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Abstract

Observations of flaring loops in radio, visible and x-ray bands show quasi-periodic
pulsations with periods from a few seconds to several minutes. Recent numerical
studies have shown that some of these oscillations can be interpreted as standing
slow magnetoacoustic waves. Energy deposition from the flare excites the second
standing harmonic, with a period determined by the temperature and loop length. The
excited longitudinal oscillations can be practically dissipationless and can, possibly,
be considered MHD autowaves. Numerical simulations with a wide range of flare
durations and choices of heat deposition location show that the second harmonic is a
common feature of flaring loops.
Keywords: Sun: corona, Sun: oscillations, MHD.

1 Introduction

Observations of the solar corona provide us with many observations of oscillations and
waves in a variety of wavelength bands and with a huge range of periodicities. We are
interested in quasi-periodic pulsations (QPP) observed in coronal loops during solar
flares. The flare causes a temporary increase in the intensity of the signal from the loop,
followed by a cooling phase in which the intensity returns to its normal level. Quasi-
periodic variations in intensity are seen during this cooling phase. These pulsations
have periods from a few seconds up to thirty minutes. The two main mechanisms
proposed for these oscillations are the sausage mode and slow magnetoacoustic mode.
For the sausage mode there exists a cut-off which imposes a limit of around 20 s on the
period. (Nakariakov et al., 2003) However, post-flare oscillations often show periods
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much longer than this and thus the sausage mode cannot explain all observations. In
this study, we develop further an alternative suggested in Nakariakov et al. (2004):
flare-generated acoustic oscillations.

There are numerous observations of quasi-periodic compressible pulsations in coro-
nal loops. For example, Wang et al. (2003) present a review of hot coronal loop os-
cillations as observed by SUMER with periods between 7 and 31 minutes. Harrison
(1987) presents solar X-ray pulsations observed by the Hard X-Ray Imagining Spec-
trometer on the Solar Maximum Mission and reports a 24 minute periodicity. Similar
oscillations but of shorter periodicity are presented by McKenzie et al. (1997) and
Terekov et al. (2002). Wang and Xie (2000) observed flare associated pulsations in the
microwave band with a period of about 50 s. Pulsations have been observed simul-
taneously in X-ray and microwave bands, for example by Fu et al. (1996) and Tian
et al. (1999). Similar oscillations, have been observed in the stellar case such as the
oscillation with a period of 220 s observed by Mathioudakis et al. (2003) on the star
Peg II.

2 Numerical Model

We model coronal oscillations using a 1D radiative hydrodynamic code. The numerical
code is a 1D version of the Lagrangian Re-map code (Arber et al., 2001). This code
includes effects such as thermal conductivity, gravitational stratification and radiative
losses. For the radiative loss function we use form given by Rosner et al. (1978) ex-
tended to a wider temperature range. (Peres et al., 1982; Priest, 1982) The simulation
domain consists of a hot (initially 1 MK) coronal loop with a dense, cool (104 K)
plasma region at each footpoint. This region mimics the chromosphere and acts as a
source of plasma to fill the loop during the flare.

The flare is modelled by the application of a Gaussian heat pulse given by
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where the energy deposition width is σs and its duration is σt. The flare amplitude
is Qp. This function includes time independent background heating which is applied
in order to maintain the equilibrium. The magnitude of this background heating is
given by E0. For simplicity this background heating is applied at the same position
as the flare. The default values for the various parameters are given in Tab. 1. In our
analysis of the results times are quoted relative to the flare peak time, ie. t − tp.

In the first phase of the simulation, the loop is allowed to settle into an equilibrium
between radiative losses and the time independent heating function. Next the flare
causes the temperature to rise and heat travels down the loop by thermal conductivity.
This in turn causes evaporation of material from the model chromosphere to fill the
loop. After the flare peak the loop cools and its temperature and density return to
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Table 1: Default simulation parameters.

Parameter Value

Loop Length L 55 Mm
Initial Temperature T 1 MK
Background Heating E0 0.004 erg cm−3 s−1

Heating Width σs 7 Mm
Flare Peak Time tp 7200 s
Flare Amplitude QP 2 × 104

Flare Location s0 0 Mm (Apex)

their initial values. We study the oscillations which appear in the density, temperature
and velocity profiles during this cooling process.

3 Data Analysis

We consider acoustic waves set up in a coronal loop due to an impulsive energy de-
position. We observe these waves by analysing temperature, density and velocity
time-series from the simulations. Temperature oscillations are of smaller amplitude
than the velocity and density oscillations and therefore we don’t examine them. The
time series that we use are the variations at the apex. The structure of standing
modes is such that odd numbered modes have a node in density at this point while
odd numbered modes have a node in velocity. The standing wave has a frequency
given by

fn(T ) = 152

√
Tn

L
. (2)

The wave frequency changes with temperature and the temperature changes through-
out the flare development. Thus, we can identify not the standing not just by the
frequency, but by the appropriate modulation of the frequency with time. We use a
Morelet wavelet transform (Torrence and Compo, 1998) to observe the distribution of
wave power over both time and frequency.

Fig 1 shows time-series for the density at the loop apex and the average loop
temperature for a typical flare. (σt = 100) As described in the previous section the
density and temperature are seen to rise until the flare peak and then return slowly to
their initial values. The density reaches its peak value after the temperature. Quasi-
periodic variations can be clearly seen in the density, and less clearly in velocity.
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Figure 1: Time evolution of the number density at the apex (upper panel) and average

temperature (lower panel) for the σt = 100 s flare. (Qp = 2 × 104 and s0 = 0)

Before taking the wavelet transform we use a low pass filter to remove the long time
scale variations from the signal. Fig 2 shows the filtered density from the 100 s flare
and the wavelet the transform of this signal. This plot shows peaks in the wave power
firstly around 200 seconds after the flare with a period of approximately 80 seconds
and then later around 900 seconds after the flare with a period of approximately 180
seconds. The solid curved line across this plot shows the period of the harmonic. This
oscillation with an amplitude of around 5–10% is the second harmonic standing mode
acoustic wave.

As odd numbered modes have a node at the apex, it is unsurprising that the
fundamental mode is not seen in these density plots. Fig 3 shows the velocity signal and
its wavelet transform. There is no significant oscillation in the immediate aftermath
of the flare with some oscillations appearing later. The wavelet transform shows that
this later oscillation has power in the fundamental, second and fourth harmonics. We
therefore conclude that the fundamental mode is not strongly excited by the energy
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Figure 2: The relative density oscillation ne/ne0 at the apex for the 100 s flare (shown

in Fig. 1) and a wavelet transform of the same signal. The curved lines across the

wavelet transform show fundamental (upper dashed), second (solid), third (dotted) and

forth (lower dashed) harmonic periods.

deposition.

4 Discussion

The example shown in the previous section is a fairly typical simulation result. The
second harmonic is seen to be the dominant excited mode for a wide range of flare
parameters, while the fundamental mode is rarely seen. The second harmonic is a sym-
metric mode, and it would be natural to assume that the application of the flare at the
apex leads to a symmetric oscillation. This, however, is not the case. The second har-
monic continues to dominate, even when the flare energy is deposited asymmetrically
at one footpoint. (Tsiklauri et al., 2004)

By examining the parameters of solar and stellar oscillations we can consider
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Figure 3: The relative velocity oscillation V/CS at the apex for the 100 s flare (shown

in Fig. 1) and a wavelet transform of the same signal. The curved lines across the

wavelet transform show fundamental (upper dashed), second (solid), third (dotted) and

forth (lower dashed) harmonic periods.

whether or not they are likely to be second harmonic standing acoustic waves as
predicted by the simulations. Mathioudakis et al. (2003) studied white light oscilla-
tions during a flare on II-Peg and reported a period of 220 seconds. That paper gives
estimates for the temperature and loop length of 200 MK and 500 Mm respectively.
Using these values and Eq. 2, we can derive a value for the period of 233 seconds. This
is consistent with the observed periodicity.

Considering solar observations Wang et al. (2003) examine a number of loop os-
cillations seen by SUMER. Many of these oscillations are not flare associated, but
one example flare associated oscillation is that seen on the 29th of September 2000.
An oscillation with a period of 28 minutes is observed in a loop with an estimated
length of 515 Mm. This time, we can use Eq 2 to make a estimate of the temperature.
This gives us a value of 4 MK. The observations are made using spectral lines at a
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temperature of 6.4 MK.

The oscillations have two interesting properties. Firstly, they can persist for a
number of oscillations with no significant damping, and sometimes even amplification.
Secondly, they are often seen to disappear quite suddenly. The main dissipation mech-
anism for slow waves is well known to be thermal conductivity. From simple linear
theory, the damping times for our example flare is 1.2 wave periods. Despite, this
very strong damping several clear oscillations can be seen in Fig 2. As the oscillations
appear despite the strong damping, then there must exist some instability which is
amplifying the waves. One possible mechanism is the thermal instability. The simula-
tion contains a heat loss function (L) which gives the radiative losses from the plasma
as a function of temperature. In the temperature regime at which oscillations occur
dL

dT
< 0, meaning that cooler plasma loses energy more quickly. This instability can

amplify waves. Waves may therefore exist in a balance between amplification due to
thermal instability and high frequency dissipation. In order to test this hypothesis we
run the flare simulations with radiative losses switched off. No oscillations are then
seen in our example 100 s flare. If the waves are sustained by thermal instability then
the waves would disappear suddenly when the temperature falls into the stable regime.
This explains the sudden disappearance of the oscillations.

5 Conclusions

Observed quasi-periodic oscillations in coronal loops can be interpreted as standing
magnetoacoustic waves. Hydrodynamic simulations of these waves show that energy
deposition from a flare can excite standing modes and that the second harmonic is the
most easily excited mode. This second harmonic seems to be the natural response of
the loop to energy input and occurs for a wide range of energy deposition parameters
such as position, duration and amplitude. The second harmonic is excited even for
asymmetric energy deposition. The period of the oscillations can be calculated from
the loop length and plasma temperature.

The acoustic waves interpretation is often excluded on the basis of strong ther-
mal conductivity. Calculations based on the thermal conductivity suggest that the
oscillations in our simulations should not occur. In the absence of thermal instability,
these oscillations disappear and we therefore suggest that the waves exist as a result
of competition between thermal over-stability and thermal dissipation.
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