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Babeş-Bolyai University, Department of Applied Mathematics, M. Kogalniceanu nr.
1 RO-400084 Cluj-Napoca, Romania

E-mail: zmako@math.ubbcluj.ro

Abstract

Hill’s (G. Hill, 1878) global and nonlinear stability theory has the advantage of being
applicable to a great variety of dynamical systems, including those occurring in the
solar system. He used his method originally to study the stability of the Moon as
influenced by the Earth and the Sun. V. Szebehely (V. Szebehely , 1978) showed
that in the model of circular restricted three-body problem the measure of stability
for the Earth’s Moon is very low. Using the invariant relation of the spatial elliptic
restricted three-body problem we show that the measure of stability for the Earth’s
Moon oscillate above stability critical value.
Keywords: Hill’s stability, Restricted three-body problem

1 Introduction

Consider a dynamical system with an integral of motion (such as the Jacobi integral
in the circular restricted three-body problem) given by

v
2 = C − V (x, y, z) ,

where v is the velocity, V is a generalized potential, and C is the constant of integration.
For a given set of initial conditions (x0, y0, z0, v0) we find

C0 = v
2

0 − V (x0, y0, z0) .
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The relation
v
2 = C0 − V (x, y, z)

must hold during the motion.

Definition 1 The equation of zero velocity surface (ZVS) according to initial condi-
tions (x0, y0, z0, v0) is

C0 = V (x, y, z) .

In general the ZVS separate those points in the space for which

C0 < V (x, y, z)

from those for which
C0 ≥ V (x, y, z).

In the moment t = 0 consider a test particle inside a closed ZVS, C = V (x, y, z).
If its integration constant C changes slightly, by some outside disturbing effect, then
its ZVS will change also. If this new region is still inside a simple closed surface,
the stability of the system will not change qualitatively. But if new region does not
represent the inside a simple closed surface, then the test particle may depart from
the system and its behavior may change suddenly.

Definition 2 The C1 value of integration constant is a critical or bifurcation of the
ZVS if at this value the topology of the ZVS changes.

If the actual value of the constant C is far removed from the bifurcation value
C1, we conclude that the system is more stable than if it is very close since, when
C − C1 ≈ 0, small perturbations may change the stability characteristics.

Definition 3 (V. Szebehely , 1978) The difference between the actual value of the
integration constant and bifurcation value is a measure of the stability of the system:

Mst = C − C1.

2 Zero velocity surfaces in the ERTBP

In the elliptic restricted three-body problem (ERTBP) the two massive primaries P1

and P2, with masses m1and m2 revolve on elliptical orbits under their mutual gravi-
tational attraction and the motion of a third, massless body is studied. The orbit of
P2 around P1, in an inertial system is

‖P1P2‖ =
a

`

1 − e2
´

1 + e cos f
, (1)
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where ‖P1P2‖ is the mutual distance, a and e are the semimajor axis and the eccen-
tricity of the elliptical orbit, and f is the true anomaly.

There are several systems of reference that can be used to describe the elliptic
restricted three-body problem. In our study a nonuniformly rotating and pulsating
coordinate system is used. In this system of reference the origin is in the center of mass
of the two massive primaries (Sun and Earth for example), and the ξ̃ axis is directed
towards P2. The ξ̃η̃ coordinate-plane rotates with variable angular velocity, in such a
way, that the two massive primaries are always on the ξ̃ axis, and the period of the
rotation is 2π. Besides the rotation, the system also pulsates, to keep the primaries

in fixed positions
“

ξ̃1 = −µ, η̃1 = ζ̃1 = 0, ξ̃2 = 1 − µ, η̃2 = ζ̃2 = 0
”

. In this system the

equations of motion of the third massless particle are:

8

>

<

>

:

ξ̃′′ − 2η̃′ = ∂ω

∂ξ̃
,

η̃′′ + 2ξ̃′ = ∂ω
∂η̃

,

ζ̃′′ = ∂ω

∂ζ̃
,

(2)

where the derivatives are taken with respect to the true anomaly f , and

ω = (1 + e cos f)−1 Ω,

with

Ω
“

ξ̃, η̃, ζ̃, f
”

=
1

2

“

ξ̃
2 + η̃

2 − eζ̃
2 cos f

”

+
1 − µ

r

“

ξ̃ + µ
”2

+ η̃2 + ζ̃2

+ (3)

+
µ

r

“

ξ̃ − 1 + µ
”

2

+ η̃2 + ζ̃2

+
1

2
µ (1 − µ) .

Performing the same operations, which in the restricted three-body problem leads
to the Jacobi-integral, in the case of the spatial ERTBP we obtain an invariant relation
of the form (Z. Mako and F. Szenkovits , 2004)

v
2 = 2ω − e

f
Z

f0

ζ̃2 sin h

1 + e cos h
dh − 2e

f
Z

f0

Ω sin h

(1 + e cos h)2
dh − C,

where v is the velocity of the third massless particle. For a given set of initial conditions
(ξ̃0, η̃0, ζ̃0, v0, f0) we find

C0 =
2Ω

“

ξ̃0, η̃0, ζ̃0, f0

”

1 + e cos f0

− v
2

0 .
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The zero velocity surfaces in the ERTBP according to initial condition (ξ̃0, η̃0, ζ̃0, v0, f0)
are

2Ω

1 + e cos f
− e

f
Z

f0

ζ̃2 sin h

1 + e cos h
dh − 2e

f
Z

f0

Ωsin h

(1 + e cos h)2
dh = C0. (4)

These surfaces delimite the Hill-regions, in which the motion of the third particle
is not possible. In three dimension space it means that at every time – or at every
value of the true anomaly f – a different set of surfaces of zero velocity are to be
constructed. The shape of these ZVSs vary in time. Therefore we might speak about
pulsating surfaces of zero velocity.

3 Measure of stability of the Moon in the Sun-

Earth-Moon system

In the case of the Sun–Earth system the eccentricity e = 0.0167 is small. Due to the
variation of f , these regions can pulsate, and near to the critical values they can change
they type. The critical points of the pulsating surfaces of zero velocity (4) correspond
approximately to the equilibrium solutions of circular restricted three-body problem
given by

Ci = 2Ω◦ (Li) , i = 1, . . . , 5, (5)

where Li are the Lagrange-points. For these constants we have

3 = C4 = C5 ≤ C3 ≤ C1 ≤ C2 ≤ 4.25

in generally, and in the case of the Sun–Earth system the critical value for L2 between
the two primaries is

C2 = 3.000893278,

and in L1, the Lagrange-point outside of the Earth the critical value is

C1 = 3.000889276.

For C > C2 the ZVSs delimit three regions where the motion of the small body is
possible (Figure 1). Two of these regions are closed around the primaries, the third
one is the exterior of the exterior surface. Between these regions the communication
is impossible.
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Figure 1: The ZVSs in ERTBP if C > C2.

The measure of stability of the Moon in the Sun-Earth-Moon system considered
in ERTBP model is

Mst

“

ξ̃(f), η̃(f), ζ̃(f), f
”

=
2Ω

“

ξ̃, η̃, ζ̃, f
”

1 + e cos f
− e

f
Z

f0

ζ̃2 sin h

1 + e cos h
dh

−2e

f
Z

f0

Ω
“

ξ̃, η̃, ζ̃, f
”

sin h

(1 + e cos h)2
dh − C2,

where (ξ̃, η̃, ζ̃) is solution of differential equation (2) at initial conditions of the Moon.

In figure 2 we show the variation of the Mst and variation of distance between
Earth and Moon, notated by r2. We observe that the measure of stability for the Moon
vary from 0.0004 to 0.00055 and the maximal value is in the pericenter and minimal
value is in the apocenter.

4 Conclusion

For the initial conditions of the Moon in the nonuniformly rotating and pulsating
coordinate system the Hill region around to Earth is bounded by closed ZVS. The
elliptical orbit of the Earth is not change the stability characteristics of the Moon.
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Figure 2: The variation of measure of stability.

We have been found that the measure of stability for the Moon vary from 0.0004 to
0.00055. The maximal value is in the pericenter and minimal value is in the apocenter.
Comparatively to other satellites around of other planets, the measure of stability for
the Moon is very low. For example the measure of stability for Mars’s Phobos and
Demos are approximately 0.0025 and 0.012.
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