUα + XαXα) , (6)

which is both algebraically and dynamically equivalent to the action of the two
colliding null dust flows with the four velocities uα and vα:

S2ND = −1

2

∫

dx4
√
−gρ(uαuα + vαvα) . (7)

Here the same energy density is chosen for both the dust components so that
the net flow should vanish for the static configuration.

Previously a canonical formalism was developed for two cross-flowing null
dust streams coupled to the geometry by [Bičák and Háj́ıček (2003)]. This
however did not solve the problem of the absence of a time standard for the
colliding null dusts. However, the anisotropic fluid interpretation of two in- and
outgoing null dust streams indicates there may be a possibility to use the same
procedure as in the case of the incoherent dust in order to find an internal time
for the canonical dynamics of colliding null dust streams.

The action with the constraint equations for the spherically symmetric vac-
uum solution is to be supplemented with those of the matter fields. If we write
of the null vector fields in terms of the coordinates Z and L,

uα = WZ,α/
√

2 + RWL,α , vα = WZ,α/
√

2 − RWL,α

and make the same decomposition for the vector fields Uα and Xα,

Uα = WZ,α , Xα =
√

2RWL,α

with W = (aeL2

/R)1/2, the matter actions (6) and (7) can be expressed with
these coordinates as well. By extremizing these actions with respect to the
variables Z, L and the parameter ρ, we obtain equivalent equations of motion
for the null dust and fluid models.

We use the coordinates L(t, r) and Z(t, r) as the canonical variables for the
matter and derive the canonical momenta conjugated to them form the matter
action:

PL = 2a
√

gR2
ρW 2

N
(L̇ − N rL′) , PZ = a

√
g
ρW 2

N
(Ż − N rZ ′) .
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As a result of the Legendre transformation of the Lagrangian in the matter
actions (6) and (7), we obtain the same Hamiltonian for both types of matter
sources

HM = PLL̇ + PZ Ż + NHM + N rHM
Z , (8)

where the super-Hamiltonian and supermomentum constraints imposed on the
matter variables are

HM
⊥ =

[

1

2
√

gρW 2

(

P 2

Z +
1

2aR2
P 2

L

)

+
√

g
ρW 2

2Λ2

(

(Z ′)2 + 2R2(L′)2
)

]

,

HM
r = Z ′PZ + L′PL .

The Hamiltonian (4) of the vacuum equations, together with Eq. (8) de-
scribe the KS space-time with two colliding null dust streams or equivalently,
an anisotropic fluid source. The super-Hamiltonian and supermomentum con-
straints of the total system are given by

H⊥ := HG
⊥ + HM

⊥ = 0 , (9)

Hr := HG
r + HM

r = 0 . (10)

These constraints are replaced with an equivalent set by solving the old con-
straints with respect to PZ and PL. Hence the momenta associated with the
matter can be separated from the other variables in the constraint equations
(9)-(10):

H↑ = PL + h(r; Λ, R, L, Z, PΛ, PR) ,

H↑Z = PZ + hZ(r; Λ, R, L, Z, PΛ, PR) ,

where

h =
√

2aRL′−1

[

Λ
√

G
dZ

dL
−
√

2aR−1HG
r PLZ ′

]

[

(

dZ

dL

)2

+ 2aR2HG
r

]−1

hZ = −
√

2aRL′−1

[

Λ
√

G −
(√

2aR
)−1

hZ ′

]

, G2 = (HG)2 − gabH
G
a HG

b .

Since the momenta PL and PZ are separated from the rest of the canonical
variables, the algebra of the new constraints has strongly vanishing Poisson
brackets and the Dirac algebra of the old constraints turns to an Abelian algebra
of the new ones [Brown and Kuchař (1995)]. The time variable introduced here
can be useful in the description of stellar atmospheres consisting of the in- and
outgoing radiation streams. Our result might provide better prospects for the
canonical quantization of KS cosmologies with cross-flowing null dust streams.
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4 Conclusion

We have studied the Hamiltonian formulation of KS cosmologies. In the case of
vacuum, the KS space-time is equivalent to the exterior Schwarzschild solution
and we can use the canonical theory developed for Schwarzschild black holes.
In static KS space-times with spherical symmetry, filled with an anisotropic
fluid, the matter source is equivalent to two cross-streaming radiations. Thus
the proper time of the dust particles used in the Hamiltonian treatment of the
fluid space-times could also be introduced as a time variable in the canonical
formalism of the colliding null dust streams. We have derived a new set of
constraints for the fluid or colliding null dust variables as well, in which the
canonical momenta of the matter are separated from the rest of the variables.
As a result, we have obtained an Abelian constraint algebra. Our treatment
could give new possibilities for the discussion of quantum KS cosmologies with
anisotropic fluid of colliding null dust streams.
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