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ABSTRACT

The paper analyses the Loss Given Default (LGD) rates of residential mortgages, using a model based on
stochastic collateral value. The implementation of the model is based on exponential Ornstein-Uhlenbeck
processes fitted to the Hungarian regions’ house price indices. According to the model results, in case of a
mortgage with a 80% loan-to-value ratio at origination, the expected LGD is around 30–40%, depending on
the region. The highest LGD rates are estimated for villages, while the lowest rates are expected in Budapest
and cities in the middle of the country. The range of the regional differences can reach 7 percentage points.
According to the LGD Risk index based on the aggregated model, the LGD risk profile of recently issued
mortgages has improved significantly since 2009 in Hungary.

Due to the strong negative relation between the house prices and mortgage default rates, the expected
return on defaulted collateral value tends to be low. The results could be relevant for credit institutions in
their mortgage origination decisions and enhance analysis of lending processes and the associated risks.
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1. INTRODUCTION

The determination of credit risk losses is influenced not only by the probability of default (PD)
but also by the extent of loss given default (LGD). While there are several advanced solutions for
PD modeling of mortgages in Hungary (Banai et al. 2013; Pollák – Popper 2021; Szabó 2022;
Burger 2022), the methodologies for estimating LGD are not as well-developed. This deficiency
is not limited to a specific country, as it is also evident in the international literature. However,
accurate estimation of LGD is crucial for risk management processes within financial institu-
tions, as it directly impacts lending decisions, capital adequacy assessment, and expected credit
losses. Moreover, financial supervisors have an interest in developing LGD models as well, to
ensure that lending institutions meet capital requirements and to assess the resilience of the
financial system to potential distress. The 2008 financial crisis emphasized the importance of
accurate modeling of credit risk components for prudent risk management, as oversimplified
models can jeopardize financial stability (ECB 2007). Therefore, the development of more
advanced tools for LGD modeling not only enhances risk management practices but also pro-
motes financial stability by replacing commonly used constant LGD models in the industry
(James 1991; Jokivuolle – Peura 2003).

In the case of PD models, numerous well-known risk drivers exist, including the loan-to-
value (LTV) ratio, borrower income, credit history, behavioral patterns, employment stability
and fraud events (Deng et al. 1996; Calem – LaCour-Little 2004; Ambrose et al. 2004; Keresztúri
et al. 2023). Conversely, LGD ratios are primarily influenced by the collateral quality, LTV ratios
(Leow – Mues 2012), and the foreclosure process (Pelizza – Schenk-Hoppé 2020), with
borrower-specific information playing a lesser role. Many studies have highlighted a strong
correlation between PD and LGD components (Altman et al. 2005; Acharya et al. 2007) due
to underlying macroeconomic factors such as house price dynamics. Others have highlighted
that fire sales in times of financial distress can play a significant role in determining liquidation
values (Shleifer – Vishny 1992), and as a result, increasing the co-movement of PD and LGD.
This correlation further underscores the importance of comprehending the drivers of LGD and
accurately calculating the severity of losses.

This paper builds upon the research conducted by Frontczak and Rostek (2015) and aims to
investigate an LGD model that incorporates a stochastic collateral value. The model’s param-
eterization involves fitting exponential stochastic Ornstein-Uhlenbeck processes to Hungarian
house price indices while aligning other parameters with those found in the international
literature. The resulting model outcomes are compared to the figures generated by a benchmark
model employed by the ECB (2018).

My contributions to the literature are threefold:

� The utilization of this model offers the advantage of effectively distinguishing between various
factors that influence the LGD rate, such as the expected appreciation of collateral, expected
return, and liquidation costs. The primary focus of the study centers around examining the
impact of changes in house prices. Although the modeling framework allows for the quan-
tification of stress scenarios, the main objective is to establish expected LGD rates. While the
modeling framework is based on Frontczak – Rostek (2015), the implementation consists of
several novelties.
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� Due to the granularity of house price indices disaggregated by region and settlement size
(capital, city, municipality), it becomes possible to analyze the LGD rate at different
geographical levels. This enables a comparison of the LGD risk across diverse regions and
settlement types.

� As the resulting expected LGD function solely relies on the loan-to-value (LTV) ratio at
origination, it becomes feasible to construct a through-the-cycle LGD risk index using the
LTV distribution of new loans. This index provides an estimation of the expected LGD risk
within the banking sector based on the quality of the loan portfolio. By capturing the
emerging risks associated with relaxed lending conditions in the banking sector, this theo-
retically grounded measure offers a more comprehensive assessment compared to simpler
measures like average LTV value dynamics. Mortgage’s LTV developments are important due
to their primary role in macroprudential regulation (Mérő 2017; Kim 2021). Moreover, the
examination of the results obtained from stochastic processes fitted to Hungarian house price
indices contributes a novel perspective to the existing literature. By analyzing the process
parameters segmented by region and settlement type, it becomes possible to formulate
statements concerning return and risk in property investments.

The subsequent Section 2 provides a summary of the relevant literature, while Section 3
outlines the methodology employed. Section 4 presents the data utilized in the study, Section 5
describe the empirical results and the modeled value of the expected LGD. Finally, Section 6
concludes the paper by providing a summary of the findings.

2. LITERATURE REVIEW

The available literature extensively covers studies on the probability of default (PD) parameter of
credit risk, whereas fewer papers focus on modeling loss given default (LGD). The LGD liter-
ature is characterized by a division based on the granularity of the data employed. Some studies
utilize granular transaction-level data and statistical models to predict transaction- and portfo-
lio-level LGD indicators. Others predominantly rely on aggregate and publicly available data for
modeling purposes. Granular models offer better fit and more accurate predictions, while
aggregate models are suitable for analyzing mortgage markets lacking uniform, granular datasets
(Palmroos 2016a). Aggregate models also require fewer inputs, enabling the definition of less
detailed stress scenarios for stress tests.

Several studies concentrate on modeling LGD in the corporate segment proposing models
based on granular data. For instance, Gupton and Stein (2002) and Chalupka and Kopecsni
(2009) examined LGD in the corporate loans and bonds context. One of the main findings for
corporate exposures that holds across different asset classes is that LGDs tend to have bi-modal
distributions (Qi – Zhao 2011). In the realm of retail loans, Bellotti and Crook (2012) model
LGD rates of credit cards using United Kingdom (UK) data from 1999 to 2005. Their findings
revealed that macroeconomic variables, alongside customer data variables, exhibit significant
explanatory power. Regarding residential mortgages, Leow and Mues (2012) conducted an
empirical analysis using data from a UK bank. They employed a two-stage regression model,
which outperforms a single-stage regression approach. According to their findings, the discount
rate on the sale price of a repossessed property is an important factor of LGD. Qi and Yang
(2009) investigated LGD rates of high loan-to-value (LTV) mortgages. Their study reveals that
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the LGD is better explained by the current LTV (CLTV) rather than the LTV at origination, and
that mortgage loss severity is notably higher in distressed housing markets. Calabrese (2014)
proposed a methodology for calculating expected downturn LGD following the Basel regulation,
incorporating a mixture of expansion and recession distribution. The results, based on an Italian
dataset, suggest that downturn values can exceed average LGDs by up to 17 percentage points.

Frye’s (2000) model, based on aggregate data and theoretical foundations, highlights the
correlation between collateral value reduction and increasing default rates. He established a link
between the change in collateral value and PD through a systematic risk factor. Jokivuolle and
Peura (2003) investigated LGD in corporate loans and bonds, considering the relationship
between stochastic collateral value and business valuation. Their findings demonstrate that
expected LGD decreases as the drift of collateral value increases but rises with increased vola-
tility of collateral value. Van Damme (2011) presented a general framework for incorporating
stochastic LGD models into credit risk management and derivative pricing processes. The pro-
posed framework is also suitable for estimating downturn LGDs.

Frontczak and Rostek (2015) introduced the modeling of residential mortgages’ LGD with sto-
chastic collateral value. Recognizing that LGD resembles the payoff of a long-put option, they
employed derivative pricing methods. Building upon Fabozzi et al. (2012), Frontczak and Rostek
utilized an exponential Ornstein-Uhlenbeck process to model residential property values. Pelizza and
Schenk-Hoppé (2020) demonstrated that defaulted loans in the Italian mortgage market may be
overvalued due to higher-than-expected LGD rates. Examining LGD models used in stress testing
provides a more comprehensive understanding of LGD modeling’s practical applications. Siemsen
and Vilsmeier (2017) employed a CLTV-LGD function to quantify LGD in the Bundesbank’s
mortgage stress test, by deriving a meta-dependency between CLTV and LGD using the results of
Qi and Yang (2009) and Palmroos (2016b). A polynomial regression is applied to combine the results
into a continuous function. Holló (2009) calculated LGD during a stress test of Hungarian retail
mortgages based on the portion of LTV exceeding 100% at the time of default, updating the value of
collateral homes using the house price index scenario. Tajti (2011) analyzed an empirical interbank
LGD database and found that the average LGD for home equity loans in Hungary is lower (16.26%)
than for residential mortgages (27.11%), albeit with considerable standard deviation in both cases.
Tajti also identified a bimodal distribution of registered LGD ratios for Hungarian banks, potentially
resulting from technical defaults recorded in the database with zero losses on the instruments.

The proposed model requires less data than the model employed by Tajti (2011), making it
suitable for analyses targeting the entire banking system or situations with data shortages. The
model parameters are easily interpretable, and the solid theoretical foundation adequately re-
flects the non-linear relationship of various parameters or variables. This is particularly relevant
for the relationship between LTV and LGD rates, as demonstrated by the presented results.
A comparison with other relevant models is shown in Table 1.

Berki and Szendrei (2017) analyzed house price dynamics in Hungary using the MNB House
Price Index to examine the long-run equilibrium level of house prices determined by funda-
mentals and the difference between observed prices. Their VECM methodology results indicate
a cointegration relationship between the house price index, average new housing loans, house-
hold disposable income, and the stock of dwellings. The authors find that house prices take time
to return to equilibrium levels and observe a house price gap. These results are in line with the
related international literature (Glaeser – Nathanson 2017), where the role of idiosyncratic
movements of individual house prices is also emphasized (Case – Schiller 1989).
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3. METHODOLOGY

3.1. Stochastic LGD model

When mortgages default, banks can mitigate their losses using the collateral. If the market value
of the real estate serving as collateral was higher than the bank’s exposure at default (EAD), and
the bank would be able to sell it at the market price immediately, realising zero loss on the
transaction. But if the cash flow from selling the collateral (including the time value of money
and workout costs) is less than the outstanding debt, the loss equals the difference between the
EAD and the collateral value. In formulaic terms:

Loss ¼

8><
>: EAD� ~CTD; ~CTD<EAD

0; ifEAD≤ ~CTD

9>=
>; (1)

where Loss is the loss suffered by the bank, TD is the time of default, and ~CTD is the present value
of cash flows from selling the collateral, at the time of default. ~CTD is equal to the value of
collateral at the time of liquidation (CTL , where TL is the time of liquidation), discounted at an
expected return of r, less the k cost ratio:

~CTD ¼ e−rðTL−TDÞð1� kÞCTL (2)

From a modelling perspective, the workout cost ratio (k) can also be seen as the discount
factor for the defaulted debtors’ properties. It can also be interpreted as a discount factor of
foreclosures, which is a popular way for liquidating collateral. The bank’s expected return from
the collateral’s cash flow (r) is the sum of the risk-free return and the required risk premium,
which compensates for the uncertainty of the idiosyncratic real estate price.

Building on the above-mentioned notions (Equations (1) and (2)), the LGD can be expressed
as a function of the collateral value as follows:

LGDTD ¼ max

�
0;
EAD� e−rðTL−TDÞð1� kÞCTL

EAD

�
(3)

The parallels can be seen here between LGD and the payoff of a long-put option (for the
~CTD
EAD

process, with a strike of 1).

Table 1. Model comparison

Tajti
(2011) Holló (2009)

Siemsen – Vilsmeier
(2017)

ECB
(2018) Proposed model

Data
requirements

Granular Aggregate Aggregate Aggregate Aggregate

Model type Reduced Structural Reduced Structural Structural

Methodology Regression Excess
exposure

Metadependency Formula Stochastic
modeling

Source of data Hungary Hungary USA, Finland Unknown Hungary
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Accordingly, the expected LGD is:

E½LGDTD� ¼ E

�
max

�
0;
EAD� e−rðTL−TDÞð1� kÞCTL

EAD

��
(4)

The expected value can be derived by defining an appropriate CT process, using integral
functions similar to pricing the option. Unlike in option pricing, estimating the LGD requires
a “real world” probability distribution, therefore the parameters of house price developments
can only be defined using historical data.1

3.2. Stochastic house price processes

After defining an appropriate stochastic process, the distribution of the collateral value at the
time of liquidation can be derived. The collateral value process was modelled as the sum of a
general real estate market process and a process describing idiosyncratic price movements. The
cumulative logarithmic return of the collateral value (Yt) is thus derived as the sum of the
market-based cumulative log return (Ymarket

t ) and the idiosyncratic cumulative log return (Yidio
t ):

Yt ¼ Ymarket
t þ Yidio

t : (5)

The collateral value can be expressed with the following equation:

Ct¼ C0eðYmarket
t þYidio

t Þ ¼ C0e
Yt : (6)

Fabozzi et al. (2012) recommend using an exponential Ornstein–Uhlenbeck (OU) process for
modelling the price level of the real estate market. The proposed process satisfies three phe-
nomena observed in international residential property markets:

� property prices fluctuate in the short term but reverse to a long-run trend (mean reversion),
� property market returns are autocorrelated,
� property prices are guaranteed to be positive at all times.

If real estate prices follow an exponential OU process, the log of the prices (Ymarket
t ), which

can be seen as the cumulative log return of house price indices, follows an OU process in all 0<t
periods. The stochastic differential equation defining the OU process is:

dYmarket
t ¼

�
dφt

dt
þ κ

�
φt � Ymarket

t

��
dt þ σmarketdWmarket

t (7)

where φt is the long-run trend of logarithmised house price indices, and it can be approximated
based on a simple linear model. κ denotes the parameter for the strength of mean reversion, and
σmarket shows the volatility of the process. Wmarket

t is the standard Brownian motion, which is
responsible for the uncertainty of the process.2 The three terms on the right side of the equation
are responsible for trend growth, mean reversion and uncertainty, respectively.

1No replicating portfolio has to be created during this process. It would only be required when looking at how banks can
hedge their exposure to property market price changes through the LGD by replicas built using property market assets.
2The stochastic differential equation is an extension of the Vasicek Interest Rate Model, using a trend instead of the long-
run average.
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The solution of the stochastic differential equation is the following Gaussian process for all
t<T times:

Ymarket
T ¼ φT � �

φt � Ymarket
t

�
e−κðT−tÞ þ σmarket

Z T

t
e−κðT−sÞdWmarket

s (8)

Based on the solution of the stochastic differential equation, the conditional growth of the Yt

process (μYÞ can be derived,

μmarket
Y ¼ E

�
Ymarket
T jYmarket

t

	 ¼ φT � �
φt � Ymarket

t

�
e−κðT−tÞ (9)

along with its conditional standard deviation (σmarket
Y ),

σmarket
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
Ymarket
T jYmarket

t

	q
¼ σmarket

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e−2κðT−tÞ

2κ

r
: (10)

The term on the right side of Equation (10) shows the volatility-reducing effect of mean
reversion. It also has to be noted that if κ is close to zero, i.e. when mean reversion is very low or
non-existent, the OU process is reduced to a Brownian motion with a drift. Therefore, the
conditional standard deviation approximates σmarket too, if the mean reversion cannot mitigate
the uncertainty of the process. The results obtained so far for the real estate market process are
practically identical to Frontczak and Rostek (2015), the contribution to the theoretical model
framework is the addition of the idiosyncratic price process described next.

Besides the general property market developments, the collateral value is also influenced by
the idiosyncratic price movements of the given collateral. These idiosyncratic price movements
cannot be captured by house price indices, which are designed to filter these out. The following
assumptions were applied to the idiosyncratic price movements measured in log returns:

� expected value of zero,
� standard deviation reflects the idiosyncratic standard deviation of properties,
� independent from overall real estate market trends,
� independent from earlier and later idiosyncratic price movements,
� follow normal distribution.

Accordingly, the cumulative idiosyncratic log returns (Yidio
t ) can be written as follows:

dYidio
t ¼ σidiodWidio

t ; (11)

where σidio is the standard deviation of the idiosyncratic log returns, Widio
t is the standard

Brownian motion, which is independent from the Wmarket
t process shaping market returns. The

solution shows that its conditional variance is as follows:

Var
�
Yidio
T jYidio

t

	 ¼ �
σidio

�2∙ðT � tÞ (12)

The results of the market and idiosyncratic processes can be used to determine the distribu-
tion of collateral value. Substituting the processes into Equation (5), one arrives at the following
equation, according to which this process is also a Gaussian process:

YT ¼ φT � �
φt � Ymarket

t

�
e−κðT−tÞ þ σmarket

Z T

t
e−κðT−sÞdWmarket

s þ σidio∙Widio
T ; (13)
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the expected value and variance of which is as follows, taking into account that the two processes
are independent:

μY ¼ μmarket
Y þ 0 ¼ φT � �

φt � Ymarket
t

�
e−κðT−tÞ (14)

σ2Y ¼ Var
�
Yindex
T jYindex

t

	þ Var
�
Yidio
T jYidio

t

	 ¼ �
σmarket

�21� e−2κðT−tÞ

2κ
þ �

σidio
�2∙ðT � tÞ (15)

By looking at the log of house prices, it can be seen about house price levels that the CTLjCt

probabilistic variable follows a lognormal distribution in all t<T periods, as its log (YTLjYt)
follows a NðμY ; σ2YÞ distribution. If the LGD function from the previous section is substituted
as a function of CTL (Equation (3)), along with the previously determined CTLjCt distribution, the
integral equation of the expected LGD is derived, which can be solved by substituting Equa-
tion (6). The integral equation can be interpreted as the expected value of the transformed
property price, where the first term is the real estate price transformed with the LGD function,
and the second is the distribution of the property price.

E½LGDTD� ¼Z
max

�
0;
EAD� e−rðTL−TDÞð1� kÞCTL

EAD

�
1

C
TL

ffiffiffiffiffiffiffiffi
2πσ2Y

p exp

�
−
1
2

�
lnCTL � ðlnCt þ μYÞ

σY

�2� (16)

The expected LGD formula can be further developed by solving the integral,

E½LGDTD� ¼ Φð−dÞ � ð1� kÞe−rðTL−TDÞ Ct

EAD
eμYþ

1
2σ

2
YΦ

�
−ðd þ σYÞ

�
(17)

where d ¼ ln Ct
XþμY
σY

, and X ¼ EAD
1− ke

rðTL−TDÞ.
In line with intuition, the produced expected LGD formula decreases in the Ct value, as a

higher initial collateral entails lower LGD values. Similarly, as the Ct
EAD ratio, or the LTV, grows,

loss declines (Frontczak – Rostek 2015). The formula in Equation (17) was validated with Monte
Carlo simulations (see Appendix).

3.3. Calibrating the collateral value parameters

The collateral value parameters ðμY ; σYÞ were determined using market parameters and idio-
syncratic standard deviation, as shown in Equations (14) and (15). The market parameters were
estimated based on the house price index process, while the idiosyncratic standard deviation was
determined using results from the international literature. The house price trend was not
estimated with the trend of the raw house price index, but instead a trend was calculated using
the house price index and a default rate time series. This method controlled for the covariance of
mortgage defaults and housing market developments. Applying this method was necessary
because low real estate market returns are overrepresented among defaulted loans due to the
composition effect caused by the defaults.3

3It is necessary to consider that default events are not independent of the return, when estimating the average return on a
defaulted collateral. This phenomenon implies a composition effect, as there are more observations when the default
rates are high.
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The following sections detail and justify the calibration steps. First, the data cleaning per-
formed on the raw house price index process and the estimations of the OU parameters are
described, as recommended by Fabozzi et al. (2012). Then the modified trend function is
defined. Finally, the idiosyncratic standard deviation is incorporated.

Choosing an appropriate house price index is critical for modeling property price develop-
ments. In Hungary, three well-known indices are published quarterly: the MNB House Price
Index, the Hungarian Central Statistical Office (HCSO) index, and the Takarékbank index. The
MNB House Price Index, created by Banai et al. (2017) using hedonic regression and period pair
estimates, offers an aggregate index for the entire country, along with a detailed breakdown by
region and settlement size. Since this breakdown is essential to produce regional results, the
MNB index was used during the analysis. The estimation of the parameters of the exponential
OU process fitted on the house price index was performed in two stages, as recommended by
Fabozzi et al. (2012). Fabozzi et al. (2012) advise that as a first step, a linear trend model –
φt ¼ aþ b∙t – should be estimated for a logarithmised price index (Yindex

t ).

Yindex
t ¼ φt þ ~Yt ¼ aþ b∙t þ ~Yt (18)

The derived ~Yt is the detrended transformation of the log house price process. Therefore, the
detrended part is derived as the error term of the trend model, with an expected value of zero,
and it follows an OU process according to the model. Then the parameters of the derived OU
process with a constant mean, are estimated with the least square error (LSE) method outlined
by Chaiyapo and Phewchean (2017).

Substituting T ¼ t þ Δt into Equation (8), using the results of Equations (9) and (10) and
the substitution Yindex

t ¼ φt þ ~Yt, the following discretised equation is derived, where ΔWmarket
t

is the change in the Brownian motion with an independent and identical distribution, following
a Nð0; 1Þ distribution:

~YtþΔt ¼ ~Yt∙e−kΔt þ σmarket

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� expð−2kΔtÞ

2k

r
ΔWmarket

t (19)

The parameters of the equation can be estimated with the following model:

~YtþΔt ¼ β∙ ~Yt þ εtþΔt (20)

where β ¼ e−κ∙Δt, εtþΔt ∼ N

�
0; σmarket

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− expð−2κΔtÞ

2κ

q �
is independent and identically distrib-

uted. By transforming the equations, one arrives at the following results:

κ ¼ −logðβÞ
Δt

(21)

σmarket ¼ sdðεtÞ∙
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2κ
1� expð−2κΔtÞ

s
(22)

During the estimation, the value of Δt was set as one quarter of a year, based on the data
frequency in the house price index.

In distressed economic times, default rates often spike all across the economy, including the
mortgage market (Koopman 2009; Ali 2010). Moreover, housing market returns typically under-
perform in times of stress (Rünstler 2018). Accordingly, low returns are overrepresented among
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defaulted loans, just like defaults occurring in times of stress are overrepresented among non-
performing loans in the whole period. Therefore, the historical average of house price returns
does not equal the average price of the homes used as collateral for the non-performing loans,
simply because of the timing of the returns.4

Assuming that the collateral is sold in a similar housing market environment as observed at
the time of default, the historical average return on the collateral (ccollt ) can be approximated with
the weighted house price index returns (cindext ) by using default rates from the given year (DRt),
as the number of collateral items covering the non-performing loans is proportional to the
default rate. Introducing DR for the average of the DRt time series, the estimation of the his-
torical average is formulaically done as follows:

ccollt ¼
Xn
t¼1

cindext ∙
DRt

DR
∙
1
n

(23)

The ccollt thus derived is used in the trend model of the collateral, instead of the b coefficient
estimated for the unmodified house price index. The other market OU parameters (σmarket, κ)
used during modelling still come from the detrended and logarithmised house price index ð ~YtÞ.

No published papers have been attempting to determine the idiosyncratic standard deviation
in the Hungarian housing market, therefore the results of international studies were used. Miller
and Pandher (2008) employed a two-factor model to examine the price changes in American
sub-housing markets distinguished by ZIP codes. The two explanatory factors were equity
market returns and the changes in the national house price index, which helped the authors
adjust for the systematic economy-wide risks and the overall risk of the housing market. They
estimated that the representative idiosyncratic risk was around 10%. Giacoletti (2021) analysed
individual house price transactions in California, adjusting for the price changes in the ZIP
code-level housing market to determine abnormal returns related to individual homes. Accord-
ing to the curve of the idiosyncratic standard deviation that they derived, idiosyncratic volatility
is 19% in the case of the homes sold within 2 years, 12% for those sold within 5 years, and only
7.5% for those sold within 15 years. Based on the results from the international literature, the
price changes of individual houses may experience an annualised idiosyncratic standard devi-
ation (σidio) of around 10% in excess of the movements in the regional house price index.

In connection with idiosyncratic standard deviation, the country-level aggregate house price
index of villages has to be addressed. As seen in the case of cities, the country-level aggregate
index conceals some of the standard deviation in regional indices, meaning that the standard
deviation of the aggregate indicator is lower. To allow this effect to take hold in the case of
villages, where this could be even more pronounced than in the case of cities due to the large
number of settlements and their potentially higher heterogeneity, synthetic village volatility
parameters were created for each region. The LGD rates estimated using these can be employed
to compare the LGD levels across different regions. The derived volatility parameter reflects the
overall risk of villages and the risk of the region relative to the country, which was quantified
based on cities’ volatilities. Formally, these were derived based on the city index (σmarket

C;i ) for the

4The collateral behind the defaulted loans may also underperform the total stock of properties in a cross-sectional
analysis, but this is controlled for in the size of the auction discount rather than in the parameters of the house price
process.
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given region (i), by scaling up the volatility parameter ratios of the municipality (σmarket
V ;aggr) and city

(σmarket
C;aggr ) aggregate indices:

σmarket
V ;i ¼ σmarket

V ;aggr∙
σmarket
C;i

σmarket
C;aggr

: (24)

This yields the following equations describing the collateral value process parameters of the
different regions, for every region and settlement type (i). The expected value (based on Equa-
tion (14)) is the sum of the log return of the expected collateral and the difference between the
given region or settlement type and the national trend, multiplied by the time until liquidation:

μYðiÞ ¼
�
ccollt þ bi � baggr

�
∙TL (25)

Conditional variance (σ2Y, based on Equation (15)) is the sum of the market variance of the
region or settlement type and the idiosyncratic variance:

σ2YðiÞ ¼
�
σmarket
i

�21� e−2κi∙TL

2κi
þ �

σidio
�2
∙TL: (26)

3.4. Other LGD parameters

Besides the house price process parameters, several other factors need to be determined in the
outlined stochastic LGD model, see Equation (17). These parameters were set in line with the
related literature. The EAD was set in a conservative approach, as the exposure at default equals
the loan amount at origination. In other words, the loan amount does not amortise. This is in
line with the assumption of the LGD model used in the stress test of Siemsen and Vilsmeier
(2017). This simplifying assumption also ensures the static balance sheet assumption at the
portfolio level, because in the period until the time of default new loans can be expected along
with potential repayments, and these two effects cancel out each other across the portfolio as a
whole. The assumption that EAD remains constant can be considered conservative, but has a
limited effect on account of the short, 1-year timeframe until the default. The cash recovery rate
outlined in Frontczak and Rostek (2015) was not considered either, in other words no further
repayments are expected from defaulted debtors.

The parameter k was used as the discount factor for the collateral covering non-performing
loans. The fact that a debtor default may offer additional information about the value of their
property. This was confirmed by Campbell et al. (2011), who showed that the market applied a
27% cross-sectional discount for foreclosed residential properties in their sample from Massa-
chusetts. The authors attributed this to the condition of the properties and illiquidity problems,
among other things. In the light of their study, the k parameter was set at 30%, so that it reflected
the workout costs incurred by the bank.

The value of the cash flows received after the default date needs to be discounted. In
accordance with the industry standard established by European Banking Authority (2017),
this is the sum of a 3-month reference rate (e.g. BUBOR) and a 5-percentage point risk
premium. In the interest rate environment of 2021, this means a discount rate of 10%. The
time between the starting date and the default date, TD, is 1 year, the time until selling, TL, is
4 years, in line with the selling time of 3 years following the default date as recommended in
the model documentation of the LGD used as a benchmark. This means that house prices
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change for 4 years, up until the time of sale. The Financial Stability Report of the MNB from
December 2019 also suggests that defaulting debtors are usually in arrears for several years
before coming to an agreement.

4. DATA

The country-wide aggregate time of the MNB’s House Price Index is available from 1990 Q1,
while the time series broken down by region and settlement size starts in 2001 Q1, with
quarterly frequency. The last observation in the sample is from 2021 Q3. The analysis uses
the nominal house price index, as the nominal appreciation or depreciation of the collateral is
what matters to banks from a credit risk perspective.

As the residential property market is heterogeneous from a geographical standpoint, the
price changes in the different regions and settlement types may differ considerably from the
country-wide average. To avoid losing any information, more granular subindices were used
instead of an aggregate country-wide index. This yields different models for the different set-
tlement types and regions, which can provide interesting results from an analytical perspective.
Furthermore, this ensures that the idiosyncratic standard deviation of the regions does not
disappear during aggregation, which can also be important as the LGD grows in house price
volatility. The advantages arising from using subindices outweigh the drawbacks of having a
shorter time series. To produce LGD results that can be interpreted as a country-wide average,
the subindex weights are used to produce an aggregated model.

The default rate time series used for revealing the relationship between house price returns
and the frequency of default was prepared using residential mortgage data from 5 Hungarian
banks. The period covered stretches between 2004 and 2017, therefore it includes a full credit
cycle. According to a uniform definition of default, loans become non-performing if they are
persistently 90 days past due5 or if the period of delinquency is over 365 days. Since loans must
be multiple times 90 days past due to be considered defaulted, the probability of a non-perform-
ing loan becoming performing is much lower than with the popular 90-day default concept. The
liquidation of the collateral and the selling of the loan is relevant in the case of the debtors who
have been delinquent for a longer period, and this stricter definition of default fits the
model well.

LTV distributions were necessary for determining the portfolio-level LGD values pre-
sented as the LGD risk index later. These distributions were produced using the data about
typical LTV ratios in Hungary as published in the December 2017 Macroprudential Report
of the MNB, and its May 2020 and June 2021 Financial Stability Report. The distributions
were derived from the LTV values of the new mortgages disbursed in the two years prior to
the year in question. The distribution time series thus produced has a frequency of two
years.

5Persistently, in this context it means that borrowers need to be in 90 days latency multiple times to be defined as
defaulted, a one-time 90 days past due is not sufficient.
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5. RESULTS

5.1. Exponential Ornstein-Uhlenbeck process fitted to house price indices

The development of the (aggregate and granular) house price indices covered in the analysis
between 2001 Q1 and 2021 Q3 is shown in Figure 1. It is clear that the nominal prices of
residential properties increased between 2001 and 2008, before falling until 2013–2014 as a
result of the economic crisis, which started on the American mortgage market (Marer 2010).
Up until the end of the period under review, real estate prices were steadily characterised by
strong growth, even though this period includes the Covid crisis that erupted in early 2020. The
figure indicates that property prices moved similarly across the various regions of the country in
the same periods.

The quantitative analysis is based on the log house price index, but it is also worth looking at
the difference between the log house prices, the log returns, to gain a better understanding of the
data. Table 2 contains the descriptive statistics of the quarterly log house price returns produced
from the MNB House Price Index. The lowest average log returns were observed in the case of
the property prices in villages, lagging well behind the other indices in the covered period. The
greatest average growth was recorded in cities in Central Hungary, the Northern Great Plain and
Central Transdanubia, followed by Budapest. The standard deviation of the log returns was the
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Fig. 1. MNB House Price Index by regions, 2001 Q1 – 2021 Q3
Source: MNB.
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largest in villages, meaning that the lowest returns were coupled with the greatest risk in such
settlements based on standard deviation. This underperformance may be explained by the ur-
banisation processes of the past two decades. In the case of Central Hungary’s index, the higher
return is coupled with greater standard deviation, the largest behind villages. This is partly
attributable to log returns from 2021 Q1, which was exceptionally high at around 20%, making
it the highest in the whole sample. The low standard deviation of the aggregate city index shows
why it is worth employing subindices so that as little of the uncertainty of real estate prices is lost
during modelling as possible.

In accordance with the Methodology Section, the trend fitted on logarithmised house prices
was determined with a simple linear model. During the calibration of this parameter, the
dependent variable in the linear model used for trend-adjustment is the log house price, and
the explanatory variable is time (measured in years), besides the constant, see Equation (18).
From a modelling perspective, the trend thus established can be considered the deterministic
part of house prices, while the deviations from the trend can be seen as the stochastic part.
The results of the regressions for the individual regional indices are shown in Table 3.

The regression coefficients were clearly significant (even at 1%) in all regions, meaning that
nominal property prices exhibited a growing trend across the country during the period under
review. The results of the trend models are consistent with the geographical heterogeneity
observed with the average log returns of the subindices, as well as with the relative differences
between the regions.

The process for establishing the expected return from the collateral derived from the covari-
ance of house price log returns and default rates can be found in the Methodology section. The
DRt time series has an annual frequency, so annual log returns were used for the modelling. The
default rate time series is shown in Figure 2. The average rate was 1.54% in the period under

Table 2. Descriptive statistics of the quarterly log returns derived from the MNB House Price Index,
2001 Q1 – 2021 Q3 (%)

Mean Standard deviation Minimum Maximum Median

National 1.81 2.71 �4.94 8.00 1.73

Budapest 1.81 3.51 �8.92 11.86 1.74

Cities 1.82 2.96 �4.45 8.50 1.87

Cities in the Southern Great Plain 1.74 3.35 �6.73 8.37 1.80

Cities in Southern Transdanubia 1.65 3.57 �9.67 8.93 1.35

Cities in the Northern Great Plain 1.91 3.36 �6.49 13.03 1.87

Cities in Northern Hungary 1.74 3.46 �7.20 10.56 1.65

Cities in Central Transdanubia 1.83 3.37 �6.80 8.01 2.15

Cities in Central Hungary 1.97 3.70 �4.91 16.42 2.10

Cities in Western Transdanubia 1.53 3.07 �6.83 7.20 1.79

Villages 1.42 4.22 �5.37 14.78 1.03
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review. The figure indicates that the house price index and default rates changed for the worse in
2008 and started recovering in 2013–2014. Therefore, there is a qualitative relationship between
the two indicators. This relationship is statistically significant, with a Pearson correlation of
�0.86. The negative sign of the correlation coefficient is consistent with economic logic. After
calculating the weighted average (Equation (23)), it can be derived that the annual expected
return of collateral is �0.16%. In other words, an average growth rate of close to zero is typical
for collateral value in the various regions, in contrast to the roughly 4% rates seen in the trend
models.

Table 3. The results of the linear trend model

α β sd(β) R2

National Estimate 4.768 0.045 0.003 0.713

P-value 0.000ppp 0.000ppp

Budapest Estimate 4.587 0.057 0.004 0.708

P-value 0.000ppp 0.000ppp

Cities Estimate 4.833 0.042 0.003 0.678

P-value 0.000ppp 0.000ppp

Cities in the Southern Great Plain Estimate 4.832 0.039 0.003 0.608

P-value 0.000ppp 0.000ppp

Cities in Southern Transdanubia Estimate 4.789 0.036 0.003 0.607

P-value 0.000ppp 0.000ppp

Cities in the Northern Great Plain Estimate 4.933 0.041 0.004 0.659

P-value 0.000ppp 0.000ppp

Cities in Northern Hungary Estimate 4.964 0.034 0.004 0.491

P-value 0.000ppp 0.000ppp

Cities in Central Transdanubia Estimate 4.768 0.043 0.004 0.625

P-value 0.000ppp 0.000ppp

Cities in Central Hungary Estimate 4.789 0.053 0.003 0.780

P-value 0.000ppp 0.000ppp

Cities in Western Transdanubia Estimate 4.707 0.039 0.003 0.697

P-value 0.000ppp 0.000ppp

Villages Estimate 4.816 0.028 0.003 0.576

P-value 0.000ppp 0.000ppp

Note: Estimated for the regional log house price indices. For each region, the first row contains the estimated
coefficients, the second row the related P-values. The third column represents the standard errors of the
estimated trend coefficients. The last column contains the R2 indicators of the trend models.
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The detrended log house price index is derived by taking the log house price index of a given
period less the value estimated based on the trend model. The resulting detrended time series
oscillates around zero, as shown in Figure 3. The phases in the fluctuation of the housing market
processes described at the section on the house price index can also be seen. The transformed
time series also indicates that the deviation from the trend between 2004 and 2008 stagnated for
a long time. By contrast, this stagnation cannot be observed in the real estate market cycle that
began in 2015, even though the deviation from the trend is already well over the 2008 value in all
regions.

The mean reversion κ and the index volatility σmarket parameters were determined using the
detrended time series and the estimation process described in the Methodology section.6 The
estimated values of κ and σmarket can be seen in Table 4, with a time unit of one year. It is
interesting to note that for example in the case of the country-wide aggregate house price index,
the estimated parameter of the mean reversion is negative and close to zero. Additionally, the
values that are very close to zero are typical for all subindices except for the indices of villages
and the cities from a few regions. This proves that the nominal property prices in Hungary are
not characterised by a strong mean reversion, or at least the period under review definitely did
not reflect this. This is consistent with the results of Berki and Szendrei (2017) who found that
the house price gap is persistent in Hungary. However, this finding runs counter to what is
observed in international indices. Fabozzi et al. (2012) estimated a κ parameter of 0.11 for the
house price index of the UK, while Pelizza and Schenk-Hoppé (2020) found a value between
0.06 and 0.15 for Italian regional indices. Besides the special features of the Hungarian housing
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Fig. 2. Default rates of residential mortgages
Note: The rates were determined employing a uniform definition of default between 2004 and 2017,
using data from 5 Hungarian banks.
Source: MNB.

6Results of the estimated autoregressive models are not published due to lack of space but can be obtained directly from
the author.
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market, one possible explanation could be the duration and cyclical nature of the sample period.
The period under review is not long, and while it covers an entire cycle, it only contains the
growth phase of the other cycle that began in 2014. It can be assumed that if the model covered
four or five whole real estate market cycles, it would be less sensitive to this growth phase.

Nevertheless, these estimated parameters were used for two reasons. First, from a modelling
perspective the threshold value of the OU process approximates the Brownian motion (with a
drift) when the κindex values are around zero, which can thus be considered a special case of the
general model. Second, from the perspective of LGD modelling, lower κindex values entail greater
standard deviation, leading to somewhat more conservative LGD rates, which can be considered
a prudent estimate.

According to the model’s assumption, the residuals follow normal distribution, as they are
derived as the growth in the Brownian motion. The normality of the residuals can be confirmed
with the Jarque-Bera test. The results of the test show that the hypothesis of the residuals’
normality cannot be rejected at a 5% level, only in the case of a subindex for cities in
Central Hungary. And even in this case the low P value is due to the outlier value from the
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above-mentioned 2021 Q1. After removing this observation, the normality hypothesis can be
confirmed for this subindex, too.

5.2. Volatility of individual property prices

Using the estimated volatility of the index, the mean reversion parameter and the idiosyncratic
standard deviation, the volatility of the cumulative log returns of individual properties can be
derived based on the conditional variance equation (Equation (26)). These can differ in all
region and settlement pairs due to their different risk profile, which is reflected in the estimated
parameters of the Ornstein-Uhlenbeck process. In the case of the village subindex, the volatility
parameter was derived synthetically as described in the Methodology section.

The volatility of the cumulative log returns of individual properties is an important compo-
nent in the LGD model, and it can serve as a useful indicator for property owners when
measuring the riskiness of their investments. A common feature of real estate exposures is that
investors hold a low number of assets, mostly only one, therefore they are exposed to the
associated idiosyncratic risks. Hence a substantial part of real estate investors do not enjoy
the benefits of diversification since the real estate part of their portfolio is relatively large
compared to their total wealth. Figure 4 shows the standard deviation of the cumulative returns
as a function of the number of years elapsed, along with the simple estimate for the same
calculated from the volatility of the country-wide index, which does not take into account the
idiosyncratic standard deviation. It can be seen that the “naïve” estimate very much underes-
timates the riskiness of the investment if the magnitude of the idiosyncratic standard deviation
applied is accepted. Since the estimated volatility parameter of the regional index pertaining to
villages is greater, a higher risk is coupled with these indices in the first few years. However, it is

Table 4. Estimated parameters of the Ornstein–Uhlenbeck processes

κindex σindex

National �0.042 0.054

Budapest 0.000 0.070

Cities �0.016 0.059

Cities in the Southern Great Plain �0.007 0.067

Cities in Southern Transdanubia �0.027 0.071

Cities in the Northern Great Plain 0.050 0.067

Cities in Northern Hungary 0.062 0.070

Cities in Central Transdanubia �0.041 0.067

Cities in Central Hungary 0.040 0.074

Cities in Western Transdanubia �0.027 0.061

Villages 0.072 0.085

Note: Estimated for log house price indices adjusted for the regional trend.
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striking that over time, around the 6th or 7th year, the volatility of other indices becomes higher
than the value for the villages. This is due to the relatively strong mean reversion parameter of
the villages, which reduces risk in the long run. The detailed volatilities broken down by regions
and settlement types can be found in Table 6 of Appendix.

5.3. Regional breakdown of the resulting LGD values

The parameters of the estimated housing market processes and the other parameters relevant
from a credit risk perspective discussed in the Methodology section can be used to create an
LGD model based on Equation (17). The return expected until the time of liquidation and
volatility could be determined using Equations (25) and (26), broken down by regions and
settlement types. The expected return (μY) was between �7.5% and 4%, while volatility (σY)
was between 23.4% and 27.3%, depending on the region, see Table 7. All the terms of Equa-
tion (17) were determined for all regions, except for Ct

EAD, which is the LTV of the mortgage. The
LTV is a widely used measure of risk in the industry, so the LGD rates were established
using that.

Figure 5 shows the regional LGD rates as a function of the LTV, with the country-wide LGD
produced as the weighted average of the regional models depicted with black dots. The weights
are proportional to the number of property transactions in a region. Assuming that loan
origination is also proportional to the number of transactions, the weighted indicator can be
interpreted as the LGD of a bank’s loan representative of the whole country. As expected, the
weighted regional LGD is higher than the one calculated from the country-wide index for all
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LTV values, and the maximum difference is 1.6 percentage points. The weighted LGD function
can be approximated accurately using MSE optimalisation, if μY ¼ −2:9% and σY ¼ 25:1% are
substituted in Equation (17). The advantage of these closed-form solutions is that the low
calculation requirement can be maintained for the weighted model.

In the case of non-performance, the loss given default is the highest in villages and the lowest
in Budapest and the cities of Central Hungary. This suggests that the expected return had the
greatest effect on the LGD, in contrast to volatility and the reversion parameter that influences it.
With an 80% LTV, the LGD is 38% for villages in the Northern Great Plain and 31% for
Budapest, so the difference between the regions is around 7 percentage points. The average
country-wide LGD of 35%, estimated at an 80% LTV, could be relevant for the currently
effective debt cap rules, too. The detailed LGD rates broken down by region and settlement
type can be found in Table 8 of Appendix.

Figure 5 clearly shows the non-linear nature of the LGD, as the slope of the function is small
with lower LTVs, but it increases with LTVs of over 50%. Accordingly, debtors with a higher
LTV entail a much higher LGD for banks in the case of non-performance than those with a low
LTV. With extremely high LTVs, the slope starts to decline, but this is less relevant due to the
current debt cap rules. The figure indicates that the 80% debt cap limit can be found on the steep
section of the LGD functions, and even a small change would have a relatively major effect on
the LGD.

5.4. Comparison to a benchmark model

To examine how realistic the produced results are, they should be compared to the numbers
generated by a challenger model. The chosen benchmark model is the residential mortgage LGL
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(Loss Given Loss) model used by the ECB during its 2018 Asset Quality Review (ECB 2018).
The model also employs the LTV to determine the loss given default with the help of a
continuous function. The initial LTV is modified by the model through the change in real estate
prices and the cost ratio, thereby producing an adjusted LTV. Then using a continuous sigmoid
function taking into account the haircuts used for selling the collateral and the volatility of sales,
the LGD rate is assigned to the adjusted LTV. In order to use the model, the change in property
prices, the sales ratio and standard deviation of collateral, the time elapsed until the default and
the sale and the appropriate discount rate need to be established. The manual proposes values
for these so that a prudent “downturn” or distressed LGD function can be determined. In this
case, a 10% fall in real estate prices makes the function distressed.

Figure 6 compares the weighted country-wide LGD function to the downturn benchmark
model and the results of a non-downturn benchmark function derived without any contraction
in house prices. The discount rate was set at 10% for both benchmark models, similar to the
stochastic model. The figure indicates that if the LTV is greater than 40%, the weighted country-
wide LGD function is lower than the downturn benchmark model but higher than the non-
downturn function. Basically, the two non-downturn LGD functions are similar.

5.5. Hungarian residential mortgage portfolio

The country-wide LGD model can be used to estimate the expected LGD rate of a loan portfolio,
if the LTV distribution is known. The estimation about the portfolio, just like the LGD function,
is about an expected rate, without taking into account the macroeconomic outlook in the given
period. In this sense, it better reflects the quality of the loan portfolio, derived from the LTV
distribution, which is the key factor influencing the LGD. Therefore, it can be considered a
through-the-cycle estimate, since the cyclical components or expectations of real estate prices do
not influence the index, only the loan a characteristic at origination, the LTV. A point-in-time
index could be produced by incorporating a forecast about real estate prices. Due to the
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non-linearity of LGD functions, portfolio-level expected LGD rates are mostly determined by
the share of new loans with a high LTV.

The time series describing the expected LGD of the portfolio captures an important compo-
nent of credit risk and summarises the overall LTV distribution of new Hungarian mortgages in
an indicator that is relevant from a risk and business perspective. Therefore, the LGD can be
used as a risk index, too. Figure 7 shows the development of the index between 2005 and 2021. It
can be seen that the LGD risk profile of new loans reached a high level in the two years prior to
2009, with an expected LGD of 25%. In the crisis period after 2009, probably due to banks’
stringent lending conditions, this risk indicator improved considerably. The index continued to
decline after 2017, presumably affected by the family home creation allowance and the baby
support government programme, which often complemented housing loans from the market.
Benchmark models show a similar process. For the loans disbursed before 2021, the model
estimates an expected LGD of around 10% based on portfolio quality.

5.6. Limitations of the model

From the theoretical side, the proposed estimated LGD and the PD’s correlation is not modelled
in detail, which limits the usability of the model. The through-the-cycle nature of the model also
implies that in cases where point-in-time estimates are needed, some modifications are neces-
sary to the estimation process. Additionally, some parameters of the model were taken from the
relevant literature, due to the non-availability of Hungary-specific information. This also true for
cash recovery for defaulted loans that is not considered currently.

Regarding the empirical part of the model, the estimation was based on a real estate price
index, which inherently contains some uncertainty about the underlying price development. While
the more than 20 year-long-price index time series contains a sufficient number of observations,
due to the long real estate cycles, additional data points could increase the model’s accuracy.
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Fig. 7. Expected LGD rates of new mortgage loans based on the LTV distribution, 2005 – 2021
Note: LTV distributions are volume-based and refer to loans disbursed in Hungary in a two-year period.
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6. SUMMARY

The paper aimed to calibrate a model based on Frontczak and Rostek (2015), focusing on the
expected LGD of residential mortgages with a stochastic collateral value, for the features of the
Hungarian residential mortgage market. The specifically Hungarian model was created by fitting a
stochastic process, the exponential Ornstein-Uhlenbeck (OU) process on the MNB House Price
Index. To lose as little information as possible, this was done at the level of indices broken down by
region and settlement type. Moreover, the model considers the additional information about the
expected return of the collateral value arising from the default of the loan, as well as the uncer-
tainty of the price change of individual homes. The other parameters related to non-performance
were established in line with the international literature. By way of a robustness analysis, the LGD
values of the constructed model were compared to the results of a benchmark model.

While performing the stochastic fitting of the Hungarian house price processes, several new
results were obtained. Regional house price indices are heterogeneous with respect to the growth
trend of the prices and the standard deviation of returns. The growth trend of the prices was
high in the capital, Budapest and the cities of the Central Hungary and Central Transdanubia
regions, while the growth rate of the villages was low. The villages index was characterised by
high volatility. As regards the logarithmised house price indices, in the OU model the value of
the kappa parameter measuring mean reversion is almost always close to zero, meaning that
property prices can persistently deviate from the trend. In other countries this reversion is
usually significant, while in Hungary it was only observed in the villages’ index, and only weakly
so. In the time series, the deviation from the trend was the greatest in 2021 Q3, which may offer
information about the position of the housing market cycle at that time. The standard deviation
derived from the OU model fitted on the house price index and the cumulation of idiosyncratic
standard deviation far exceeds the volatility of the naïve model fitted only on the house price
index, at all points on the time horizon. The results show that the expected return on non-
performing collateral value is low due to the strong correlation between the real estate market
and defaults. This conditional annual expected return is 1% at most, and the modelling suggests
that it can go as low as �2% depending on the region.

The derived LGD models can be used to identify the regions and settlement types that are
riskier from the perspective of expected LGD rates. According to the model, the rates for a given
level of leverage are the highest in villages and the lowest in Budapest and the cities of Central
Hungary. The difference can be as large as 7 percentage points. The difference between the
country-wide LGD model prepared by aggregating the models broken down by region and the
one calculated based on the country-wide house price index is around 1–1.5 percentage points.
The results of the implemented stochastic model show that the LGD function is highly non-linear
as a function of the origination LTV. The expected LGD estimation based on the country-wide
model can be performed for loan portfolios, too, and as such it can be used as a through-the-cycle
LGD risk index. This shows that because of the reduction in lending with high LTV, the LGD
profile of new mortgages has improved significantly in Hungary since 2009.

The results could be relevant for credit institutions in their mortgage origination decisions
and risk management processes. Banks can use the LTV at origination – expected LGD mapping
to assess and measure the expected loss of their existing portfolios. Furthermore, the function
can serve as an input to risk-based pricing of mortgages. Since it only depends on the LTV at
origination, it is easier to use than models with more granular data requirements. Supervisory
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authorities may also use the proposed model as a benchmark in the Supervisory Review and
Evaluation Process (SREP) for expected and unexpected loss calculations and with some mod-
ifications for stress testing purposes.

The results may also confirm banks’ practices regarding smaller settlements, namely that
they determine more stringent credit insurance values for the properties in such locations.
Similarly, the higher expected LGDs of smaller settlements may also support the fact that the
conditions of statistical valuation are determined based on settlement size. The LGD risk index
may provide input to analysts about lending processes and the associated risks or inform the
decisions about the countercyclical capital buffer targeted at mortgage loans. Higher index
values indicate more risk-taking from the banks side, which could be countered by increasing
the capital buffer. The through-the-cycle nature of the index however limits this application as
expectations about future house price developments do not affect on the index.

The results of the housing market processes may offer information to real estate investors.
Investment in residential buildings is considered safe among Hungarian retail investors, and
studies about the risks of such investments are not common. Future research could investigate
the financial risk of Hungarian real estate investments in more detail to provide more infor-
mation to the public.
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Appendix

Results of Monte Carlo simulations

The expected LGD rates calculated with the help of Monte Carlo simulations and the analytical
solution (Equation (17)) were compared as a function of the initial collateral value. The pa-
rameters used were based on the parameters in the paper:

TD ¼ 1 year;TL ¼ 4 ; k ¼ 30%; r ¼ 10%; EAD ¼ 1; μY ¼ 0%; σY ¼ 25%

The results shown in the figure were produced with 10,000 simulations.7

7Figure not published due to lack of space but can be obtained directly from the author.
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Standard deviation of cumulative log returns in the individual regions (%)

Table 6. The standard deviation of the cumulative log returns of individual property investments, as a function of the investment horizon

Year

Southern
Great Plain

Southern
Transdanubia

Northern Great
Plain

Northern
Hungary

Central
Transdanubia

Central
Hungary

Western
Transdanubia

C V C V C V C V C V C V C V

1 12.1 13.7 12.3 14.1 12.0 13.7 12.1 13.9 12.1 13.6 12.4 14.4 11.8 13.1

2 17.1 19.0 17.5 19.5 16.8 19.1 16.9 19.3 17.2 19.0 17.4 20.0 16.7 18.3

3 20.9 22.9 21.6 23.6 20.4 23.0 20.5 23.3 21.3 22.9 21.1 24.0 20.5 22.1

4 24.2 26.1 25.0 26.8 23.4 26.2 23.5 26.5 24.7 26.1 24.3 27.3 23.8 25.2

5 27.1 28.8 28.1 29.5 26.1 28.9 26.1 29.3 27.9 28.8 27.0 30.1 26.7 27.8

6 29.7 31.2 31.0 31.9 28.4 31.3 28.4 31.6 30.8 31.2 29.4 32.5 29.4 30.2

7 32.1 33.3 33.6 34.1 30.5 33.4 30.4 33.8 33.5 33.3 31.5 34.7 31.9 32.2

8 34.3 35.2 36.1 36.0 32.4 35.3 32.3 35.7 36.1 35.2 33.5 36.6 34.2 34.1

9 36.5 37.0 38.5 37.8 34.2 37.1 34.1 37.5 38.7 37.0 35.4 38.4 36.5 35.9

Note: The first line of the table shows the region, the letter in the second shows whether the column contains the volatility of cities (C) or villages (V), in percentages. The first column of
the table shows the duration of the investment, in years.
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Expected return and standard deviation until the time of liquidation of the collateral

Table 7. Estimated effect of the cumulative expected return (μY) and standard deviation (σY) on
collateral value until the time of liquidation (4 years), in a regional breakdown, %

μY σY

National �0.66% 23.19%

Budapest 3.97% 24.43%

Cities �1.86% 23.43%

Cities in the Southern Great Plain �3.38% 24.18%

Cities in Southern Transdanubia �4.43% 25.01%

Cities in the Northern Great Plain �2.51% 23.45%

Cities in Northern Hungary �5.39% 23.51%

Cities in Central Transdanubia �1.48% 24.73%

Cities in Central Hungary 2.50% 24.26%

Cities in Western Transdanubia �3.15% 23.80%

Villages �7.53% 24.88%

Villages in the Southern Great Plain �7.53% 26.12%

Villages in Southern Transdanubia �7.53% 26.80%

Villages in the Northern Great Plain �7.53% 26.20%

Villages in Northern Hungary �7.53% 26.53%

Villages in the Central Transdanubia �7.53% 26.10%

Villages in Central Hungary �7.53% 27.33%

Villages in Western Transdanubia �7.53% 25.19%

Note: The regional parameters of the villages were created synthetically, as described in the body text.
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LGD rates in a detailed regional breakdown
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International License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original author and source are credited, a link to the CC License is provided, and changes
– if any – are indicated. (SID_1)

Table 8. The resulting LGD rates as percentages, as a function of the LTV by regions and settlement
types

LTV 20% 30% 40% 50% 60% 70% 80% 90% 100%

National 0.0 0.1 1.5 6.9 15.8 25.5 34.1 41.3 47.1

Budapest 0.0 0.1 1.2 5.6 13.5 22.6 31.1 38.4 44.5

Cities 0.0 0.1 1.7 7.4 16.6 26.3 34.9 41.9 47.7

Villages 0.0 0.3 3.0 10.3 20.2 29.9 38.2 44.9 50.4

Aggregate 0.0 0.2 2.2 8.3 17.5 27.0 35.4 42.4 48.1

Cities Southern Great Plain 0.0 0.1 2.0 8.2 17.6 27.3 35.7 42.7 48.4

Southern Transdanubia 0.0 0.2 2.4 8.9 18.4 28.0 36.3 43.2 48.8

Northern Great Plain 0.0 0.1 1.8 7.7 17.0 26.7 35.3 42.3 48.0

Northern Hungary 0.0 0.1 2.2 8.9 18.7 28.6 37.0 43.9 49.5

Central Transdanubia 0.0 0.1 1.9 7.6 16.6 26.1 34.5 41.6 47.3

Central Hungary 0.0 0.1 1.3 6.1 14.2 23.5 32.1 39.3 45.3

Western Transdanubia 0.0 0.1 1.9 8.0 17.4 27.1 35.6 42.6 48.3

Villages Southern Great Plain 0.0 0.3 3.3 10.6 20.3 29.9 38.1 44.8 50.3

Southern Transdanubia 0.0 0.4 3.4 10.8 20.4 29.9 38.0 44.7 50.2

Northern Great Plain 0.0 0.3 3.3 10.6 20.4 29.9 38.1 44.8 50.2

Northern Hungary 0.0 0.4 3.4 10.7 20.4 29.9 38.0 44.7 50.2

Central Transdanubia 0.0 0.3 3.3 10.6 20.3 29.9 38.1 44.8 50.3

Central Hungary 0.0 0.4 3.6 10.9 20.5 29.9 38.0 44.6 50.1

Western Transdanubia 0.0 0.3 3.0 10.3 20.2 29.9 38.2 44.9 50.4
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