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Abstract

Here we present the basics of the method for determining the polarization states h+

and h× of the detectable gravitational waves emitted by a compact spinning binary

system. The waveform and the dynamics of the binary are described with the use of

the post-Newtonian (PN) approximation up to 1.5 PN relative order, related to the

leading order newtonian expressions. Beyond point mass effects we investigate the

influence of the rotation of the bodies on the waveform to linear order, in the case of

eccentric orbits.
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1 Introduction

Compact stars forming binary systems are promising sources of gravitational
radiation which detection is expected by the gravitational wave observatories,
i.e. LIGO, LISA, VIRGO, TAMA and GEO600. For the extraction of the true
signal from the noisy output of the detectors accurate knowledge of the gravi-
tational waveforms emitted by the binary is required. Thus, the construction of
ready to use templates for gravitational waves is an important challenge in the
investigation of detectable wave signals.

Many works have determined the form of the detectable gravitational wave
signals emitted by compact binaries formally in terms of the dynamical prop-
erties of motion (Kidder, 1995; Will and Wiseman, 1996; Apostolatos et al.,
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1994; Blanchet, 2001), but there exist fewer results in the literature where the
detectable waveform is computed explicitly in terms of time or a useful param-
eter.

Here we present the method to describe the time evolution of the detectable
gravitational waveform of a binary system. To fully integrate the problem one
can use the so-called generalized true anomaly parametrization of the orbit
(for further details see (Gergely et al., 2000)). Using this parametrization of
the radial motion one can express the contributions to the gravitational wave
polarizations h+ and h× up to 1.5PN order in the case of eccentric orbits.

Sec.II is an introduction to the world of detectable gravitational waves. We
introduce the basic quantities and the formalism used by the theory of detection
of these gravitational waves. The description of the motion is shown in Sec.III,
where we present the method to determine the evolution of the elements of
the motion. In Sec.IV we show how to evaluate the polarizaton states of the
detectable gravitational waves. In the last section we collect the steps needed
to determine explicitly the dynamics of the waves. We use the c = G = 1
convention.

2 Gravitational waves in linearized gravity

The true signal of a laser-interferometric gravitational wave detector can be
expressed by the linear combination of two polarization states h+ and h×:

h(t) = F+(α, β, ξ)h+(t) + F×(α, β, ξ)h×(t) , (1)

where F+ and F× are the so-called beam-pattern functions depending on the
direction of the source (angles α, β) and the polarization angle (ξ).

The polarization states h+ and h× can be projected from the transverse-
traceless tensor hij

TT describing the perturbations of the metric using an appro-
priate gauge. To be able to describe this projection we introduce the orthonor-
mal triad (N, p, q). Vector N is the direction of the line of sight, and we choose
p to lie in the direction of the node line (the intersection of the orbital plane
of the source and the so-called plane of the sky, the plane perpendicular to N),
and q = N× p. This way

h+ =
1

2
(pipj − qiqj)h

ij
TT , h× =

1

2
(piqj − qipj)h

ij
TT . (2)

In this work we present the basics of the method of this projection and the
determination of h+ and h× in terms of time or an appropriate parameter.
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3 Description of the motion

The description of the projection method leads to the clearest expressions in
the comoving system fixed to the orbital plane and the separation vector r.
The z axis of this coordinate system is fixed to the direction of the Newtonian
angular momentum LN := µr×v (v denotes the relative velocity vector) which
is perpendicular to the orbital plane, and the x axis to the separation vector.

To be able to determine the dynamics of the elements of motion needed we
introduce an invariant coordinate system which do not move. Since the total
angular momentum J is constant up to 2 PN order we fix the z axis of this
system to it. We choose the x and y axes of the invariant system in a way that
the form of the vector N is

N =





sin γ
0

cos γ



 (3)

in this system, where γ is the constant angle between J and N.
The transition between the comoving and invariant systems is described with

so-called Euler-angles. With these angles the separation vector in the invariant
system has the form

r = r





cosΦ cosΨ − cos ι sin Φ sinΨ
sin Φ cosΨ + cos ι cosΦ sinΨ

sin ι sin Ψ



 , (4)

where r is the length of the separation vector, ι is the angle between LN and J

and Φ shows the direction of the intersection of the orbital and invariant planes
(determined by LN and J). This way Φ represents the precession of LN over J.
Ψ describes the evolution of the separation vector in the orbital plane.

In this case every vector u which is given in the invariant system, in the
comoving system will become

u′ = Rz(Φ)Rx(ι)Rz(Ψ)u , (5)

where the matrix Rxi
(α) denotes the rotation about the xi axis with angle α.

To be able to determine the dynamics of the system we have to evaluate the
equations for the length of the separation vector and the Euler-angles.

The basic equation of the description of the motion is the radial equation of
the motion evaluated from the Lagrangian formalism

ṙ2 =
2E

µ
+

2m

r
−

L2

µ2r2
+

2ELσ

mµ2r2
−

2(2LS + Lσ)

µr3
(6)
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where E and L are constants of the motion, µ is the reduced and m is the total
mass of the system, and S := S1 + S2 and σ := m2/m1S1 + m1/m2S2.

To describe the time evolution of the elements of the motion up to 1.5PN
order one has to integrate the spin precession equations linearly in spin

Ṡ1 = (4 + 3
m2

m1

)
G

2c2r3
J × S1 (7)

Ṡ2 = (4 + 3
m1

m2

)
G

2c2r3
J × S2 . (8)

From the Lagrangian formalism of the motion one can determine the form
of the total angular momentum

J = LN + LSO + S1 + S2 (9)

where the explicit form of the spin-orbit angular momentum can be found in
(Gergely et al., 1998).

Using the form of the relative velocity vector in the comoving system and
the components of the total angular momentum in the invariant system (since in
the invariant system its first and second components vanish and the third one
is constant) one can determine all the equations needed to evaluate the time
evolution of every elements of the motion which is needed to determine the time
dependence of the polarization states.

We choose a parametrization of the orbit r = r(χ), which gives a generaliza-
tion of the Keplerian true anomaly parametrization, see (Gergely et al., 2000).
With the use of this parametrization we can integrate r, solve the spin preces-
sion equations, evaluate the length and the components of the relative velocity
and the total angular momentum vectors too. After all we can determine the
parameter dependence of the angular variables.

4 Determining waveform polarization states

To be able to evaluate the projection of the polarization states we need to
determine the components of the N, p, q triad in terms of the elements of the
motion.

At first we take a look at vector N. Its form in the invariant system is given
before, see Eq.(3), and in the comoving one it changes to

N =





cosΨ cosΦ sin γ − sin Ψ cos ιN sin Φ sinγ + sin Ψ sin ιN cos γ
− sinΨ cosΦ sin γ − cosΨ cos ιN sin Φ sin γ + cosΨ sin ιN cos γ

sin ιN sin Φ sinγ + cos ιN cos γ



 , (10)
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where we used the inverse of the transformation law Eq.(5).
Since there are three conditions for the vector p, it can be determined easily

in the comoving system. It is a unit vector which is perpendicular to N and
LN . After using all the conditions, the form of p becomes

p =
1

N





sinΨ cosΦ sinγ + cosΨ cos ιN sin Φ sinγ − cosΨ sin ιN cos γ
cosΨ cosΦ sin γ − sin Ψ cos ιN sinΦ sin γ + sin Ψ sin ιN cos γ

0



 , (11)

where

N =
√

N2
x + N2

y =
√

1 − N2
z =

√

1 − (sin ιN sin Φ sinγ + cos ιN cos γ)2 , (12)

and we can calculate the components of vector q with

q = N× p . (13)

In the post-Newtonian approximation the transverse-traceless tensor can be
decomposed into terms corresponding to different PN orders and effects, see
Eqs.(3.21) in (Kidder, 1995). Using this result and Eqs.(2) we can evaluate the
contributions to the polarization states. Our notation is similar to the one given
in (Kidder, 1995):

h+

×

=
2µ

D

[

h+

×

N + h+

×

0.5 + h+

×

1 + h+

×

1SO + h+

×

1.5 + h+

×

1.5SO
]

, (14)

where D is the distance between the detector and the source. hN terms denote
the quadrupole (or Newtonian) expressions, h0.5, h1 and h1.5 are corrections
corresponding to higher PN orders, h1SO and h1.5SO are the spin-orbit terms.
These contributions can be derived with the use of the formal expressions given
in (Kidder, 1995) and (Will and Wiseman, 1996).

Since the expressions of the terms according to different orders and effects
are rather long we give only two examples of them, namely the Newtonian and
the lowest order spin-orbit contributions in the case of the ”plus” polarization
state:

hN
+ =

(

ṙ2 −
M

r

)

(p2
x − q2

x) + 2v⊥ṙ(pxpy − qxqy) + v2
⊥(p2

y − q2
y) ,

h1SO
+ =

m2 + m1

r2m2

[(qS1)px + (pS1)qx] −
m2 + m1

r2m1

[(qS2)px + (pS2)qx] . (15)
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5 Conclusions and remarks

After all the method is the following. After determining and solving the equa-
tions of motion the results can be inserted into the components of the N, p, q

triad. With the evaluation of the components of the relative velocity and spin
vectors we have all the quantities which are to be substituted into the expres-
sions of h+ and h×. This way (neglecting higher-order spin corrections) we get
the evolution of the polarization states of the detectable gravitational waveform.

To be able to find the effects of the rotation of the bodies and the eccentricity
of the orbit one may use this method in the spinless and circular orbit cases too.
The circular orbit case has the advantage that it can be integrated explicitly
in time, however the meaning of the circular orbit is highly nontrivial in a
perturbative sense.

In the future the knowledge of the form of the detectable gravitational waves
emitted by a compact binary can be a starting point of a measurement method
for determining the main features of such compact binaries with gravitational
wave spectroscopy. Besides astronomy and radioastronomy the detection of
these gravitational waves may become an important tool in the exploration of
our universe.
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