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Abstract

The paper is devoted to a qualitative analysis of the nonlinear, radial oscillations
of magnetic polytropes. The magnetic field is assumed to be purely toroidal. The
small adiabatic perturbations are investigated using the normal forms method. The
nonadiabatic effects, described with the aid of two additional terms, related to the
sources of the energy and energy damping, respectively, are analyzed with the aid
of the dynamical systems theory. The numerical examples confirm and complete the
qualitative investigation.
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1 Introduction

In this paper we study the stability of the polytropic stars in a weak toroidal magnetic

field. To investigate the radial oscillations of a star we use the radial approximation
of the Lorentz force proposed by Monaghan (1968). The study of the nonlinear radial
adiabatic oscillations of magnetic polytropes is made through the normal forms method.
The same problem was investigated using the multiple scales method by Das et al
(1994). The nonadiabatic effects are described using additional terms connected to
the energy production and loss. Their influence on the nonlinear radial pulsation of
magnetic polytropes is investigated with the aid of dynamical systems theory.
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2 Small perturbations of magnetic polytropes

The influence of a weak magnetic field on stellar oscillations can be obtained using a
perturbative method, so we consider the Lagrangean perturbation of the hydromag-
netic equilibrium equation:
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where P is the pressure, Φ – the gravitational potential and B – the induction of the
magnetic field. After long, but straightforward computations we obtain the equation
of small oscillations of a magnetic star:
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To obtain the normal modes equation we consider the peculiar solution of the
former equation ξ(r, t) = ξ(r)eiσt (Anand and Kushwaha, 1962).

3 Radial oscillations of a polytropic star in a

toroidal magnetic field

The magnetic field destroys the spherical symmetry of the star, but in the first ap-
proximation to investigate the problem of stellar oscillation in a weak magnetic field,
we can use the radial approximation of the Lorentz force (Monaghan, 1968) which is
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where ν = cos θ, F (r) is the radial approximation of the Lorentz force and B – the
induction of the magnetic field.

Assuming that the magnetic field of the star is purely toroidal and that the nonzero
component of the induction of the magnetic field is Bϕ = Γρr sin θ (Roxburgh, 1966),
the equation of radial adiabatic pulsations becomes:
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where the dot stands for the time derivative, the prime – for the derivative with
respect to the radial variable (here the radius of the unperturbed configuration a), zero
index emphasizes that it is considered the value of the function in the unperturbed
configuration. The distance to the stars center in the perturbed case, denoted by r, is

r = a(1 + r1) (6)

where a is distance to stars center in equilibrium and r1, the adimensional radius, is
the difference between the distances to star’s center in unperturbed stellar radius.

Comparing this equation to that derived by Rosseland (1949) for radial adiabatic
oscillation of a star without rotation or magnetic field we conclude that the last term
from the left hand side appears because of the existence of the magnetic field.

4 Nonlinear radial oscillations of magnetic poly-

tropes

Expanding in Taylor series the right hand side of the equation (5) and keeping the
terms up to the first order Roxburgh and Durney (1967) obtained the equation of
linear pulsations of magnetic polytropes.

Keeping in the series expansion the terms up to third order in r1 we obtain the
following equation

ρ0ar̈1 = L(r1) + Q(r1) + S(r1), (7)

where the functions contain the terms of order one, two, three in r1. Their expressions
are two long to be reproduced here. If we consider that r1 is

r1 = ξ1(a)q1(t), (8)

with ξ1 is the eigenfunction corresponding to the fundamental mode of the equation
(5) we obtain

q̈1 + q1 = Aq
2
1 + Bq

3
1 , (9)

where the variable is proportional to time and the coefficients A and B depend on the
polytropic index and on the ratio between the magnetic and gravitational energy. This
equation (9) is the equation of the radial nonlinear oscillation of magnetic polytropes
obtained by Das et al (1994). They investigated it by using the multiple scales method.
We will find its approximate solution using the normal forms method.



204 C. Blaga

5 Adiabatic oscillations of magnetic polytropes

through normal forms method

5.1 Short description of the method

We are looking for an approximate solution of the pulsations equation. The small
parameter we choose is the amplitude of the initial oscillation, because from observa-
tional data it is between 0.05 and 0.15 for classical Cepheids, 0.01−0.08 for RR Lyrae
stars and 0.10 − 0.30 for W Vir (Buchler, 1990; Stothers, 1981).

Let q1 = λQ1, where λ is the initial amplitude and Q1 the unknown function, then
the equation (9) becomes

Q̈1 + Q1 = AλQ
2
1 + Bλ

2
Q

3
1, (10)

where Q1 = 1.0 and Q̇1 = 0.0 for the initial moment t = 0.
We replace the real unknown function Q1 with a complex unknown function of

complex variable to reduce the order of the differential equation we have to solve. The
complex variables ξ, ξ̄ are introduced by
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In these new variables the equation 10) becomes
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equation which is written in a simpler form using a power series expansion with respect
to a new variable η. Let

ξ = η + λh1(η, η̄) + λ
2
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3
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3
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where hi(i = 1, 2, 3) are smooth function in η and η̄ and gi(i = 1, 2, 3) contain the
resonant terms ( i.e. ∼ eit). We mention that after we have determined and replaced
the functions which appear in (14), it became the normal form of equation (12).

5.2 Approximate solution of the radial nonlinear pulsa-

tions equation

Identifying the coefficients of the terms that contain λ at equal power, we are able to
specify the form of the functions gi and to write down the normal form of equation
(12) as
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with the initial condition η = 0 for t = 0. The solution of this equation is
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and the oscillations period is 2π + O(λ2). To simplify the form of the solution we
introduce the notation

τ
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The approximate solution of equation (10) is
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5.3 Concluding remarks

The numerical evaluations of (18) for different values of the polytropic index (n) and
ratio between magnetic and gravitational energy (h) revealed us, as expected, that
the precision of the computation is highly dependent on the initial amplitude, and less
sensitive at the values of n or h.

6 Radial nonlinear nonadiabatic oscillations of

magnetic polytropes

The dissipative phenomena are described with the aid of two terms introduced in the
equation (10). This idea and the form of these terms belong to Krogdahl (1955), who
use them to explain the shape of the light curves observed at Cepheids. The terms
added are µ dq1

dt
, with µ > 0, µ being a constant related to the energy sources of the

star and −µ

λ
q2
1

dq1
dt

, where λ is proportional to the energy loss.
If we substitute q1 = λQ1, the equation (10), in which we have added the two

terms describing the energy production and loss, becomes

Q̈1 + Q1 = AλQ1
2 + Bλ

2
Q1

3 + µ(1 − Q
2
1)Q̇1, (19)

which for λ = 0 is a van der Pol equation1. A qualitative study of the equation (19)
was done by Blaga (1998). It reveals that the number of the equilibrium points of

1In this case λ is a parameter connected to energy production and dissipation, not to the
initial amplitude as in the case of normal form method discussed above.
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the equation (19) depends on the polytropic index and the ratio between magnetic
and gravitational energy and their nature depends on the energy dissipation through
µ. For µ > 0 exists at least one periodic solution. For small positive values of µ the
origin is unstable, but there exists a stable limit cycle. From the physical point of
view, this means that, no matter which the initial conditions are the solution tends
asymptotically to that periodic solution. In the amplitude-frequency relation µ plays
no role as long as it is small.
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Figure 1: Reprezentarea grafică a soluţiei ecuaţiei pulsaţiilor neliniare neadiabatice

pentru n = 3 şi h = 0.004

We conclude that the presence of the energy sources (µ 6= 0, µ > 0) in a polytropic
star does not contradict the existence of periodic orbits for the equation of radial
nonlinear pulsations. For µ = 0 (i.e. adiabatic pulsations) and µ 6= 0, µ > 0 (i.e.
nonadiabatic oscillations) the motion in the phase plane looks different. In the first
case the solution depends on the initial conditions and in the second case the amplitude
of the pulsation is independent of the initial conditions.

We emphasize that for small values of parameters µ şi λ, the magnetic field, through
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A and B, the nonadiabatic processes, through the damping coefficient, tend to diminish
the frequency of the oscillations. This thing could be observed from the figures 1(a)
and 1(b) in which we have represented the radial curves and the radial velocity curves
(t, x(t)), respectively (t, y(t)) for the first order differential system corresponding to
the second order differential equation (19). These were obtained solving it numerically
for n = 3 and h = 0.004 (where h is the ratio between the magnetic and gravitational
energy) and µ ∈ {0.05, 0.5, 1.0}. In figure 1(c) we have represented the limit cycle.
For small values for µ it is symmetric, this quality is lost for bigger values for µ, as
could be observed from the radial velocity curves (figure 1(a)).
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