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Abstract

Nonlinearity is a direct consequence of large scale dynamics in the solar atmosphere.
Here, the nonlinear steepening of waves balanced by dispersion generates solitary
waves. Nonlinear waves can also appear in the vicinity of resonances, influencing
the efficiency of energy deposition. Here we review recent theoretical breakthroughs
that have lead to a greater understanding of many aspects of nonlinear waves arising
in homogeneous and inhomogeneous solar plasmas.
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1 Introduction

One of the most interesting processes in solar and astrophysical plasmas is the com-
plicated interaction of plasma motions with magnetic fields. These media are highly
non-uniform and as a consequence are a natural environment for magnetohydrody-
namic (MHD) waves. Waves can transport energy and momentum. When part of
their energy or momentum is transferred to the plasma they can heat and acceler-
ate the plasma (e.g. resonant absorption). Waves can carry information about the
medium in which they propagate, therefore they can provide a unique tool for plasma
diagnostics.

In the present contribution we review two important nonlinear waves arising in
inhomogeneous solar plasmas. Firstly, solitary waves arising in structured plasmas
(i.e. waveguides) are discussed in different structures and for different dispersions.
Secondly, nonlinear waves generated in the vicinity of resonant positions (slow reso-
nance) are revisited and we show how nonlinearity will influence the efficiency of heat
deposition.
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2 Nonlinear waves in waveguides

One of the basic properties of solar plasma is that is structured, the magnetic field is
not distributed smoothly over the surface of the Sun, but it tends to accumulate in
entities called magnetic loops, the building blocks of the solar corona. These structures
can support, e.g. longitudinal wave propagation over long distances. The effect of the
structuring is that it introduces dispersion, i.e. a modification in the propagation
characteristic of the wave.

Solitons are finite-amplitude waves of permanent shape which owe their existence
to the balance between nonlinear wave-steepening and wave dispersion. Nonlinearity
appears for waves of finite amplitude and generally is a consequence of large scale
dynamics. Dispersion could arise due to two different effects. Geometrical dispersion
appears for waves propagating in a magnetic guide (flux tube or sheet). This dispersion
does not depend on the reaction of the external media and its value is defined by
the geometrical scale of the duct (the tube diameter or the thickness of the sheet).
Alternatively, waves in open ducts could have dispersion due to the reaction of the
external media. It is not always simple to separate these two sources of dispersion in
spite of their different behavior. Furthemore, physical dispersion appears due to plasma
(magnetic) effects (generalized Ohm’s law or Finite Larmor Radius (FLR) effects). In
general, these two dispersive effects give rise to different dispersive behavior but they
have the same result: creation of a new length scale in addition to the natural length
scale of the waves, i.e. their wavelength.

Guided waves in solar and space plasmas are investigated in two cases: magnetic
slab (Cartesian geometry) and magnetic tube (cylindrical geometry). The dynamics
of solitary waves are best described in the so-called thin flux tube approximation. For
a motion v(z, t) along a tube (slab or cylinder) of cross-sectional area A(z, t), the one-
dimensional equations of continuity, longitudinal momentum, isentropic energy and
flux conservation are
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where the quantities p(z, t), ρ(z, t), B(z, t) and v(z, t) are supposed uniform across the
tube.

In a magnetic slab of width 2a with the magnetic field along the structure, the
dispersion relation of slow sausage modes with their wavelength (k−1) much larger
than the width of the slab is (Roberts, 1981)
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where cT is the tube speed (the propagation speed of slow magnetoacoustic waves in
an unbounded medium). The α1|k| term in Eq. (1) arises due to dispersion and in
the long wavelength limit is a small quantity. If the amplitude of slow waves becomes
large enough, the nonlinear evolution of these waves is described by the Benjamin-Ono
(BO) equation written for the z-component of the velocity perturbation (Roberts &
Mangeney, 1982; Edwin & Roberts, 1986; Ballai et al., 2002)
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where β is a coefficient which depends on the characteristic speeds (sound, Alfvén and
cusp speeds). The single-soliton solution of this equation is the algebraic soliton,

v(z, t) =
A

1 + [(z − st)/L]2
, (3)

where A is the velocity amplitude of the soliton, s and L are the speed and scale of
the soliton related by
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βA

4
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In a magnetic cylinder with radius R, the dispersion relation of slow surface sausage
modes in the long wavelength limit is

ω/k = cT − α2k
2K0(|k|λ), (5)

where K0(x) is the modified Bessel function of the zeroth-order. The quantities α2

and λ depend on characteristic speeds and the radius of the tube and λ2 can be
both negative or positive quantity. If these waves steepen into nonlinear waves, their
evolution is described by the Leibovich-Roberts (LR) equation (Roberts, 1985),
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Although this equation was derived 20 years ago, there is no known analytical so-
lution, however, numerical investigations showed that it has a solitary-like solution
(Weisshar, 1989). If the propagation speed of the slow waves inside and outside the
tube are approaching each other, the LR equation reduces to a nonlinear wave equation
without dispersion which describes shock waves with zero-width. If the internal cusp
speed approaches either the external sound or Alfvén speed (supposing a magnetized
environment), the LR equation reduces to the Leibovich equation describing nonlinear
waves on a cylindrical vortex core. The LR equation is valid provided λ2 > 0. If
λ2 < 0, then slow leaky sausage modes will propagate in the tube draining energy
away from the structure. In this case, the LR equation can be modified to describe
slow leaky sausage modes as (Ballai & Zhughzda, 2002)
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One of the limitations of these equations is that the solitary wave solution appears
only up to some critical amplitude. This amplitude threshold appears because the
dispersion relation has a maximum, i.e the maximum value of the dispersion is not
enough to smooth out the front of the waves if the amplitude of the waves exceeds
a critical threshold value. Thus, the (LR) equation describes the nonlinear behavior
of weakly nonlinear slow sausage modes whose phase velocity in the linear limit has
an extremum. For solitons with negative dispersion this limitation does not occur,
instead they are subject to an aperiodic instability.

There is one aspect which so far has been neglected, and this is related to the
dissipative character of the plasma. In fact, the right choice for a dissipative mechanism
depends on the location where physical processes are to be studied and also on the
physical mechanism itself. For instance, Ohmic dissipation of wave propagation in
the solar corona does not result in significant damping (unlike viscosity or thermal
conduction) but this dissipative effect must be taken into account when studying
effects which require small length scales, e.g. coronal heating.

When dissipation is taken into account, solitary waves will exhibit a slow damp-
ing, which means that the energy and momentum of solitary waves are not conserved
quantities any longer. The most important dissipative mechanisms are viscosity, ther-
mal and electrical conduction and radiation. If we take into account the first three
mechanisms, the solitary wave equations must be supplemented by an extra term
proportional to ∂2v/∂z2 which results in an algebraic decay of the soliton. If radia-
tion is considered, the nonlinear equations will have an extra term proportional to v
which leads to a slow exponential decay of the solution. Illustrations of when these
dissipative terms are added to a nonlinear evolutionary equation are the Leibovich-
Roberts-Burgers or the Korteweg-de Vries-Burgers equation.

Dispersion can arise not only due to a geometrical structuring, but also due to the
presence of the magnetic field, through, e.g. the Hall term in the generalised Ohm’s
law. Strictly speaking, Hall MHD is relevant to plasma dynamics occurring on length
scales shorter than the ion inertial length, c/ωi, where c is the speed of light and ωi

is the ion plasma frequency. Inclusion of the Hall term in the magnetohydrodynamic
induction equation is known to affect the polarization of waves because it includes the
dispersion of Alfvén waves near the ion cyclotron frequency.

The nonlinear wave evolution in the presence of a Hall effect in a viscous plasma has
been studied in connection to the acceleration of the solar wind. When the nonlinear
steepening of compressional waves is balanced by the broadening of the wavefront
caused by the Hall effect, we obtain that the dynamics of solitary waves propagating
in a super-radial magnetic field is described by the Korteweg-de Vries-Burgers (KdV-
B) equation
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where cf is the phase speed of linear waves and the coefficients αi depend on char-
acteristic speeds and the angle of propagation with respect to the magnetic field.
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Choosing a nearly-parallel propagation, we obtain that solitons arising from the non-
linear steepening of compressional slow waves are able to accelerate the plasma, while
solitons which are generated by the nonlinear steepening of fast waves will decelerate
the plasma. The speed at which the solar wind is accelerated by means of solitons
agrees very well with the observed speeds by UVCS-SOHO at 1.3R⊙.

Solitary waves have unique properties which make them special for mathematics
and their applications to other fields: (i) Integrability: Before the discovery of solitons,
mathematicians were under the impression that nonlinear PDEs could not be solved,
at least analytically. However, solitons showed us that it is possible to solve PDEs (at
least the solitary wave equations) exactly, which gives us a tremendous ”window” into
what is possible in nonlinearity. (ii) Nonlinear superposition: In linear theory, there
is a simple way to generate a new solution from known ones, just by multiplying them
with a scalar and adding them together. This is known as superposition. Before the
discovery of solitons, there was no analogue of this construction for nonlinear equations,
but the way that a 2-soliton solution can be viewed as a combination, although not
a simple linear combination, of two 1-soliton solution leads us to the recognition that
(at least for solitons) there is a nonlinear superposition principle, as well. (iii) The
particle-like behaviour of solitons leads to a large number of applications. This is
true to some extent: there are soliton models for nuclei and the technique known as
bosonization allows us to view fermions as being solitons in appropriate situations.
Recently, the transport of energy and information along DNA chains was described
by the so-called Davydov-solitons. Solitons have also a series of other applications
in fields like oceanography, fiber optics, telecommunications and geophysics. Solitary
waves carry a large amount of energy, therefore if they are dissipated over short length
scales they could provide, e.g. the energy required to heat the coronal plasma (resonant
solitary waves).

3 Nonlinear resonant waves

Resonances are ubiquitous every time MHD (magnetohydrodynamic) waves are driven
in inhomogeneous plasmas. However in weakly dissipative plasmas ( as in the case of
solar plasma) driven MHD waves show nearly resonant behaviour, which deviates from
the resonant behaviour in ideal plasmas only in thin dissipative layers surrounding the
ideal resonant positions.

A very important property of these nearly resonant waves is that their damping rate
is almost independent of the values of dissipative coefficients. As a result, the damping
rate of nearly resonant MHD waves can be many orders of magnitudes larger than the
damping rate of MHD waves with the same frequencies in homogeneous plasmas. This
property of resonant waves being strongly damped in weakly dissipative plasmas has
attracted ample attention from plasma physicists since the transferred energy can
be converted into heat (Sakurai et al., 1991; Ruderman et al., 1997a; Ballai et al.,
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1998a) or it might give valuable information about the density of the plasma and the
characteristic scale of inhomogeneity.

Resonant absorption can be considered as an effective process of generating small
length scales comparable to the dissipation length scales. The local oscillation modes
of an inhomogeneous plasma are represented by continuous spectra for slow MHD and
Alfvén waves and a discrete spectrum for fast MHD waves. The resonant absorption
occurs when the frequency of a laterally driven oscillation matches the local slow
and/or Alfvén wave frequency and a resonant field line is created which transfers
energy from the surface disturbance to its environment.

Usually, the importance of the dissipation is characterized by the viscous and
magnetic Reynolds numbers (if viscosity and magnetic diffusion are considered as
dissipative effects) and we denote by R the total Reynolds number which under solar
conditions is a very large number (106 in the photosphere and up to 1012 in the corona).

Linear theory of resonant absorption has shown that in the vicinity of a resonant
position the perturbations have steep gradients and large amplitudes and therefore the
linear theory in this region can break down and nonlinear theory has to be considered.
Nonlinearity in the dissipative layer was first taken into account in the theory of
resonant absorption by Ruderman et al. (1997a) and Ballai et al. (1998a) where they
studied the nonlinear evolution of slow resonant MHD waves in the isotropic and
anisotropic dissipative layer using a Cartesian geometry. These theories were applied
to study the resonant absorption of sound and fast magneto-acoustic waves in solar
structures (Ruderman et al., 1997b; Ballai et al., 1998b; Erdélyi & Ballai, 1999). One
of their main results was that in contrast to the linear theory, the coefficient of wave
energy absorption was dependent on the particular type of dissipation. They have also
found that the general tendency of nonlinearity is to decrease the absolute value of
the coefficient of wave energy absorption when the wavelength of the incoming wave
is much larger than the characteristic scale of the inhomogeneity and nonlinearity is
considered weak.

Characteristic quantities used to scale the problem are ǫ (the dimensionless ampli-
tude of perturbations away from the dissipative layer) and the total Reynolds number.
One way to determine the importance of nonlinerarity is to calculate the ratio

δ = f
∂f

∂θ
/ν

∂2f

∂x2
= ǫR2/3, (9)

where f is any large variable, i.e. the most singular perturbations (e.g. for slow wave
resonance, the most singular are the parallel component of the velocity and magnetic
field perturbation). Linear theory works as long as δ ≪ 1, i.e. ǫR2/3 ≪ 1. For a
typical value of ǫ ≈ 10−2 to have resonant absorption described by linear theory, we
need R ≪ 103 which is in contrast to previously accepted values. Based on these
scalings, it is obvious that resonant absorption is a nonlinear phenomenon.

In nonlinear theories perturbations cannot be Fourier analysed. However, to be
as close as possible to the linear results, we suppose that waves are plane periodic
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propagating modes with permanent shape, i.e. all perturbations depend only on θ =
z − V t so they are periodic with respect to θ.

Outside the dissipative layer, the plasma dynamics can be described by the linear
ideal MHD system of equations which can be reduced to two coupled first order PDE
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In the case of cylindrical tube when the equilibrium magnetic field is such that B0 =
(0, B0ϕ(r),B0z(r)) and the wave-vector now has a helical component, therefore the
running variable is θ = mϕ+kz−ωt. The governing equations outside the dissipative
layer are
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and the coefficients D, DA and DC are similar to the equations given by Eq. (11)
with V replaced by ω.

In the present study we only focus on the slow resonance given by the condition
V 2 = c2

T (x) or ω2 = ω2
C(r). The resonant position (x = xC in Cartesian geometry

and r = rC in cylindrical geometry) is a regular singular point of the system of Eqs.
(11)-(12) and as a consequence, the solutions are obtained in form of Fröbenius series.
The equilibrium quantities have a slight change across the dissipative layer and they
are approximated by the first non-vanishing term in their Taylor expansion. These
expansions are valid in a layer wider than the dissipative layer since the characteristic
scale of the inhomogeneity is larger than the scale of dissipation.

Inside the dissipative layer, the solutions are obtained in form of asymptotic ex-
pansions. In order to connect the solutions in the two regions (inside and outside
the dissipative layer) we use the so-called matched asymptotic expansions developed
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by Nayfeh (1981). Both the internal and external solutions have to coincide in the
overlap regions.

The dynamics of resonant slow waves in the vicinity of the resonance propagating
along the magnetic field is given in cartesian geometry (with isotropic anisotropy) by
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and in cylindrical geometry
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where the function C(θ) is a sum of the θ-derivative of the total pressure and a function
containing the ϕ-component of the magnetic field.

There are two interesting points to be mentioned. The coefficient Φ1 and Ψ1 in
Eqs. (13)-(14) are similar to the coefficient of the nonlinear terms found for solitons
and it provides a measure of nonlinearity in compressional modes. Secondly, in the
coronal case, where all transport coefficients are anisotropic, the nonlinear governing
equation is modified in the dissipative term (the third term in the LHS) and instead
of having a 2nd order derivative with respect to the transversal coordinate, we have a
2nd order derivative with respect to θ. Eqs. (13) and (14) should be understood in
the sense that the nonlinear behaviour of slow waves in the vicinity of the resonance
is driven by the variation of the total pressure.

When solving the MHD equations for the entire domain, the resonances are con-
sidered as singularities, therefore the evolution of physical quantities in the vicinity of
resonances are given as jumps (connection formulae), exactly as the Rankine-Hugeniot
relations for shock waves. The jump in a quantity Q across the dissipative layer can
be calculated with the aid of

[Q] = lim
x→xC

{Q(x) − Q(−x)} .

When connecting the solutions, the jump conditions serve as boundary conditions.
In the case of Cartesian geometry, the jumps in the total pressure and the normal
component of the velocity are given by
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Here P is used for the Cauchy principal part because the integrals are divergent at
infinity.
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When calculating the efficiency of the resonant absorption (coefficient of wave
energy absorption) it is found that the effect of nonlinearity is to decrease the net
coefficient of wave absorption. This means that the largest amount of energy stored
in nonlinear waves does not go into increasing the absorption rate but into generating
a mean flow outside the dissipative layer. This turbulent flow is generated by the
absorption of wave momentum in the dissipative layer and its amplitude is determined
by the balance of forces created by resonant absorption and shear viscosity. The mean
shear flow is a piecewise continuous function of r (e.g. in cylindrical geometry) but its
vorticity has a jump given by
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where the coefficients A1 and A2 depend on characteristic speeds, the location, rC , of
the resonance and the dissipative coefficients and <, > is the mean value of a quantity
over a period. Estimates of this mean shear flow give us speeds of the order of 0.1km/s
in the solar photosphere and a few km/s in the solar corona. Observation of this
flow might be a first indirect evidence for resonant absorption in solar plasmas. The
properties of generated mean turbulent flow are not fully understood and they are an
important topic for further investigations.

The results presented here considered that the equilibrium is static; in reality the
plasma is very dynamic, showing motion on all time and space scales. Including an
equilibrium steady flow, Ballai & Erdélyi (1998c) obtained the governing equations
inside and outside the dissipative layer, as well as the jump conditions across the
singularity.

The model described here considered a simplified atmosphere. Possible further
investigations could be performed for a more realistic equilibrium (e.g. equilibrium
quantities vary not only across the field but also along the field, inclusion of gravity,
etc.). The governing equations were obtained in the limit of weak nonlinearity and
long wavelength approximation. Recently, Ruderman (2000) considered the analysis of
resonantly interacting waves in the limit of strong nonlinearity. He has obtained that
the decreasing tendency of the coefficient of wave energy absorption by nonlinearity
does not persist in this limit for intermediate values of wave vector. In the long
wavelength limit, however, he found that the difference between strong nonlinear and
linear limit does not exceed 20%.
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