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ABSTRACT 

Planar jets belong to the most researched flows. 

Many aspects of their instability have been well-

known for a long while. One of them is the 

observation that the jet is more sensitive to 

disturbances near the orifice exit than elsewhere. 

Linear stability investigations on various velocity 

profiles were carried out using the Orr-Sommerfeld 

(OS) equation to find an explanation. The velocity 

profiles were provided by analytical approximations 

and numerical computational fluid dynamics (CFD) 

simulations.  

A special method, the so-called compound 

matrix method (CMM) was used to solve the OS 

equation to provide sufficiently accurate results. 

The adaptation of the method for symmetric jets is 

derived briefly in this paper. The stability of 

different velocity profiles was compared based on 

the local spatial growth rate. The results of the 

comparison clearly show that velocity profiles near 

the orifice are more unstable than downstream ones. 

The local spatial growth rate of disturbance waves 

was higher close to the orifice. The reason for that 

was twofold, and these are explained in the paper. 

Keywords: Compound matrix method, CMM, 

Orr-Sommerfeld equation, spatial stability 

investigation, symmetric planar jet  

NOMENCLATURE 

bj [-] short notation in the compound  

  matrix 

i [-] the imaginary unit 

n [-] arbitrary parameter to define  

  velocity profile 

x [-] dimensionless coordinate in the  

  mean flow direction 

x̂  [-] coordinate in the  mean flow 

  direction 

y [-] dimensionless coordinate in the  

  transversal direction 

ŷ  [-] coordinate in the  mean flow  

  transversal direction 

L(x) [m] the local specific length 

UMax(x) [m/s] the local specific velocity 

UMean [m/s] the global specific velocity 

U(y) [-] the non-dimensional velocity  

  profile 

Û (y) [m/s] the velocity profile 

Re(x) [-] the local Reynolds number 

Reglob [-] the global Reynolds number 

Q [-] short notation for one of the  

  characteristic roots of OS equation  

  in the far field 

  [-] the non-dimensional wavenumber 

̂  [rad/m] the wavenumber 

λj [-] the characteristic roots of OS  

  equation in the far field 

ω [-] the non-dimensional circular- 

  frequency  

𝜔̂ [rad/s] the circular frequency  

 (y) [-] the non-dimensional amplitude of  

  perturbation velocity 

η(y) [-] functions in CMM 

 (y) [-] the normalized functions in CMM 

 

Subscripts and Superscripts 

 

r the real part of a variable 

i the imaginary part of a variable 

 

1. INTRODUCTION 

The Navier-Stokes equations have only a few 

analytical solutions. Several of these cannot be 

usually observed during experiments because they 

are unstable, as recognised by Reynolds. The 

stability investigations are still vital in fluid 

dynamics research.  

The basic equation to describe the stability of 

parallel, incompressible flows is the Orr-

Sommerfeld (OS) equation. In this paper planar jets 



are investigated. The knowledge about their 

stability behaviour is essential to understand some 

phenomena (e. g. edge-tone) or even active flow 

control. It is assumed that the jet is infinitesimally 

disturbed at the nozzle, a disturbance wave starts, 

whose amplitude grows in the direction of the mean 

flow.  

 

Figure 1. A jet with a (Bickley) velocity profile.  

First Tatsumi, Kakutani [1] and Curle [2]  

investigated the planar jet. They used the OS 

equation to investigate the Bickley-profile which is 

the self-similar velocity profile valid far away from 

the nozzle. They determined the growth rate of 

disturbances at low Reynolds numbers (defined 

later) and the critical Reynolds number Recrit ≈ 4, 

below which the flow will be stable for any 

disturbance. Later Nolle [3] calculated the growth 

rate of disturbances for the same profile in an 

inviscid flow. The inviscid assumption means in the 

OS equation theoretically an infinite Reynolds 

number, practically a large enough number. He 

validated his calculations by experiments. At the 

same time Tam [4] investigated the same flow but 

for the non-parallel case. He stated that “the flow is 

unstable, regardless of Reynolds number, however 

defined.” 

Another observed phenomenon is that the jets 

are more sensitive to disturbances near the orifice 

exit [5], than elsewhere. The trivial explanation for 

this that if the growth of the disturbances is 

continuous in space then a disturbance which 

reaches the flow at the nozzle will be amplified 

along a longer path than the others. As far as the 

authors know, nobody investigated the growth rates 

close to the orifice. Only one paper was found [6] 

where the vicinity of the nozzle was studied. There 

the jet was modelled as a shear layer, which makes 

it difficult to compare the results near the orifice to 

the ones far away, where the Bickley-profile has 

already developed. The question asked in this paper 

is, why the jet is more sensitive to disturbances near 

the nozzle than elsewhere. We are providing an 

answer based on the stability investigation of 

various velocity profiles. 

The stability investigation was performed using 

the OS equation in this paper, too. A special 

method, the so-called compound matrix method 

(CMM) [7] was used to solve the equation to 

provide accurate results. Another advantage of this 

method is that the boundary conditions at infinity 

can be prescribed simply. The adaptation of the 

method for symmetric flows is introduced briefly in 

Section 2. Two sets of velocity profiles were 

investigated: profiles given by analytical 

expressions and by CFD-simulations, which 

describe the flow at the orifice more precisely. They 

are treated in Section 3. In Section 4 the solution 

steps and the results of linear stability investigations 

are presented. Finally, in Section 5 we make some 

concluding remarks. 

2. THE OS EQUATION AND THE 
COMPOUND MATRIX METHOD 

2.1 The OS equation 

The OS equation is a fundamental equation to 

investigate the stability of parallel, incompressible 

flows. It was derived from the continuity equation 

and the Navier-Stokes equations. The parallel flow 

assumption means that the velocity distribution 

does not change in the flow direction. This 

assumption is valid globally if the flow has solid, 

parallel boundaries (developed channel or pipe flow 

with parallel walls). In some other cases this 

assumption can be accepted as approximately valid 

if the flow is investigated locally, as in this paper. 

During the derivation non-linear terms are 

neglected and we look for the solution in a complex 

wave form leading to the well-known OS equation. 
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where  (y) can be the amplitude of the 

dimensionless perturbation velocity or the 

amplitude of the stream function. In this paper the 

first one was used. U(y) is the non-dimensional 

velocity profile in the equation. (The specific 

quantities for non-dimensionalization will be 

defined in Section 3.3) The dependence on the y 

variable was not denoted in many equations to keep 

them clear, but in the nomenclature it was denoted 

in every case. The definition of the parameters can 

also be found in the nomenclature. 

If we take the limit of Eq. (1) at Re   then 

the inviscid case can be obtained. This equation is 

known as the Rayleigh-equation (Eq. (2)) and it was 

solved for Bickley profile by Nolle [3].  

 

  2
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This equation was not used in this paper, but a 

comparison was made between Nolle’s results and 

our large Reynolds number case. 



2.2 The compound matrix method 

Usually the solution of the OS equation leads to 

a boundary value and eigenvalue problem, because 

boundary conditions are prescribed at two locations. 

We have to find the α-ω parameter pairs, which 

fulfil the boundary conditions. Another problem is 

that this fourth order differential equation usually 

becomes stiff. Let us investigate the solution in the 

far field, at y  , where     0U y U y   

holds for jets. Here, the differential equation (Eq. 

(1)) can be simplified to (3). 

 

 2 4 2
2  i   

iv
Re             (3) 

  

This equation has four different characteristic 

roots. 
1,2
   and 

3,4
Q   where 

2
i  Q Re   . For large Reynolds numbers 

3,4 1,2
| |  , which makes the problem stiff. One 

possibility to solve the problem is the compound 

matrix method (CMM), which is the best method 

according to Sengupta [8] for hydrodynamic 

problems. It provides accurate results and it can be 

easily implemented. This method was developed for 

the OS equation by Reid [7]. Later, Sengupta 

adapted this method for the Blasius profile, where 

some of the boundary conditions are prescribed at 

infinity, y  . In this paper his idea is followed 

during the adaptation of the method for symmetric 

plane jets. 

The general solution of Eq. (1) can be written in 

the following form: 

 

1 1 2 2 3 3 4 4
a a a a         (4) 

 

where ( )j y are the fundamental solutions and  

 

( )j y  ∝ 
j ye


as y  . (5) 

 

In the next step, the boundary conditions have 

to be prescribed at y  . The fluctuating 

velocities are assumed to be zero far from the jet, 

Eq. (6).  

 

    0y y      (6) 

 

This condition can be fulfilled only if the 

coefficients of the fundamental solutions, which 

grow exponentially for y  , have to be zero. 

This means 
2 4
( ) ( ) 0y ya a   because 

2,4
0  .  

Let us introduce six new functions (Eqs. (7) to 

(12)) and take the derivative with respect to y and 

substitute them to the OS equation (Eq. (1)) which 

leads to the differential equation system Eq. (13). 
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4 1 3 1 3
          (10) 

5 1 3 1 3
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6 1 3 1 3
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where  2

1b : 2  Re   Ui      and 

 4 2

2b : Re  U Re Ui i         . In this case 

all the new functions have the same exponential 

growth rate for y   as shown in Eqs. (14) to 

(19). 
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Let us normalize the η functions with the limit 

of the first one as y   (Eq.(20)). In this case we 

get the limit at y   for the normalized function 

(Eq. (21)), which are the initial conditions at 

y  . The normalization of the functions 

modifies the matrix in the differential equation (Eq. 

(13)) into Eq. (22). 
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If we solve the differential equation system (Eq. 

(22)) with the initial conditions Eq. (21), it means 



that the boundary conditions are automatically 

fulfilled in the far field. Since a fourth order 

differential equation needs four boundary 

conditions, the definition of two other boundary 

conditions is still necessary. For jets two choices are 

available. The first one is that assuming the 

perturbation velocity is zero in the far field on the 

other side of the jet, Eq. (23). 

 

    0y y        (23) 

 

These boundary conditions can also be 

implemented, but if we use the symmetry boundary 

condition the computation cost can be halved. This 

means the amplitude of perturbation velocity is 

symmetric to the symmetry line of the jet, Eq. (24). 

(In the literature this condition is usually called 

antisymmetric, because the displacement of the jet 

is antisymmetric.)  

 

   0 0 0    . (24) 

 

Substituting Eq. (4) into Eq. (24) leads to Eqs. 

(25) to (26). This new linear equation system has a 

non-trivial solution if and only if the determinant of 

the associated matrix of the system of equations is 

zero (Eq. (27)). Eq. (27) is identical to the fifth 

component of η being 0 at y = 0 (Eq. (28)). 

 

   1 1 3 30 0 0a a     (25) 

   1 1 3 30 0 0a a     (26) 

1 3 1 3 0( ) 0y    
      (27) 

5 5(0) 0 and (0) 0    (28) 

  

The original problem is simplified to an initial 

value problem, Eq. (22) should be solved with the 

initial condition Eq. (21) and choose the parameter 

pairs which fulfil Eq. (28). If these parameters are 

determined, the eigenvalue problem is solved and 

the eigenfunctions can be calculated. The original Φ 

function can be calculated in four different ways, 

we choose the one (Eq. (29)) presented in [8]. 

 

1 2 4 0        (29) 

 

3. ANALYTICAL AND NUMERICAL 
VELOCITY PROFILES 

3.1. Analytical velocity profiles 

Schlicting in 1936 [9] and Bickley [10] in 1937 

derived a velocity profile for a plane jet if a 

constant, line momentum source and self-similar 

flow is assumed. This velocity profile is a good 

approximation for jets far from the orifice. 

According to Nolle’s experiments [3] this profile 

can be observed from 8 times the orifice size 

downstream. The Bickley profile in non-

dimensional form is given in Eq (30).  

 
2sech ( )U y  (30) 

 

Two special velocity profiles can be 

distinguished close to the orifice. The parabolic 

profile is developed if the nozzle is a long, parallel 

channel. The other one is “top-hat” profile, in which 

the boundary layer in the nozzle is very thin. In this 

case the nozzle is a short, convergent channel. An 

analytical approximation for the developing 

velocity profiles is available only in the case of 

“top-hat” outflow in [3] (Eq. (31)). The velocity 

profiles, which are closer to the orifice, can be 

defined by larger n parameters. In this paper the n = 

{1, 2, 3} cases were investigated, where n = 1 is 

identical to the original Bickley profile. 

 
2 nsech ( )U y  (31) 

 

Figure 2. The analytical approximations of the 

velocity profile close to the orifice ( 2 n
sech ( )U y ). 

Table 1. The comparison of the dimensionless 

flow rates between analytic profiles 

Profile 
Dimensionless 

flowrate [-] 

The difference 

from Bickley-p. 

[%] 

Bickley 2 0 

2 2
sech ( )y

 

1.9056 -4.7 

2 3
sech ( )y

 

1.9138 -4.3 

“Top-hat” 2 0 

 

The non-dimensional flowrates were calculated 

as a basis for the comparison. The result can be seen 

in Table 1. The maximum difference compared to 

the Bickley profile was less than 5 %. 

3.2. The numerical velocity profiles 

It was necessary to carry out CFD simulations 

because in the case of parabolic velocity profile 

there are no analytical formulae for the transition 

profiles between the parabolic and the Bickley 

profile. In the case of top-hat profile n can take only 



whole numbers and the transitional profiles between 

cannot be produced analytically. The CFD 

simulations were carried out on a fine, structured 

mesh by ANSYS CFX. The size of the orifice was 

δ = 1 mm, the cell-size was 0.05 mm in the 

investigated domain, which was 24 mm long. The 

simulation was carried out at Reglob=100. Reglob is 

the global Reynolds number in the flow defined by 

Eq. (32). 

 

Mean
glob

air

Re
δ U

ν
  (32) 

 

where νair = 1.545·10
-5

 m
2
/s is the kinematic 

viscosity of air at 25 °C and UMean = 1.545 m/s is 

the mean velocity at the orifice, which can be 

calculated based on the previous parameters. The 

global Reynolds number describes the whole flow. 

In contrast, the local Reynolds number belongs to a 

given cross-section and describes the local velocity 

profile. To be consistent with analytical profiles the 

specific quantities for the local Reynolds number 

were defined by Eq. (33) as UMax( x̂ ) is maximum 

velocity in a certain cross-section, L( x̂ ) is the width 

where the velocity is equal to 0.42·UMax, coming 

from the evaluation of Bickley profile at y=1 since 

sech
2
(1)≈0.42. In this case all the previously 

defined analytical and numerical profiles are non-

dimensionalized on the same way ( n1 1 ).  

 

Max

air

Re
 

ν

L U
  

 

(33) 

The further non-dimensional quantities were 

calculated by Eqs (34) to (35). 

 
ˆL   (34) 

Max

ˆ
L

U
   (35) 

  

where □̂ denotes the quantity with dimensions. 

 

Figure 3. The velocity profiles at various 

distances from the orifice. 

The velocity profiles are exported from CFX at 

various distances, shown in Figure 3. 

The OS equation was used in a non-

dimensional form, so that the velocity profiles had 

to be transformed into the same form. The 

transformed dimensionless velocity profiles can be 

seen in Figure 4, where the Bickley profile was also 

plotted. The velocity profiles turned more rapidly 

into Bickley profile in the case of parabolic outflow 

compared to the “top-hat” outflow. The Bickley 

profile was developed in both cases when x̂  ≳ 6-8 

mm, as it was noted experimentally by Nolle [3], 

too. Here, the usage of non-dimensional profiles 

highlights its advantage. If x̂  > 8 mm, the stability 

results for non-dimensional Bickley profile can be 

used after redimensionalization. If the dimensional 

form of the stability equations had been be used, the 

whole solution procedure of the OS equation should 

have been repeated instead of a simple 

redimensionalization. 

 

 

Figure 4. The dimensionless velocity profiles at 

various distances from the orifice. 



a 

 

b 

 

c 

 

 
Figure 5. The velocity (a) and the length (b) 

scales and the local Reynolds number along the 

mean flow direction ( x̂ ). 

The various scales were also plotted along the 

mean flow direction in Figure 5. The following 

observation can be made based on Figs. 4 to 6 for 

the dimensional velocity profiles. Although the 

transformations to the Bickley-profile were rapid in 

both case, the two flows with different outflows at 

the orifice (parabolic, “top-hat”) are not identical 

even far from the nozzle. The maximum velocity is 

always a bit higher in the parabolic case (a), while 

the width of the jet is always a bit larger (b) in the 

“top-hat” case. The continuous increase of the local 

Reynolds number (c) is also observable, which was 

theoretically also derived far from the orifice [11]. 

4. THE SOLUTION METHOD AND THE 
RESULTS 

4.1. The solution method 

The following parameters should be determined 

or calculated in the Orr-Sommerfeld equation. The 

first one is the Reynolds number that could be a 

specified value (in a real flow, numerical velocity 

profiles) or an arbitrary parameter (in general, 

analytic velocity profile). The task is to determine 

the remaining two parameters, the wave number (α) 

and circular frequency (ω), which fulfil the 

condition in Eq. (28). These pairs are the solutions 

of the eigenvalue problem. Let us define the 

function D(Re, U, ω, α) (Eq. (36)) then we have to 

find the roots of this function (D=0). 

 

 
5 , , ,: ( 0)D ,  , ,  |Re UR ye U       (36) 

 

In the general case the wave both α and ω can 

be a complex number, but this means innumerable 

solutions. Here, the spatial stability analysis was 

used, the amplitude of the wave grows only in 

space, α = α r+ αi is a complex number, while ω is 

real. The spatial growth rate is µs = -αi. In 

experiments it is possible that the amplitude of the 

disturbance wave grows both in space and time, but 

comparison with experiments shows very good 

agreement with spatial stability analysisin the case 

of planar jets. 

The initial condition Eq. (21) for the differential 

equation system Eq. (22) is prescribed at y  . A 

sufficiently large y value has to be chosen such that 

the boundary conditions are approximately fulfilled 

and Eq. (5) is true. In the case of analytical profiles 

y = 12 was chosen where sech
2
(12) ≈ 10

-10
. In the 

case of numerical profiles the velocity in the far 

field is never zero because of numerical errors. Here 

a spatial window function, which is one at the 

centreline of the jet and zero far away from it, was 

used to avoid this problem. In this case the 

“infinity” was chosen as the width of the function: 

 y = 4. 

The critical point during the solution procedure 

is to determine the first eigenvalue pair. Here, we 

followed the idea of Sengupta [12]. In the first step 

the Reynolds number was fixed to 100 in the case 

of analytic profiles and to the calculated Reynolds 

number in the case numerical profiles. ω was also 

fixed at 0.1 in both cases. A fine grid was made in 

the α-plane αr ∈ [0,2] and αi ∈ [-2,1] and the 

differential equation was solved for each α  

parameter on the grid. The investigation on a larger 

area is not necessary because a lower αi means very 

rapid amplification, which is not observed 

experimentally. At the same time positive values 

mean decaying waves that are not interesting from 

our point of view. After that the ℜe(η5(0))=0 and 

𝔍m(η5(0))=0 contour lines were plotted and the 

intersection point of these lines is detected. These 

points are the eigenvalues corresponding to 

different modes and they are sorted according to 

ascending αi values, because lower values mean 

more rapid growth. It can be assumed that if the Re 

and ω parameters are changed slightly, the 

corresponding α values change only slightly. After 

one point is determined the next point was 

calculated by modifying slightly the parameters and 

using the Newton-Raphson method for which the 

initial guess was the previous solution. With this 

technique all eigenvalue pairs can be determined for 



one mode starting from one known intersection 

point in the α plane. In this paper only the first 

mode was investigated. 

4.2. Results 

4.2.1 Results for the analytic profiles 

Our results for Bickley the profile are compared 

to those of Nolle [3] to verify our calculations, for 

high Reynolds number. The comparison at various 

Reynolds number can be seen in Figure 6. At  

Re = 1000 our results were almost identical to the 

results of Nolle that means the stability properties 

of the Bickley profile above this number are 

independent of the Reynolds number. 

Figure 6. The growth rate of the amplitude of 

perturbation velocity in the case of Bickley 

profile for various Reynolds numbers and in the 

inviscid case (Rayleigh). 

 

 

Figure 7. The growth rate of the amplitude of 

perturbation velocity for various ω, Re 

parameters in the case of analytic profiles  

( 2 n
sech ( )U y ). 

If we reduce the Reynolds number, the non-

dimensional growth rate also decreases. The critical 

Reynolds below which the growth rate is always 

negative (the perturbation decays) and the flow is 

stable, is Recrit ≈ 4.3. This number was also 

predicted to be 4.0 in [1] and [2]. This number was 

the same for all analytic profiles for any  

n = {1 ,2, 3} parameters, as shown also in Figure 7. 

There the dashed line means the neutral stability 

curve, where the growth rate of perturbation is zero. 

Another observation is the lower branch of neutral 

stability curve tends so rapidly to the ω = 0 axis in 

all cases that it is not visioble in Fig. 7, as 

calculated in [1] and [2] for the Bickley profile 

only. 

Beside the similarities there is significant 

difference between the results of the analytical 

profiles. At a given Reynolds number the growth 

rates were much higher for large n parameters 

except at low frequencies. This can be seen in 

Figure 8. These results show us that the growth of 

the perturbation velocity wave is more rapid close 

to the orifice (for large n). 

 

Figure 8. The growth rate of the amplitude of 

perturbation velocity at Re = 300 in the case of 

analytic profiles ( 2 n
sech ( )U y ) 

4.2.2 Results for the numerical profiles 

The results were the same in the case of 

numerical profiles. In Figure 9. the non-dimensional 

growth rates were plotted at various distances. The 

growth rates were higher for velocity profiles which 

are closer to the orifice, except at low frequencies.  

 

Figure 9. The non-dimensional growth rate of 

the amplitude of perturbation velocity in the case 

of numeric profiles at various distances from the 

orifice. 

The non-dimensional results were 

redimensionalized. The redimensionalized growth-

rates were plotted as a function of circular 

frequency in Figure 10. In this case the differences 



were more significant, because the local width 

changes magnify the differences. The dimensional 

growth rate is inversely proportional to the length 

scale (Eq. (34)) which is the smaller closer to the 

orifice than far from it. 

 

 

Figure 10. The growth rate of the amplitude of 

the perturbation velocity in the case of numerical 

profiles at various distances from the orifice  

CONCLUSIONS 

In this paper linear stability investigations of 

various velocity profiles were carried out by the OS 

equation solved by the CMM. The main goal of the 

investigation was to give an explanation why the 

flow at the orifice is more sensitive than elsewhere. 

The stability results showed that the disturbances 

grow more rapidly closer to the orifice. These 

observations were valid to analytical velocity 

profiles as well as for numerical profiles obtained 

from CFD. In the case of analytical velocity profiles 

the critical Reynolds number was the same in all 

cases Recrit ≈ 4.3 and the non-dimensional growth 

rate is virtually independent of Re if Re ≳ 1000.  

The reason for the higher growth rate close to 

the orifice was twofold. The first reason was that 

the velocity profiles, that are closer to the top hat 

profile, have higher non-dimensional spatial growth 

rates. These profiles are closer to the orifice. The 

other one can be explained by the non-dimensional 

form of stability equations. The local length scale 

grows continuously from the orifice and the growth 

rate is inversely proportional to the local length 

scale for the same non-dimensional velocity profile. 
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