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Abstract

We discuss two types of embedding for some submanifolds of a spacetime containing
a black hole into an Euclidean space and a Minkowski spacetime, respectively. We
comment on their meaning and usefulness and on the perspectives that the second one
opens for further investigations.
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1 Introduction

The embedding diagrams for black holes are almost as old as the notion of black hole.
Although Oppenheimer and Snyder shown already in the late 30th that if a spherically
symmetric star is massive enough, its gravitational collapse cannot be stopped by
anything and a singularity of spacetime will be created, the rigorous notion of a black
hole was introduced only in the sixtieth by people like Penrose and Hawking who
were able to show that such singularities might exist without making assumption
of symmetry and showing that all of them have in common the fact that they are
surrounded by a special surface, called event horizon. The name of black hole was
coined, as far as we know, by John Wheeler, in the late sixtieth and he was, also, one
of the first to consider embedding diagrams, made popular by the classical book Misner
et al. (1971). In the classical embedding diagrams, usually, the equatorial plane of the
spacetime containing a black hole is embedded into the three dimensional Euclidean
space. Quite recently, Donald Marolf considered another kind of diagram, in which
another piece of the black hole spacetime is embedded into the three dimensional
Minkowski spacetime. In many respects, this embedding is more useful, because it
offers more information on the physical peculiarities of the spacetime. The aim of this
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paper is to review the general notion of embedding and then to shortly discuss the
two particular classes we mentioned already.

Figure 1: The Klein’s bottle

2 Embeddings: what and why?

The spacetime containing a black hole, as most of the spacetimes considered in classical
general relativity, is four-dimensional. On the other hand, we are living into three di-
mensional space. Therefore, we don’t have an intuitive picture of the entire spacetime.
What we can do, nevertheless, is to take lower dimensional pieces of spacetime (in our
case they will always be two-dimensional) and represent them as subsets (surfaces in
our case) of the three-dimensional Euclidean space we are living in. As a result, we
should get subsets of a very particular form. In the case of surfaces, we should have no
self-intersections or singular points (for instance corners or edges). A counterexample
is the cone, which is not a smooth surface (unless we remove its vertex). In most
papers dealing with the problem of embedding diagrams, the existence of embedding
is taken as granted. However, this is far from reality. An arbitrary two-dimensional
surface cannot be embedded into the Euclidean three-space. For instance, the widely
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known bottle of Klein (see figure 1) cannot be embedded into R
3. As we can see, it

has self-intersections. In fact, the Klein’s bottle is defined, initially, by factorization,
by identifying some subset of R

3 and it can be embedded only in Euclidean spaces
of dimension at least four. All we can claim, in the general situation, is that it can

(a) The pseudosphere (b) The surface of Kuen

Figure 2: Surfaces of constant negative curvature

be embedded into R
4. But this is only half of the story. The pieces of spacetime we

consider come equipped with a metric, which is induced by the metric of the ambient
spacetime. What we would like is to get an embedding that preserves the metrics.
In other words, if we put on the embedded surface (provided there is one) the metric
induced from the ambient Euclidean or Minkowski space, the embedding should be
an isometry. But, as a modern version of a celebrated theorem of John Nash claims,
a two-dimensional surface can only be embedded isometrically into R

6 or, if it is en-
dowed with an undefined metric, into the Minkowski spacetime of dimension 6 + 1.
Thus, the existence of embedding into the three-dimensional Euclidean space or into
the (2+1)-dimensional Minkowski spacetime seems to be rather the exception than
the rule. It should be emphasized, also, that the isometries we are speaking about are,
usually, local. Two surfaces can have the same coefficients of the first fundamental
form, but their shape can be different. For instance, the surfaces having the same
constant curvature are locally isometric, but as the two surfaces from the figure 2
suggest, their shape might be very different.
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3 Spherically symmetric black holes

Generally speaking, as we said before, a black hole spacetime is characterized by the
existence of a singularity (a point at which at least some of the components of the
curvature tensor become infinite), surrounded by an event horizon, i.e. a closed surface
which has the property that no information (not even light) can escape from its interior
towards the infinity. Some black holes (for instance the Reissner-Nordström black hole,
or the axially symmetric black hole), may have more than one horizon, although they
have, usually, different characteristics (see figure 3). Black holes spacetimes do exist
in theory of gravitation different from Einstein’s, but we shall confine to this in this
paper. As such, the metric of a black hole spacetime should be a solution of Einstein’s
field equations:

Rij −
1

2
gijR = kTij ,

where Rij is the Ricci tensor, gij is the metric, R is the scalar curvature, k is a constant
(Einstein’s gravitation constant) and Tij is the energy-momentum tensor, describing
the matter content of the spacetime. We will be interested, in particular, only in

(a) The Schwarzschild BH (b) The Reissner-
Nordström BH

Figure 3: Spherically symmetric Black holes

two spherically symmetric black hole solution of the Einstein’s equations. The first
one is the simplest one, the so-called Schwarzschild solution, depending on a single
parameter, the mass of the body producing the black hole:

ds2 = −

„

1 −
2M

r

«

dt2 +
dr2

1 − 2M
r

+ r2dθ2 + r2 sin2 θdϕ2, (1)
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and the Reissner-Nordström solution, depending on two parameters, the mass and the
charge of the body:

ds2 = −

„

1 −
2M

r
+

Q2

r2

«

dt2 +
dr2

1 − 2M
r

+ Q2

r2

+ r2dθ2 + r2 sin2 θ.dϕ2, (2)

We have to mention, however, that the equations we just mentioned actually describe
the metric in the exterior of the black hole or, to be more precise, in the exterior of the
event horizon of the black hole. Nevertheless, these metrics have analytical extensions
which are valid also on the other side of the horizon. The spacetime obtained through
the extension for the case of the Schwarzschild metric is called the Kruskal spacetime,
after the name of the mathematician who obtained this extension, in the fifties. What
it is, usually, embedded, however, is exactly a slice of the exterior part of the black
hole, therefore we shall not discuss these extensions.

4 Classical embeddings

Before the Marolf work, what was embedded was a spacelike slice of a black hole
spacetime. We shall exemplify on the particular case of the Schwarzschild spacetime.
The spacelike part of the spacetime is obtained, in this particular case, by just letting
t = const. We get, thus, a three-dimensional Riemannian space with the metric given
by:

ds2 =
dr2

1 − 2M
r

+ r2dθ2 + r2 sin2 θdϕ2. (3)

This is, however, impossible to visualize, therefore we shall content to embed into
the Euclidean space R

3 the “equatorial plane”, i.e. we let, also, θ = const(= π/2).
We are, left, thus, with a two-dimensional submanifold of the original Schwarzschild
spacetime, with the positively-defined metric

ds2 =
dr2

1 − 2M
r

+ r2dϕ2. (4)

To embed this submanifold into the Euclidean space means, in fact, to find a two-
dimensional submanifold of R

3 (in other word, a surface in the intuitive space) such
that the metric induced on this surface by the metric of the Euclidean space, i.e. its
first fundamental form to be exactly the metric (4). As shown in Misner et al. (1971),
such a surface can be described, in cylindrical coordinates, by

z =
p

8M(r − 2M) (5)

The plot can be seen in the figure 4. The event horizon corresponds to the bottom of
the diagram (as it corresponds to r = 2M). We will call this kind of embedding, when
a spacelike slice of the spacetime is embedded, a classical embedding diagram. This
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Figure 4: An embedding diagram for the Schwarzschild black hole for M = 1

kind of diagram is quite useful for the visualization of some phenomena. For instance,
in most books of relativity, a picture of an equatorial geodesic in the Schwarzschild
spacetime typically looks like that in the figure 5(a) while, instead, it should be
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(a) The plane version

(b) On the embedded surface

Figure 5: A geodesic around a black hole

viewed as a geodesic on the embedded equatorial plane, i.e. it should look like in
the figure 5(b). Thus, the classical embedding diagram does help the intuition and
makes things clearer. However, it emphasizes only the curvature of the space instead of
emphasizing the curvature of the spacetime. In other words, generally speaking, what
has physical significance is the curvature of the spacetime rather than the curvature
of the spacelike section. For instance, the four-dimensional Minkowski spacetime has
zero curvature. Nevertheless, we can choose coordinates in such a way that the section
t = const are curved three-dimensional Riemannian spaces. Still, this has nothing to
do with physics, it just reflects a particular choice of coordinates. The four-dimensional
spacetime curvature, instead, is either different from zero in any coordinate system,
either zero in any coordinate system. It would be useful to have, therefore, also a
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way of visualizing two-dimensional slices for which the induced metric is non-defined.
Clearly, such slices can only be embedded into a Minkowski spacetime. It is exactly
what the Marolf’s embedding diagrams are doing and we shall dedicate the next section
to them.

5 Marolf’s embedding diagrams

The new kind of embedding were introduced in Marolf (1999) and discussed in more
details in Giblin et al. (2004). As we said previously, the idea is two embed a 2-
dimensional submanifold with a Lorentzian metric into the (2+1)-dimensional Minkowski
spacetime rather than into the Euclidean space. We mention that, as is the case with
the classical embeddings, the construction of a Marolf embedding is quite delicate and
it is only possible to be done in special situation, for instance when the spacetime has
spherical symmetry and, moreover, it is static. The black hole having this properties
are endowed with a metric of the form

ds2 = −φdt2 + φ−1dr2 + r2dθ2 + r2 sin2 θdϕ2,

where φ is a function depending only on r, due to the spherical symmetry and to the
static character of the spacetime. What is intended is to embed the (t, r)-part of the
spacetime, with the metric

ds2 = −φdt2 + φ−1dr2.

This should be embedded into the (2+1) Minkowski spacetime, with the metric given
by

ds2 = −dT 2 + dX2 + dY 2.

In fact, there are some technicalities that we are not going to discuss here (see Giblin
et al. (2004)), related to the fact that, usually, we cannot use the same formulae
to embed the entire submanifold, therefore we divide the Minkowski spacetime into
several regions and then embed different pieces of the submanifold in different region
and then we “past” them together to get the overall picture. The trick is, again, to
use cylindrical coordinates, but this time they are hyperbolic (as the metric of the
surface is Lorentzian, rather than Riemannian). In the figure 6 we represent the
diagram obtained for the Schwarzschild spacetime (Marolf (1999)). As one can see,
it is very different from the classical embedding diagram. In particular, one might
have difficulties to locate the event horizon on this diagram which is a smooth surface.
It turns out that the horizon correspond to Y = 0, while the singularity r = 0 is
inside the horizon, corresponding to infinite values of T (see Marolf (1999) for the
argumentation). The Marolf’s diagram is useful because it emphasizes the curvature
of spacetime and, also, because on this diagram one can represent the wordlines of
particles, instead of geodesic corresponding to constant values of the time coordinate,
as is the case for the classical embedding diagrams.
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Figure 6: The Marolf ’s diagram for the Schwarzschild black hole

For the Reissner-Nordström black hole (figure 7, Giblin et al. (2004)) the situation
is more complicated, because of the presence of two event horizons, corresponding to
the two solutions of the equation φ(r) = 0. It turns out that only for the part of the
2-submanifold lying outside the exterior event horizon the embedding is possible and
this is the one appearing in the figure.

6 Final notes and perspectives

The embedding diagrams are very useful tools both for teaching general relativity and
for a better understanding of different aspects of the geometry and physics of black
holes. In particular, the Marolf’s diagram should provide a lot of insight. Much remain
to be done in this respect. In particular, it would be nice to have, also, such diagrams
for relativistic stars and to attempt to study their evolution during the gravitational
collapse. A detailed study of the geodesics on these surface is also something that has
to be done. Some of these problems will be touched in Blaga (2005).
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Figure 7: The Marolf ’s diagram for the Reissner-Nordström black hole
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