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I .  I N T R O D U C T I O N  

Although about 30 years ago Siekievitz (1959) already speculated about the possible role 
of reversible binding of "soluble" enzymes to cellular membranes in regulation of enzymatic 
activity, Green et al. (1965) were the pioneers suggesting that membrane fractions were 
capable of catalysing the complete sequence of glycolysis and all metabolic sequences might 
be membrane bound in vivo. 

Indeed, the homogeneous components of the cell, like enzymes and metabolites, are 
immersed into a radically inhomogeneous environment so that "'the dynamics of the 
homogeneous components must need to be coupled into the inhomogeneity of the internal 
environment" (Elsasser, 1969). In the last two decades more and more authors have 
suggested that even the so called "soluble" proteins of the cytoplasm and mitochondria may 
associate with each other or with various membranous and particulate components of the 
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cell (Atkinson, 1969; Ling, 1969: Kempner and Miller, 1968; Sols and Marco, 1970; Masters, 
1981; Srere, 1982, 1987; Friedrich, 1984; Welch, 1977a, 1985; Keleti et al., 1977: Welch and 
Clegg, 1986; Srivastava and Bernhard, 1986a, 1987a; Damjanovich et al., 1986~ Keleti and 
OvS, di, 1988). Moreover, the intracellular distribution of enzymes may not be an invariant 
property, but it may vary with the metabolic status of the cell: hence, such terms as 
"mitochondrial matrix" enzymes, "'cytoplasmic" enzymes, etc., may not be correct in their 
original meaning. The rapid and reversible variation in "localization" may represent one 
mechanism of several by which regulation of catalytic activity may be achieved (Wilson, 
1978; Masters et al., 1987: Ov{tdi, 1988). 

However, a number of controversial data have been accumulated over the past 15 years. 
Any unequivocal demonstration of an interaction between components of cytosol and 
membranous structures is fraught with considerable technical difficulties, which relate to the 
possible perturbations of cellular structure during homogenization, the common use of non- 
physiological suspension media and the susceptibility of the cytosol to component 
redistribution during subcellular fractionation {Masters, 1981 ). Hence, even if there is a 
quasi-permanent organizational network, stabilized perhaps by weak bonding to membrane 
or other structures or to other enzymes, the shearing forces of cell disruption can reduce the 
viscosity sufficiently for it to be destroyed (Ottaway and Mowbray, 1977). 

The apparent concentration of several enzymes in the cell is 10 ~ 10 s mol/kg of tissue or 
even higher (Srere. 1967: Bernhard, 1988). These concentrations are much higher than those 
used generally in kinetic studies in ~,itro, so that the classic kinetic parameters, namely the 
Michaelis constant and maximum velocity may be significantly altered in the cellular milieu. 
Moreover, the binding of enzymes to cell particles or other enzymes may also alter both of 
these kinetic characteristics. Regulatory behaviour may appear or disappear in soluble form 
or at assay concentration under in t,itro conditions. 

Another thing that also should be kept in mind is the following: tissues in animals contain 
about 1000 different enzymes of an average molecular mass of I05 (Stere, 1967) and the mean 
distance between enzymes is well below the diameter of an average tetrameric protein molecule 
(Stere, 1982), i.e. enzymes are densely packed in the cell and cellular particles. This dense 
packing would make possible metabolic interactions or regulation controlled simply by 
diffusion rather than specifically organized structures, Really, if the medium is water, enzymic 
reactions do not require special conditions or organized structures to allow enzymes to 
encounter their substrates and effectors: that is, diffusion may be rapid enough that it could not 
be the rate limiting factor (Webb, 1963). However, in an intracellular "'microenvironment'" 
diffusion could be rate limiting in the enzymic reaction (Hiibscher et al., 1971 ). 

The extremely high macromolecular crowding of the cytoplasm as well as that of the 
mitochondria influences the biorecognition processes through alteration of the kinetics and 
equilibria of reactions leading to the formation of specific macromolecular complexes, such 
as the binding of hormones to their receptors, the recognition of foreign substances by 
antibodies, etc. (Minton, 1987). Recently, new techniques have being developed for 
quantification of macromolecular association equilibria at. concentrations far higher than 
previously possible and also in the presence of other species of macromolecules at 
concentrations comparable with the physiological ones (Chatelier and Minton, 1987a,b). 
Model calculations to high background protein concentrations suggest that in solutions 
containing proteins at concentrations comparable to those existing in biological media, the 
diffusive transport of larger proteins and aggregates is slower than in dilute solution by 
several orders of magnitude (Muramatsu and Minton, 1988), while the diffusion of small 
molecular mass compounds {like metabolites, effectors) slowed down 2 3 times only 
(Mastro et al., 1984; Jacobson and Wojcieszyn, 1984). This was explained as the result of 
mostly transient interactions of the diffusible macromolecules with the cytoplasmic matrix 
proteins (Gerson et al.,  1985). Taking into account the sufficiently viscous cytoplasm and 
membranes, the appropriate metabolite concentrations can be created by arranging enzymes 
of a certain pathway next to each other. 

A number of instances are known where enzymes remain attached to each other during 
extraction and purification procedures. Such physically associated multienzymc systems, 
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independently of the nature of their physical association, have the potential of exhibiting 
unique catalytic properties (Gaertner, 1978). A multienzyme complex is defined as an 
aggregate of different, functionally related enzymes bound together by non-covalent forces 
into a highly organized structure (Ginsburg and Stadtman, 1970). Multienzyme complexes 
do not seem to be random associations of enzymes but ones which are related by virtue of 
catalysing sequential reactions and they allow channelling of metabolites along specific 
enzyme pathways without the intermediates becoming free (Stebbing, 1980). However, the 
same enzymes in closely related organisms may be differently associated and we should 
therefore be wary of applying one explanation for the existence of multienzyme complexes in 
general. Multienzyme complexes are likely to reveal functions and origins in intermediary 
metabolism. However, enzyme~nzyme interactions occur not only between components of 
well established multienzyme complexes, but also between so-called "soluble" enzymes. 
Although these interactions are weak and the enzymes can be extracted from the cell as 
individual entities, they may ensure a dynamism for the complexes which manifests itself in 
their dissociation association processes (Jaenicke and Helmreich, 1972; Salerno et al., 
1975). Such interactions are assumed to have functions in vivo and this point applies 
especially to areas of current interest: compartmentation or channelling, understanding of 
which phenomena might provide explanation of metabolic controls. Indeed, development of 
the concept of metabolic compartmentation seemed to be necessary since several data could 
not be understood in any other way (Srere and Mosbach, 1974; Ovfidi and Keleti, 1978; 
Friedrich, 1984; Keleti and Ov{tdi, 1988). 

II. M E T H O D S  FOR Q U A L I T A T I V E  AND Q U A N T I T A T I V E  ANALYSIS OF 
M A C R O M O L E C U L A R  I N T E R A C T I O N S  

1. Physico-chemical Methods 

Since the interactions are frequently loose and transient in dynamic enzyme complexes, 
their study is difficult. Special sensitive physico-chemical techniques are required to detect 
complex formation of enzymes as well as to characterize quantitatively the heterologous 
interactions. From these data the possible existence of enzyme complexes at physiological 
enzyme concentrations could be deduced. 

(a) Sedimentation methods (velocity and equilibrium sedimentation, active band ultracentrifu- 
gation ) 

The sedimentation of an enzyme complex existing in equilibrium with their components 
may be characterized by its mass average sedimentation coefficient, s, which is the average of 
the sedimentation coefficients of all components in terms of their mass concentrations in 
solution. For a monomer~t imer  system Gilbert (1955) has shown that a single sedimenting 
boundary is observed at all concentrations if the rate of association is very rapid compared to 
that of dissociation: however, in such a system s shows a characteristic concentration 
dependence. 

With the development of the different sedimentation technique (Kirschner and 
Schachman, 1971), which has the precision to detect extremely small alterations in 
sedimentation coefficient, the problem of distinguishing very small changes in molecular 
mass from changes in frictional coefficient has largely been overcome. 

Measurements over a range of protein concentrations do justify conclusions about the 
magnitude of the association constant (Smith et al., 1973: Zimmerman and Crowl-Powers, 
1988). Ligand-induced changes in association constant would be recognized and the 
difference in sedimentation coefficient could be attributed to a shift in the equilibrium. 

The active enzyme ultracentrifugation method allows one to obtain the hydrodynamic 
parameters of the enzyme substrate complex while it is fully active. The sedimentation and 
diffusion coefficients of the enzyme substrale complex are calculated from the optical 
observation of either the appearance of the product of the reaction or the disappearance of 
the substrate (Cohen and Mire, 1971). Although this method may produce artifacts, not 
found in the more common centrifugation methods, it has numerous advantages: One of 
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them is, for example, that the sedimentation of the enzyme can be observed at very dilute 
concentrations, hence the hydrodynamic properties can be directly compared with kinetic 
data. Moreover, this method does not require a purified preparation: therefore, it may be 
advantageous to investigate enzymes associated in complexes. 

During the ultracentrifugation run of two proteins the symmetrical difference curve of two 
successive absorption scannings may become asymmetric. According to the consideration ot" 
Cohen and Claverie (1975) such a shoulder is a direct proof of interaction between active 
species having different molecular mass. Consequently, it was suggested that the 
asymmetrical shape of the difference curve is indicative of complex formation between two 
enzymes. It should be mentioned that in such a complex case the quantitative interpretation 
is rather difficult, if not impossible (Llewellyn and Smith, 1978). 

Until now it was not completely clear why complex formation between soluble globular 
enzymes detected kinetically in some cases could not be demonstrated by ultracentrifugation 
methods (Horecker et al., 1981: Fahien and Smith, 19741 with an exception of the complex 
between aldolase and glycerol-3-phosphate dehydrogenase, as indicated by active band 
ultracentrifugation (Batke el a/.. 1980). Thc reason for the failure to demonstrate complex 
formation is probably connected with the pressure effect known for many years and 
discussed in detail by Harrington and Kegeles (1973). The high pressure i7 x 10 ~' 40x 
106 Pa) in the ultracentrifuge cell during a run can change the molecular volume and shift 
dramatically the equilibrium of the complex. This effect may be especially significant in high 
speed velocity experiments, which, otherwise, would be advantageous for the analysis of 
"labile" systems, since a relatively short time is needed for the run compared to the 
sedimentation equilibrium studies, which requires slower rotor speed (consequently pressure 
effect becomes less important ). If the high pressure induces the decomposition of enzyme 
complexes, the detection of such an enzyme complex may be possible by active band 
ultracentrifugation applying the non-functioning enzyme in high excess relative to the 
"active" enzyme, the hydrodynamic parameters of which are monitored. Binding of soluble 
proteins to the skeletal elements of the cell has been detected by ultracentrifugation 
techniques (~jl Section l li.3.bt. 

(b) Chromatographic methods (,qel-, q~linity-chromato~lraphy, immobilization) 

Gel-chromatographic methods are utilized for determination of stoichiometry and 
equilibrium constants of associating protein systems. The method is very commonly used 
since it requires simple equipment and it is particularly well-suited to studies in a wide range 
of concentrations. The basic principles of gel-chromatography and applications to single and 
polydisperse solute systems have been described in several reviews (Ackers, 1970, 1975). The 
technique ofelution and batch chromatography is based upon the molecular size-dependent 
penetration of solute molecules into porous networks of gels such as crosslinked dextrans 
(Sephadex), polyacrylamide and agarose. This technique has been used, for example, to 
detect complex formation between aldolase and glycerol-3-phosphate dehydrogenase and to 
study the modulating effect of metabolites on this heterologous enzyme interaction (V6rtessy 
and Ovfidi, 1989). 

Small zone elution gel-chromatography is a useful qualitative method of detecting 
interaction, but from such an experiment association constants cannot be determined. 

In large zone experiments in the case of dissociable systems the data should be derived 
from a wide range of concentrations in order to carry out an unequivocal determination of 
stoichiometry and provide some diagnostic information as to the type of system (Valdes and 
Ackers, 1979). 

The fundamental principle ofatfinity chromatography is the utilization of the exceptional 
property of biologically active substances to form stable specific and reversible complexes. If 
one of the components of the complex is immobilized, a specific sorbent is formed for the 
second component of the complex, with the assumption, of course, that all conditions 
necessary for the formation of this complex are maintained. The binding sites of the 
immobilized substances must retain good steric accessibility even after their binding to the 
solid carrier, and they must not be deformed. The application of affinity chromatography to 
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the study of interactions of enzymes seems very promising, although the results do not permit 
general conclusions to be drawn (Antonini et al., 1975; Powell and Morrison, 1979). 
Moreover, these methods are time consuming and the working formulae are rather 
complicated (Nichol et al., 1974b; Danner et al., 1979), since in affinity chromatography a 
heterologous system is operative. Nevertheless, this method was employed to demonstrate 
the substrate-induced dissociation of the tetrameric glyceraldehyde-3-phosphate dehydro- 
genase (Kfilm',in et al., 1980). The dissociation constant of the complex between aldolase and 
glyceraldehyde-3-phosphate dehydrogenase has been determined by using NAD-Sepharose 
4B as affinity gel in an equilibrium batch system (KfilmS.n and Boross, 1982). With the help of 
this method it is possible to study any kind of interaction between two molecules if there 
exists any affinity sorbent for one of the interacting molecules, while the other molecule 
cannot bind to this sorbent, Furthermore, this system is easily applicable to the study of 
factors influencing complex formation, e.g. pH, temperature and ionic strength. 

The immobilization of enzymes is important from both theoretical and practical points of 
view. Enzymes bound to well characterized surfaces of solid supports represent simple 
models for the study of the effect ofmicroenvironments on the binding and transformation of 
substrate. As most enzymes in vivo are bound to membranes or occur in the form of some 
other complex of the native environment, the study of such systems is undoubtedly 
important. Many reviews have already been written on affinity chromatography and the 
binding of enzymes to solid supports (Cuatrecasas, 1972; Cuatrecasas and Anfinsen, 
1971a, b; Mosbach, 1977; Turkova, 1978). 

Immobilization has been used to detect subunit-subunit interactions in oligomeric 
enzymes (Nagradova et al., 1981; Muronetz et al., 1982, 1986; Ashmarina et al., 1980, 1982) 
or heterologous complex formation between two different enzymes (Ashmarina et al., 1984, 
1985, Muronetz et al., 1986; Arrio-Dupont et al., 1985). 

Immobilization of two sequentially working enzymes on the same matrix was described by 
Mosbach and coworkers (Mosbach and Mattiasson, 1970; Siegbahn et al., 1987). The rate of 
the overall reaction catalysed by the enzymes coupled together on a carrier was compared 
with the rate of the corresponding free enzymes equivalent in activity to those of the 
immobilized ones. It was concluded that in an immobilized system the product of the 
reaction catalysed by the first enzyme is available in a higher concentration in the 
environment of the second enzyme, than in the system of free enzymes. This two-enzyme 
system was then extended to a three- (Srere et al., 1973; Mattiasson and Mosbach, 1971 ) and 
four-enzyme system (Okamoto et al., 1980). Moreover, the enzymes of a complete metabolic 
cycle, the urea cycle, have been co-immobilized to supports (Siegbahn and Mosbach, 1982). 
In all cases the immobilized systems were much more efficient than the corresponding soluble 
ones. 

Mansson et al. (1983) described the use of bis-NAD analogues to obtain an immobilized 
two-enzyme system (lactic dehydrogenase and alcohol dehydrogenase) in which the two 
different active sites are facing one another. Similar experiments were performed with an 
oxidase/peroxidase system using quinones as crosslinking intermediates (Dittrich and 
Neumann, 1988). By such an arrangement the diffusion of the product of the first enzyme to 
the active site of the second enzyme was facilitated due to the proximity and proper 
orientation of the active sites. 

(c) Parti t ion ( in  po lye thy lene  ,qlycol ) me thod  

Precipitation by polyethylene glycol (PEG) is a simple and suitable method to detect an 
association dissociation process in enzyme systems where either homologous or heterolo- 
gous interaction occurs. 

Ogston (1937) argued many years ago that PEG provided an environment for proteins 
more comparable to the cellular environment, where they are surrounded by a high 
concentration of hydrophobic protein molecules, than do most aqueous solutions. This 
insight is probably more valid for the highly-concentrated proteins of the mitochondrial 
matrix than it is for proteins in other subcellular compartments, but even in those other 
compartments protein concentrations may reach 20%, a concentration seldom used in the 
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study of proteins in vitro. The use of PEG as a "crowding agent" in the study of the kinetic 
behaviour of mammalian phosphofructokinase opened ways for the investigation of enzymes 
at physiological concentrations (Boscfi et al., 1985). This approach was used to detect the 
interaction of phosphofructokinase and fructose-bisphosphatase (Ovfidi et al., 1986J. 

PEG is one of the most useful protein salting-out agents. It has been shown that thc 
salting-out effectiveness of PEG can be explained by the large unfavourable change in free- 
energy of its interaction with proteins (Arakawa and Yimasheff, 1985). Results from 
solvent protein interaction studies indicate that PEGs are hydrophobic in nature and will 
interact favourably with the hydrophobic side chains exposed upon unfolding (Lee and kcc, 
1987). 

Coprecipitation of two enzymes in the presence of PEG under conditions when neither 
alone is precipitated could be due to the interaction between them: however, the molecular 
basis of the protein-precipitating action of PEG and other polymers is poorly understood. 
The effectiveness of PEG increases with the size of the polymer (Polson et al., 1964) and tile 
larger proteins tend to precipitate at lower concentrations of PEG (Juckes, 1971 ). Hence, it 
seems probable that the proteins are sterically excluded from regions of the solvent occupied 
by the inert synthetic polymers and are thus concentrated until their solubility is exceeded 
and precipitation occurs. For example, interaction of glutamate dehydrogenase with 
mitochondrial enzymes and the interaction of citrate synthase with malate dehydrogenase 
has been demonstrated in PEG (Halper and Srere, 1977). 

PEG is one of the polymer components in biphasic systems which is more and more widely 
used to study interactions between enzymes, and enzymes and particles. If the distribution of 
two substances in a biphasic system is different from when they are alone, interaction can be 
detected, and the change in partition can be used for calculation of dissociation constants. 
The properties of polymers of biphasic systems and the application of the distribution 
method have been described in detail by Albertsson ( 1971 ) and Albertsson et al. (1982). The 
systems are obtained by dissolving two water soluble polymers above certain concentrations 
in water. Salts and buffers can be added to give a desired ionic strength and pH. The most 
commonly used system contains dextran and PEG. 

The aqueous polymer solutions are not adverse towards biological material and can 
dissolve many proteins and other biopolymers. A number of macromolecular systems have 
been studied by this partition technique and interactions could be detected, e.g. 
protein protein, protein nucleic acid complex formation, the binding of proteins to 
membrane surfaces, cell organelles, membrane vesicles. It should be stressed that the 
dissociation constants obtained by this method using such a milieu are not necessarily the 
same as obtained with water as solvent. The separation of two components can be improved 
considerably by repeating the partition procedure several times, for example, by the 
procedure of countercurrent distribution (CCD). By comparison of the CCD diagram for 
two molecules when they are run separately or together one can draw conclusions as to their 
interaction. By this technique interaction has been detected between cytoplasmic forms of 
malate dehydrogenase and aspartate aminotransferase and also between the mitochondrial 
forms of the two enzymes. However, no interaction was found between the heterotopical 
enzymes (Backman and Johansson, 1976). Association of glycolytic enzymes with 
filamentous actin was also detected by CCD (Westrin and Backman, 19831, as well as 
protein protein association of six enzymes of the Calvin cycle (Persson and Johansson, 
1989). Complex formation of live enzymes of the Calvin cycle was demonstrated also with 
other independent methods (Gontero et al., 1988). 

However, caution is needed in using different synthetic polymers. Several "'inert" synthetic 
polymers (polyvinyl alcohol, polyvinylpyrrolidon) inhibit or activate different enzymes 
(aldolase, glyceraldehyde-3-phosphate dehydrogenase) by direct interaction and even 
change their mechanism of action (Jancsik et al., 1976, 1979: Keleti et al., 1977, 1978). 

(d) Fluorescence methods (steady-state intensity and anisotropy measurements, e~wr~ly 
tran~gler, time-resolved anisotropy techniques) 

The study of interacting macromolecular systems by fluorescence techniques is a 
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productive, thriving endeavour. Changes in fluorescence intensity (quantum yield) and in the 
fluorescence polarization can be considered as sensitive indicators of environmental effects 
which alter both the conformation of proteins (static and dynamic quenching, cf. Eftink and 
Ghiron, 1981 ) and/or the aggregational state of oligomers or heterologous enzyme~nzyme 
complexes (~f. Hammes, 1981; Rawitch and Weber, 1972). 

In practice signals originating from intrinsic groups of the proteins (tyrosine, tryptophan 
and prosthetic groups such as flavine and pyridoxal cofactors, etc.) and externally attached 
fluorescence dyes (probes) are used for detection. Increase in the size ofa macromolecule due 
to the formation of a complex with another macromolecule can be followed by the change of 
the fluorescence quantum yield (y) or intensity (I) and/or fluorescence polarization (p) or 
rather the steady state emission anisotropy (rl. The advantage of using anisotropy in 
calculations is that anisotropies are additive whereas summation of polarization is a complex 
procedure (Jablonski, 1960; Deranleau et al., 1980). The steady state anisotropy (r) is: 

r = 2 p / ( 3 - p )  and p=(l~,, ,- l , ,hG)/(l , , , ,+I, ,hG) 

where G = l,,h/lhh and I is the fluorescence intensity of the emitted light. The first and the 
second indices refer to the positions (v: vertical, h: horizontal) of the polarizer and analyser, 
respectively. G is the instrumental factor. The additivity of fluorescence emission 
anisotropies can be represented by 

r = Z Jlri 
i 

where r is the measured anisotropy of fluorescence emitted by a mixture of molecular species 
excited at a given wavelength by linearly polarized light, r i is the anisotropy due 1o species i 
and.~ is the fraction of the total emitted fluorescence of species i. 

In fluorescence measurements special care is needed to avoid artifacts caused by 
concentration quenching and known as inner-filter effects. A correction formula for the 
calculation of quenching both in the excitation and emission processes has been derived and 
applied for quantitative analysis of the concentration-dependent dissociation of the 
tetrameric glyceraldehyde-3-phosphate dehydrogenase into dimers and monomers (Batke, 
1982). The values of the dissociation constants calculated with this method agreed well with 
those obtained from fluorescence anisotropy measurements using the formula originally 
proposed by Rawitch and Weber (1972) and extended by Ovfidi et al. (1982) for the analysis 
of two-step dissociation processes. 

A large variety of information can be obtained from singlet singlet fluorescence energy 
transfer measurements. This method was elaborated by F6rster (1951, 1965) and others 
(Jovin, 1979; Stryer, 1978) for the determination of distances in macromolecules in the range 
of 100 800 nm; however, it is also elegantly suited to the study of stoichiometry, 
conformational changes and kinetics of complex formation in associating protein systems. In 
double sphere transfer experiments one of the components of the complexes was labelled only 
with donor chromophores and the other only with acceptor chromophores and the transfer 
was indicated in binary and also in ternary complexes of trypsin, alpha-chymotrypsin, and 
the double-headed black-eyed pea inhibitor (Gennis et al., 1972). 

In fact, the double sphere transfer method may be useful for in rivo demonstration of 
enzyme complex formation in intact cells or in cell suspensions by measuring the transfer 
efficiency between the separately (covalently)labelled purified components after injecting 
them into the cell or mixed to the cell-suspension. 

Techniques permitting the semiquantitative interpretation of singlet singlet energy 
transfer measurements on multiply labelled single proteins and protein complexes are given 
by Gennis and Cantor (1972). In a complex of two or more proteins singlet energy transfer 
measurements enable one to determine fairly accurately the distances between pairs of 
proteins (Gennis and Cantor, 1972; Laskowski and Sealock, 1971 ). 

Time dependent anisotropy, r(t) (~]~ Tao, 1969) is also used in the study of interacting 
enzymes and proteins (Churchich and Lee, 1976; Ikkai et al., 1980; Kim et al., 1988). The 
complexes of aspartate aminotransferase/glutamate dehydrogenase and aspartate amino- 
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transferase/pyridoxal kinase were characterized by larger rotational correlation times, 175 
and 62 nsec, respectively, than the free aspartate aminotransferase for which values of 
43 nsec (Churchich and Lee, 1976) and 36 nsec (Kim et al., 1988) were reported. 

The physico-chemical detection of the formation of multienzyme complexes is the conditio 
sine qua non to start experiments concerning their role in the regulation of metabolism. 
However, complex formation without kinetic consequences is irrelevant as far as direct 
regulation is concerned. 

2. Kinetic Methods  

While the functional advantages of the stable multienzyme complexes in the regulation of 
cellular metabolism have been extensively investigated, and are widely acknowledged, the 
dynamic enzyme complexes being loose and transient in nature, are much less well 
characterized. The kinetic approaches are the widely accepted techniques to study the 
functional consequences of enzyme interactions. The kinetic method for the detection and 
analysis of enzyme complexes is based upon measuring the steady-state flux in consecutive 
reactions catalysed by functionally related enzymes as well as determining the time required 
for attaining the steady-state flux. Modelling of the interacting enzyme systems makes it 
possible to quantify the heterologous enzyme interactions. 

The possible theoretical approaches of the kinetic analysis of the in vitro interaction o1" two 
functionally related enzymes are the following: (i) the analysis of deviation from the kinetics 
of coupled enzymes, assuming no interaction between the enzymes; and then (ii) the analysis 
of the kinetics of interacting coupled enzymes by developing different mathematical models. 

(a) Transient time and steady-state velocity o f  coupled reactions 

If the reaction catalysed by the first enzyme proceeds at constant velocity, and the reaction 
catalysed by the second enzyme is first order in respect of the intermediate (which is the 
product of the first and the substrate of the second enzyme) then the linear part of the time 
course represents the steady-state velocity of the first enzyme. The production of the end 
product reaches the steady-state as a function of time after a lag-phase. The intercept of the 
extrapolated linear part on the time axis equals the transient time, ~, which is proportional to 
the lag-phase (Hess and Wurster, 1970; Bartha and Keleti, 1979: Keleti, 1984; Easterby, 
1981, 1986). 

Interaction between the two enzymes can be kinetically analysed by measuring the time 
courses of the coupled reaction at different enzyme concentrations keeping their ratio 
constant (Hess and Wurster, 1970). If a kinetically significant complex is formed, then the 
steady-state velocity will not be a linear function of the concentration of the first enzyme 
and/or the change in 1/z as a function of the concentration of the second enzyme will not be 
linearly proportional. 

By increasing the concentration of the first enzyme (El) the concentration of the 
intermediate (1) is also increased resulting in a hyperbolic dependence of steady-state 
velocities on/concentrat ions ,  from which the K m value o f / fo r  the second enzyme (E z ~ can be 
calculated for the coupled system: 

v = kc,,[E2]T(k , [ E 1 ] l . t -  [P] }/{Km + (k 1 [E1]rt  - [P] }I (1 

where k I is the first order rate constant of the reaction catalysed by E L and P is the end 
product of the coupled reaction, K m is the Michaelis constant. 

If this K,,, value differs from that measured in a separate reaction (when only E 2 was 
present) then a kinetically significant interaction between E1 and E 2 exists. Moreover, this 
phenomenon may be indicative of the existence of direct transfer of the intermediate between 
the active centres of two enzymes (Ov~di and Keleti, 1978). 

One should bear in mind that if the reaction o f E  2 is not of first order with respect to 1, but 
follows Michaelis--Menten kinetics, then (Storer and Cornish-Bowden, 1974}: 

Z = K M / ( ~ a  x Vl). (2) 

In a coupled system of two enzyme-catalysed reactions, provided that the activities of the 
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two enzymes are comparable,  the kinetic properties of both enzymes may be determined 
simultaneously by analysis of the sigmoidal progress curve of product formation (Duggleby, 
1983). Kuchel et al. (1974) have showed that for a coupled enzymatic sequence of n enzymes, 
each of which has a single substrate and obeys Michaelis-Menten kinetics, a plot of the 
concentration of the final product vs t" will tend towards a straight line. For more general 
theoretical treatments of the transient time, for example, when both enzymes follow 
Michaelis-Menten or one of them reversible kinetics or the chain of consecutive reactions 
comprises three or more enzymes, we refer to the literature (McClure, 1969; Rudolph et al., 

1979; Easterby, 1973, 1981; Kuchel and Roberts, t974; Nichol et al., 1974a; Brooks et al., 

1984; Keleti, 1986; Yang and Schulz, 1987; Brooks and Suelter, 1989). 
For a two-enzyme coupled reaction (if [E2]  ,~ Km.E2 , (_f. Bartha and Keleti, 1979) the 

transient time is the reciprocal of the kinetic power (Keleti and V6rtessy, 1986: Welch et al., 

1988): T = l / k  v, where the kinetic power, k v = Vma:,/K M, which encompasses all factors which 
bear upon the conversion of free substrate to free product within the cell (Keleti and Welch, 
1984; Keleti, 1988). The transient time can be defined not only for the simplest one-substrate 
reaction as the reciprocal of the kinetic power bul also for two-substrate reactions as well as 
reactions catalysed by allosteric enzymes. 

We define the kinetic power of the enzyme catalysing the reaction of two substrates A and 
B as: 

kF,A,B = Vmax/[(Km,A+Km.B)/2] (3) 

i.e. the kinetic power is the ratio of maximal velocity and the average Michaelis constant 
(Keleti, 1989a) and it is the function of the ratios of dissociation and decomposition of the 
central complex and its formation, which follows from the transformation of eqn (3): 

1/kv.A.B = (Ks.A + Ks.a)/2k2EE]~- + (kl ,A "-~ k l ,R) /2k l ,Ak l .B[  E]  T" (4) 

I f  k~,A= k l ,a=  k D, where k D is the diffusion rate constant, 

l/kr.A, ~ = (1/kuEE]~.)[(k :~.A + k_ 1,B)/2k2 + 1] (5) 

and if k_ 1,A ~ k_ La ~ k2, which is identical with the evolutionary "compromise" condition 
for a simple enzyme function (Knowles, 1976), 

kF.A.B = kD[ E]T/2.  (6) 

If we assume a single-substrate enzyme to be allosteric and to follow the symmetry model 
(Monod et al., 1965) we obtain for the kinetic power (Keleti, 1989a): 

where K R is the association constant of the ES complex in the R state and K r is the same in the 
Tstate.  L is the allosteric equilibrium constant of the step E r o d E  R, i.e. L = [ET] /[E~] ,  where 
E R and E r are the free enzyme in R and T state, respectively. 

In the case of the tetrahedral sequential model (Koshland et al., 1966) assuming the 
subunits to exist in 'a '  form in the absence and in "b' form in the presence of bound substrate, 
the kinetic power is (Keleti, 1989a): 

l / k r =  1/Ka,il max+n(1 /k iEE]  r) (8) 

where Ka,~ are the association constants defined in eqns (9): 

Ka. 1 = KbKcK ~ 

Ka, 2 = KbK~KdK ~ 

Ka. 3 - KbK¢K ~ :' K a 

K~.,~ = KbK¢K~/K ~ (9) 
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for the four subunits, where K b is the association constant  of S with the b conformat ion  of 
subunits, K~ is the equilibrium constant  of the conversion of the subunit in the a 
conformat ion  to that in the b one, K d is the subunit interaction factor between subunits in 
form a and b, and K~ that between a pair of b subunits. Consequently,  the reciprocal of the 
kinetic power defines the transient time of the coupled reactions even for two-substrate 
enzymes and for allosteric enzymes. 

(b) Transient time in interactiny systems 

Let us analyse quantitatively the following coupled reaction catalysed by two enzymes 
interacting in a kinetically significant manner  (Bartha and Keleti, 1979; Keleti, 1984): 

];,7. 

1:1- ( ' #  " ~  
5; - -  ~ -  / t '  

" \  / 

v~ 

If the first reaction is of zero order, E~ is practically present only in the enzyme substrate 
complex (E~S). E1S forms a complex (C) with E2,  with the dissociation constant  K. Both E t 
and C transform S i n t o / w i t h  the same velocity v 1 , i.e. it is assumed that E 2 does not  affect the 
activity of E 1. However,  it is assumed that E 1 affects E2, i.e. that E 2 catalyses the 
t ransformat ion o f / i n t o  P with the velocity v 2, but C catalyses it with v*. It is assumed that no 
channel is formed. 

If n is the number  of active sites of E 2 bound  per active site of E~ and the reaction is of first 
order  with respect to I: 

t'2 = (k2/Km ) ( [E2]  T -- n [ ( ' ]  ) [/-] ( 10 t 

v~ = (k'~/ K,*)n[ CJ [ / ]  (1 I) 

where k z , K m and k*, K* are the microscopic rate and Michaelis constants  of the reaction of 
E 2 and C, respectively. 

If v 1 = c o n s t a n t  and at t=O, [P ]  = L/]---0, the law of mass conservat ion requires that: 

[p]=t ,  l t _ [ ~ _ v 2 / k  2 _  ,*" * t.2/k 2 . (12) 

In the steady-state, if [ / ]  = [ / ]~  = constant ,  then [C]  = [C]~  = constant ,  t,1 = v 2 + t,~ = 
constant ,  and 

[P ]  = t : l ( t -  r). (13) 

If we assume that  v I ~k2[E217., k*[E2] r,  and [ / j~ ,  [ E 2 ] r ~ K  M, K*,  we obtain 

t: 2 ~ (k2/K m) ([E2]T--n[C]~) [ ~  (14) 

~,~ ~ (k*./ K* )n[ C]~[ I]~ (15) 

[C]ss -~ (1/2) ( [E 1] 7- + [E2] ~./n + K) (1 - "v" ~ 1 - 4 [ E  1 ].r[E2] 7./n ([E I ].t. + [E2]  T~ n q- K) 2 }) (16) 

and 

r i T =  [ / ]~  (16a) 
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[E1]T/(k2[E2]T/Km-1/z)+ K / ( k ~ [ E 2 ] r / K * -  I / z ) ~ ( 1 / n ) / ( k z / K m - k ~ / K *  ). (17) 

Measuring r at different [E1]T and [E2]T one can determine kz/Km, k2/K m and K by 
non-linear regression. If kz /K  m is known from independent measurements and [-E~]T= 
[E2]T/n then one may estimate k*/K* and K from a linearized form: 

1/r[Ez]T=k'~/K* +x/[I~nk2/Km-nk~/K*l]x/~(1/[gz]T)lk2/Km - 1/r[gz]T] 3. (18) 

(c) Analysis of the mechanism of intermediate tran~sfer 

A special consequence of complex formation between two enzymes is the channelling of 
intermediate, i.e. the direct transport of the product of the first enzyme from its active centre 
to the active centre of the second enzyme (Nichol et al., 1974a). The channelling of the 
intermediate substrate may result in physiological advantages to an organized state like (i) 
segregation of competing pathways due to microcompartmentation of intermediates; (ii) 
reduction of time required to reach the steady-state; and (iii) enhancement in metabolite flux 
by providing high local metabolite concentration. The kinetic methods for detection and 
analysis of channelling are based upon measuring the transient time (T) in the interacting 
system (Hess and Wurster, 1970). A new description of the channelling effect on the bases of 
its inherent parameters such as channel efficiency and intermediate lifetime makes it possible 
to explain reduction of transient time due to the interaction, even if no changes in the kinetic 
parameters of the individual reaction occur and no physical barrier prevents the diffusion o f /  
into the bulk solution (Tompa et al., 1987a). 

If the enzymes, E a and E2, catalyse consecutive conversion of the initial substrate (S) to the 
final product (P) via formation of intermediate (I) then the lifetime of the intermediate 
includes the times required for release from E 1 , diffusion time, association to and conversion 
by E 2. The sum of these times for all molecules yields a characteristic lifetime of the whole 
population (Fig. 1). Obviously, the fraction of molecules (~) which will be converted within 
the E1E 2 enzyme complex (C) has a shorter lifetime ( ( t ' ) )  than the non-channelled one (( t )) ,  
since the average distance between active centres is shorter within a heterologous enzyme 
complex than between separated enzyme molecules. The channel efficiency (~) can be defined 
as the probability of an intermediate being converted within the generating complex. If the 
generation of intermediate proceeds at a constant rate (v) and E 2 is subsaturated by I, then 
the concentration of I at steady-state (I~s) for partially complexed enzyme systems is the 
following (Tompa et al., 1987a): 

[ I J  = t~/[E1]T{~[C] ( t ' )  + ([El]free + (1 -- :~)[C])( t )} .  (19) 

Since [P] = vt - [Is~,] at steady-state, by extrapolating the linear part of the progress curve 
of product formation, its intercept on the time axis is the apparent transient time (~app) which 
is characteristic for channelling effect in a certain partially complexed enzyme system: 

Tap p = I/[E1]r{~EC ] ( t ' )  + ([Ex ]f,eo + {1 - ~ }  [C]) ( t )}  (20) 

where ( t )  is a concentration dependent parameter (Km,z/k~at,2[E2]), while ( t ' )  is a 
concentration independent one being an inherent property of the enzyme complex. By 
m e a s u r i n g  Tap p at various enzyme concentrations ensuring different degree of complexation, 
the channel efficiency and lifetime of the channelled intermediates can be experimentally 
determined. In general, ~ varies between 0 and 1. such that 

(t') _< r.~_< (r). 

The decrease in transient time in the interacting enzyme system may be due either to the 
presence of a physical barrier on the out-diffusion of intermediate or to the mere 
juxtaposition of the sequential active sites (Fig. 1 ). Any alteration in the interacting system 
relating either to the dift'usional process or to the kinetic parameters, will manifest itself in 
changes of~,  ( t ' )  and ( t )  (cf. Section IV.I) (Tompa et al., 1987a). 

Concerning the analytical implication of the kinetic approach, the mechanism of 
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Fit ; .  I. Diffusion-limited and direct transfer of intermediate in the coupled reaction catalysed by E ,  
a n d  E 2 . 

intermediate transfer (channelling) can be identified by the relationships among macroscopic 
kinetic parameters (OvSdi, 1986, Orosz and Ovadi, 1987; Ov'adi et al., 1989). The relation of 
the transient time (~:~pp) for the coupled reaction catalysed by the complexed and 
uncomplexed enzyme species and the pseudo-first-order rate constants measured in the 
absence (kv,2) and presence (kf~} of E~ are indicative of the mechanism in the interacting 
enzyme system (of Table 1 ). If the interaction of the two enzymes induces alterations in the 
ternary and/or quaternary structure of the enzymes without producing channelling of the 
intermediate the relationship described in Table 1, line 2 is fulfilled. If the intermediate 
produced endogenously by the E~ E 2 complex is channelled between the two enzymes the 
transient time is reduced with respect to that measured in a non-interacting system. This 
relationship may result from either steric hindrance which impedes the diffusion of 
intermediate into the bulk solution (Table 1, line 4} or simply from the juxtaposition of active 
sites of the enzymes in complexed form (Table 1, line 3). The latter case, which can be 
considered as a special one, we denoted as a leaky channel. If the escape of the intermediate 
from the complex is prevented the mechanism is denoted as a perfect channel (Table 1, line 5} 
where :~= 1 and { t ' } ~ { t ~ .  In a dynamically interacting enzyme system these kinetic 
parameters are composite functions of those for the processes catalysed by the complex and 
by the isolated enzymes. 

TABLE I. RELATIONSHIPS OF 1HE M I ( ' R O S ( ' O P [ ( '  AND MACROSCOPI(  KINETIC PARAMETERS IN ENZYME SYSTt-~MS 

Macroscopic parameters referring 
to  t he  a c t i o n s  o f  enzymes Microscopic 

T y p e  of  i n t e r a c t i o n  t:, E~ parameters Examples* (Ref.} 

1. N o n - i n t e r a c t i n g  t~ ,  ~ r.,p~, = k~:~ = kt: e :~ = 0 G A P D / T P I  1 

2. Interaction inducing t~c , > l  I r,m, k~.~x-kl: 2 0 < : ~ < 1  P F K ,  F B P a s e  2 
conformational changes t ' }  < {t 

3. L e a k y  c h a n n e l  l , ,  =c I r~u ,p>k l2  k ~  0 < : ~ < 1  A I d . ' G A P D  3 

4. Partial channel i~ ,  = i  I r , p l , , k l : e > k [ ~  0 < ' ~ < 1  AId .  G D H  4 

l ' ; ,  < <itS, 
I I  5. Perfect channel t,~ ~ : ~ I r,,[,p - ,  * ,  k~2 ~{I  {) < :( < 1 A A T / G l u D H  5 

,'t'). ~ 0  

* GAPD-glyceraldehyde-3-phosphate dehydrogenase; TPI triosephosphate isolnerasc; PFK=phospho- 
fructokinase; F B P a s e -  f r u c t o s e - l , 6 - b i s p h o s p h a t a s c ;  A i d . -  a l d o l a s e ;  G D H  = g l y c e r o l - 3 - p h o s p h a t e  dehydro- 
genase; A A T -  aspartate aminotransferase; G I u D H  - g l u t a m a t e  dehydrogenase, I: Orosz et al., 1986:  2: O v f i d i  et 
al.. 1986:  3: Ovfidi and Keleti, [978"  4: V6rtessy and Ov£idi, 1987:  5: S a l e r n o  et al.. 1982a .  
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Further evidence for microcompartmentation can be obtained by adding isotope 
intermediate to the reaction mixture during the coupled reaction. The absence of labelling in 
the end-product is strong evidence for complete channelling. If the end-product is labelled in 
a percentage which is proportional to the degree of isotope label of the intermediate and that 
produced in the coupled reaction, no channelling can be assumed (cf. Friedrich, 1984). One 
can add isotope substrate to the first enzyme, "dilute" the system with non-labelled 
intermediate and measure the specific radioactivity of the end-product (Bryce et al., 19761. 
The specific radioactivity of the end-product will equal unity, if complete channelling occurs 
and will be the function of the rate of the first and second step and of the concentration of 
added intermediate in the absence of or in the presence of partial channelling. The 
combination of isotope and kinetic methods allows us to choose between conformational 
change, leaky or perfect channel (Ov~tdi, 1986; Orosz and Ov~,di, 1987) and to prove the 
leaky channel between aldolase and glyceraldehyde-3-phosphate dehydrogenase (Orosz and 
Ovfidi, 1987). 

The use of kinetic approach based on the comparison of the kinetic parameters, combined 
with isotope dilution technique enormously enhances the sensitivity of the identification of 
the mechanism of intermediate transfer. 

1 P 

S* El ~ k ~ ' z ~  = p. [ *  - -  

v k([I*]+[I1) 

If the initial substrate of the consecutive reactions is radioactive (S*) and unlabelled 
intermediate is added to the reaction mixture then the relative specific radioactivity (r) of the 
end product (P*) at a given time (t) can be calculated from the ratio of [P*]  and the total 
concentration of the final product ([P*] + [P]). If the measured relative specific radioactivity 
(r . . . .  ) is compared with the calculated o n e  (rcalc), assuming different models, the mechanism 
of intermediate transfer can be identified. For  the calculations of r values the equations are 
given in Table 2. 

TABLE 2. SPECIFIC RADIOACTIVITY OF THE PRODUCT IN COUPLED REACTION* 

For non-interacting system: 

For conformational changes induced by interaction: 

For channelling of intermediate: 

v t -  v / k ( l  - e -  k,)  

r = v t - v / k ( l  e-k'j+[I~] (l -e  k' I 

v t -  r'~(1 - e  '/~) 

r=vt-vz(1-e f:~)+[lo](t e .... ) 

vt-w(l e -''~) 
r=vt_vz(l_e ' " ' ) + [ 1 0 ] ( l - e - ~ ' )  

*k = kl:2, • - Tap p (C~. T a b l e  1 ) a n d  k = k [ E z ] f , . e / [ E z ] ~ o , .  1 . 

Obviously, this approach does not say anything about the extent of the channel, since the 
kinetic parameters are the weighted sums of the corresponding kinetic parameters for 
interacting and non-interacting enzyme species. This is because the reaction mixture always 
contains both complexed and free E 1 and E z . Nevertheless, the mechanism of the interaction 
of functionally related enzymes can be determined without knowing the actual concentration 
of the heterologous complex. 

If the dissociation constant is determined in an independent manner and the channelling 
mechanism is identified as well, then the extent of the channel can be deduced according to 
the following scheme and equations: 
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/ /  

.,;~ ~ - - ~  p ,  

r t _ ( l  _.~)lvk,(l _ e  k.,) 
rch . . . .  l = r t - - ( l - - . ~ ) v / k ' ( l - - e - k ' t ) + [ l o ] ( l - - e  k',) (21) 

where :~ = [E1]bound/[El]to,al, {¢-J~ Table 1 ~. 
Therefore, in a partially complexed enzyme system the value of the measured relative 

specific radioactivity is characteristic for the perfectness of the "channel", since 

I'non_intcracting ~ Fracas ~ Fchannc [ • 

(d) Trappinq methods 

One can use different "'trapping" methods to prove the channelling of the intermediates of 
functionally related enzymes: 

(i) Solvent method, by using a compound which dissolves the intermediate but not the 
substrate and end-product. The solvent must not inhibit either enzyme of the coupled 
reaction. If no or only partial channelling occurs the concentration of intermediate 
decreases by adding the solvent and consequently decreases the activity of the second 
enzyme, since first order kinetics must be assured for it (Yanofsky and Rachmeler, 
19581. 

(ii) Side reaction method, trapping the intermediate by a reaction which renders it unable 
to react with the second enzyme (Ovfidi and Keleti, 1978). Its inverse is to detect the 
lack of such side reaction in the case of channelling (Keleti, 1978). 

(iii) Enzyme probe method, to decompose specifically the intermediate by an enzyme into 
product which cannot react with the second enzyme if no or only partial channelling 
occurs (Friedrich et al., 1977; Solti and Friedrich, 1979). 

|[1. I N T E R A C T I O N  OF C Y T O S O L I C  ENZYMES 

Enzymes of glycolysis, glyconeogenesis and the pentose phosphate pathway are 
commonly recognized as "'soluble enzymes" and many of the individual components of these 
and other cytosolic pathways have been intensively studied. In cytoplasm the major set of 
soluble enzymes belongs to glycolysis. In the yeast cell, for example, glycolytic enzymes 
constitute about 65% of total soluble protein (Hess et al., 19791. This situation favours the 
protein protein interactions in the cells (Stere, 1967). Since these dynamic macromolecular 
interactions are frequently loose and transient, their studies are difficult. The use of the 
approaches discussed in the previous chapter is widely accepted, on the one hand, to detect 
complex formation at physiological or even lower enzyme concentrations, on the other hand, 
to gain information on the functional consequences of interactions of metabolically related 
enzymes. 

I. Interactions o/  Pur!fied Enzymes in Vitro 

A simple and sensitive approach used to monitor the binding of a protein to another one is 
measuring the signal ofa  covalently attached fluorescent probe. One of the earliest examples 
for the evaluation of quantitative data for heterologous complex formation is the 
aldolase glyceraldehyde-3-phosphate dehydrogenase enzyme system. Glyceraldehyde-3- 
phosphate dehydrogenase was labelled with fluorescein isothiocyanate (FITC) and the 
anisotropy was measured as a function of aldolase concentration [Ovfidi et al., 1978). The 
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experimental points could be fitted to a model assuming a complex with an apparent 
dissociation constant of 0.3 #M and an apparent stoichiometry of 1:2, which probably means 
that tetrameric aldolase binds dimeric dehydrogenase. However, Masters and Winzor (1981 ) 
suggested that the association between aldolase and glyceraidehyde-3-phosphate dehydro- 
genase was artifactual, mediated by the probe introduced into the enzymes. Indeed, a 
fluorescein-mediated interaction of bovine serum albumin with a fluorescent derivative of 
prolactin has been demonstrated (Church et  al. ,  1981 ), i.e. the fluorescent emission spectra of 
the fluorescein moiety in the labelled prolactin was red-shifted and increased in intensity in 
the presence of albumin, However, such a phenomenon was not observed in the 
aldolase-dehydrogenase system; therefore, the interaction of the two enzymes via the 
fluorescent dye could be excluded. Moreover, complex formation between aldolase and 
glyceraldehyde-3-phosphate dehydrogenase was demonstrated by several other methods (~J~ 
Table 3). 

The binding of aldolase to glyceraldehyde-3-phosphate dehydrogenase was demonstrated 
also with yeast enzymes and the dissociation constants of the yeast enzymes, mammalian 
enzymes and their hybrids was compared (Batke and Tompa, 1986; Tompa et al.,  1986). 
Batke and his coworkers found that the hybrid complexes had comparable dissociation 
constants with that of non-hybrid ones probably due to the possible conservation of the 
heterologous complex-forming surfaces of these enzymes during evolution iBatke and 
Tompa, 1986: Tompa et  al.,  1986). 

Complex formation between aldolase and another "branching enzyme", glycerol-3- 
phosphate dehydrogenase had been detected many years ago. These two enzymes form 
cocrystals (myogen A) during isolation (Baranowski and Niederland, 1949). The first 
indications of the interaction between these two enzymes were provided by rapid kinetic 
technique and active band centrifugation (Batke et  al. ,  1980). Results of kinetic (Batke, 1978; 
Batke et al. ,  1980) and fluorescence (Ovfidi et  al.,  1983) analyses showed simultaneous 
dependence of the specific enzymatic activity of glycerol-3-phosphate dehydrogenase and the 
fluorescence anisotropy of the enzyme on enzyme concentration. A model for the theoretical 
description of complex formation of aldolase with dissociable glycerol-3-phosphate 
dehydrogenase was developed (Ovfi.di et  al.,  1985); moreover, the rate constants of the 
individual steps of complex formations were determined. 

Hess and Boiteux (1972) were the first who made a systematic study of various sets of 
glycolytic enzymes isolated from yeast by measuring the transient time over a wide range of 
enzyme concentration, and they failed to detect any sign of interaction with the exception of 
the alcohol dehydrogenase and pyruvate dehydrogenase coupled system. 

In recent years a number of authors have suggested that in certain metabolic sequences 
catalysed by soluble enzymes, the product of the reaction of one enzyme can be transferred 
directly to the subsequent enzyme via transient enzyme -enzyme interactions (cJl Srivastava 
and Bernhard, 1986a; Keleti and Ovfidi, 1988). However, there are also some reports in 
which other authors (Grazi and Trombetta, 1980; Kvassman et al. ,  1988; Chock and 
Gulfreund, 1988) re-examined the kinetics of the transfer of intermediates and suggested the 
original interpretations to be incorrect. For illustration of the contradictions first we discuss 
the aldolase glycerolphosphate dehydrogenase system. We have demonstrated the complex 
formation between these two enzymes (Batke et  al. ,  1980; Ovtidi et  al.,  1983) and we analysed 
the mechanism of the intermediate transfer as well (Vdrtessy and Ovb, di, 1987t. However, 
recently pro and c o n t r a  data have been published from various laboratories (Srivastava and 
Bernhard, 1986a; Chock and Gutfreund, 1988). 

The two enzymes catalyse the conversion of fructose-l,6-bisphosphate to glycerol-3- 
phosphate via dihydroxyacetonephosphate formation. For the analysis of the mechanism of 
interaction a simple kinetic diagnostic test has been applied (~Jl Section ll.2.c). The 
relationship of kinetic parameters determined under interacting and non-interacting 
conditions indicated that the binding of exogenous intermediate (dihydroxyacetone- 
phosphate) to the glycerolphosphate dehydrogenase is impeded in the presence of aldolase 
probably by steric hindrance, whereas the endogenous intermediate produced by aldolase 
has direct access to the dehydrogenase within the complex. In fact, we have found that the 
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pseudo-first-order rate constant of the conversion of exogenous dihydroxyacetonephosphate 
measured in the presence of non-functioning aldolase is reduced as compared to that 
measured in the absence of aldolase due to an apparent increase in K m value of exogenous 
intermediate for dehydrogenase (V6rtessy and Ovfidi, 1987). Very recently, in accordance 

TABLE 3. EXAMPLES Ol ~ THE IX  VITRO OBSERVFA) COMPLEXES OF CYTOPLASMI(" ENZYMES 

Sources of enzymes and Method of detection and K,t (in ILM) 
type of the complex of the complexes and remarks References 

Rabbit muscle 
aldolase/GA PD* 

Yeast a ldolase/GAPD 

Rabbit muscle 
aldolase/GDH 

Rabbit muscle 
aldolase/TPl 

Insect flight muscle 
aldolase/TPl 

Rabbit liver 
aldolase/FBP-ase 

Yeast or mammal ian  
muscle aldolase/PFK 

Rabbit brain 
aldolase/S 100 protein 

Rabbit muscle 
PFK/FBP-asc  

FITC-label fluorescence anisotropy: K,~: 
0.3 

Rapid kinetics: activity of aldolase does 
not change in the presence of GAPD:  
Kn, x;,x~, m the presence of aldolase is 
decreased 

Complex is modulated by fructose 
phosphates 

Isotope exchange, high performance liquid 
chromatography:  leaky channel is 
detected 

Kinetic analysis 
A "suicide" reaction 
NAD-Sepharose 4B gel-chromatography 

in batch system: K a -  1 
Frontal gel-chromatography: complex was 

not found 

FITC-label fluorescence anisotropy: K,~ - 
0.3 

Hybrid complexes of yeast and muscle 
enzymes with the same K d is also 
observed 

Cocrystallization (myogen A) 

Rapid reaction technique and active band 
ultracentrifugation 

FlTC-label fluorescence anisotropy 
K d (ald-monomeric GDH):  1 
K d (ald-dimeric GDH):  0.2 
Channelling of DHAP in the complex 
Complex is mediated by fructose 

phosphates 

FlTC-label fluorescence anisotropy and 
gel equilibrium: Kd: 2 

TPI inhibits the activity of aldolase 
GAF'D and TPI competc for aldolase 

Indication in liver 

With purified enzymes FBP-ase gives a 
blue shift of aldolase fluorescence: 
Complex is specific for liver enzymes 
and not for muscle's 

Limited proteotysis 
Complex was not found by equilibrium 

and velocity sedimentation, light 
scattering and gel filtration, however by' 
gel-penetration a complex with I: I 
stoichiometry was observed 

H T C - I a b e l  fluorescence anisotropy 

Cahnodulin is a modulator  of the complex 

Aldolase activity is increased in the 
complex 

Mutual  kinetic influence 

The complex is modulated by hormones 
and produces self-oscillation 

Ovfidi et ell., 1978 

Ovfidi and Keleti, 1978 

Neuzil et  al. ,  1989 

Orosz and Ovfidi, 1986, 1987: 
Orosz et  al. ,  1986 

Grazi and Trombetta ,  1980 
Patthy and Vas, 1978 
Kfilmfin and Boross. 1982 

F61di et al.. 1973 

Batke and Tompa,  1986 

Tompa  et  al . ,  1986 

Baranowski and Niedertand, 1949 

Batke, 1978; Batke et al . ,  1980 

Ovfidi et  al. ,  1983 
Ovfidi et al. ,  1985 

Vdrtessy and Ov'adi, 1987 
Vdrtessy and Ov/tdL 1989 

Salerno and Ovfidi, 1982 

Orosz et al. ,  1986 
Orosz and Ovfidi, 1986 

Gavilanes et al . ,  1981 

Pontremoli et al.,  1980 

Horecker et al. .  1981 

Pontremoli et al. ,  1982 
Horecker et  al. ,  1981 

Tompa  et  al . ,  1986 

Orosz et al. .  1987, 1988a, b 

Zimmer and Van Eldik, 1986 

Ovfidi el al. ,  1986 

Goldstein and lvanova, 1987 
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Bovine brain, rabbit 
muscle, yeast enolase/ 
phosphoglycerate 
mutase 

GAPD/ADH and 
GDH/LDH 

lsocitrateDH/GluDH 

Yeast ADH/pyruvateDH 

FITC-label fluorescence anisotropy; 
kinetic analysis 

K d (for brain): 20-40 
K d (for muscle): 0.5 2 
K d (for hybrids of muscle/brain or 

yeast/brain): 0.5 2 

Kinetic analysis: direct transfer of 
NAD/HADH is assumed in the complex 

FITC-label fluorescence anisotropy: K d 
(GDH/LDH)~ 1 

Transfer of NAD/NADH was not found 

Transient time analysis 

Batke et al., t988 

Nazaryan and Batke, 1989 

(~ll Srivastava and Bernhard, 1986a: 
Friedrich and Hajdu, 1987 

Batke. 1989 

Ehrlich, 1987 

Hess and Boiteux, 1972 

* Abbreviations: ADH: alcohol dehydrogenase; DH: dehydrogenase: DHAP: dihydroxyacetonephosphate; 
FBPase: fructose-l,6-bisphosphatase; FITC: fluoroisothiocyanate; GAP: glyceraldehyde-3-phosphate: GAPD: 
glyceraldehyde-3-phosphate dehydrogenase; GDH: glycerol-3-phosphate dehydrogenase: GIuDH: glutamate 
dehydrogenase: LDH: lactate dehydrogenase: PFK: phosphofructokinase: TPI: triosephosphate isomerase. 

with our results, Chock and Gutfreund (1988) reported that the aldolase is an inhibitor for 
the dehydrogenase-catalysed reaction since the apparent K m ofdihydroxyacetonephosphate 
for the dehydrogenase is increased in the presence of aldolase. However, they interpreted 
these results in a different way. The increase of K m was attributed to the binding of substrate 
to aldolase which reduced the free concentration of the triosephosphate. Unfortunately, 
these authors did not indicate what concentrations of aldolase and substrate were applied in 
their experiments. However, in our experiments the concentration of aldolase was 15 t~M or 
lower, and the concentration of dihydroxyacetonephosphate was several orders of 
magnitude higher; therefore, the segregation of the substrate by non-functioning aldolase 
can be excluded. Moreover, to increase the K m of the substrate (which is in the mM range for 
the dehydrogenase) by binding to aldolase, at least mM aldolase concentration would be 
needed, which is hardly realizable in practice. The idea of an active-site-directed interaction 
between aldolase and glycerolphosphate dehydrogenase is consonant with the suggestion of 
Srivastava and Bernhard (1986a) who observed direct transfer of the intermediate substrate 
from aldolase to the dehydrogenase using different kinetic approaches. 

Another system which has been the subject of detailed investigations in several 
laboratories is the aldolase/glyceraldehyde-3-phosphate dehydrogenase system (Ovfidi and 
Keleti, 1978; Ovfidi et al., 1978; Patthy and Vas, 1978; Grazi and Trombetta,  1980; Orosz 
and Ovfidi, 1987; Kvassman et al., 1988). We have found that the exogenous intermediate, 
glyceraldehyde-3-phosphate has the same probability to be bound to the free dehydrogenase 
as to the complexed one (cf. Table 1, line 3). However, the endogenous aldehyde form of 
glyceraldehyde-3-phosphate liberated at the active site of aldolase is transferred directly, at 
least partially, within the heterologous enzyme complex due to the proximity effect. Thus the 
hydration in the bulk medium of the aldehyde form generated by aldolase before reaching the 
active site of glyceraldehyde-3-phosphate dehydrogenase is prevented. Data of K vassman et 

al. (1988) reported recently were consistent with ours published 10 years earlier. However, 
the results of their theoretical analysis have been interpreted to be compatible with a free- 
diffusion mechanism for transfer of glyceraldehyde-3-phosphate. In fact, the rate of the 
enzymatic conversion of glyceraldehyde-3-phosphate in their experiments was much higher 
than the hydration rate of its aldehyde form since they applied a high excess of the 
dehydrogenase. Under our experimental conditions the rate of the enzymatic reaction 
catalysed by the dehydrogenase was slower than that of the aldehyde diol interconversion. 
Therefore, the unfavourable aldehyde~liol conversion of glyceraldehyde-3-phosphate, at 
least partly, would have occurred if the substrate were to mix with the bulk medium. This 
latter situation is the theoretical sine qua non condition for the detection of channelling 
complex formation in this system and this condition was not fulfilled in the experiments of 
Kvassman et al. (1988). 
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Channelling of the intermediate of the coupled reaction catalysed by aldolase and 
glyceraldehyde-3-phosphate dehydrogenase in the presence of triosephosphate isomerase 
was also investigated using isotope dilution technique IOrosz and OvAdi, 19871. In the 
presence of triosephosphate isomcrasc the hydration of the aldehyde form of glyccraldchyde- 
3-phosphate becomes negligible, sincc the triosephosphate exists predominantly in 
dihydroxyacetonephosphate form. Moreover, tile excess of triosephosphatc isomerasc 
ensures a constant concentration of aldehyde form in the steady-state of the coupled 
reactions, In the experiment 14C-fructose-1,6-bisphosphate was used as initial substrate and 
unlabelled exogenous glyceraldehyde-3-phosphate was added to the system. We could show 
that the isotope glyceraldehyde-3-phosphate generated endogenously is more accessible for 
the dehydrogenase than the exogenous substrate. Therefore, the channelling of the aldehyde 
form of glyceraldehyde-3-phosphate has clearly been demonstrated. Moreover, the precise 
mechanism of intermediate transfer could be identified as "'leaky channel", which refers to a 
situation when the exogenous intermediate binds to the complexed dehydrogenase with the 
same probability as to the free one, This finding indicates that the active site of 
dehydrogenase in its complexed form may not be blocked by aldolase. Grazi and Trombctta 
(19801 reported no evidence for the direct transfcr of glyceraldehyde-3-phosphate between 
aldolasc and glyceraldehyde-3-phosphate dehydrogenase on the basis of ihe l\dlowing 
observation: the addition of triosephosphate isomerase decreased the rate of formation of the 
3-phosphoglyceroyl enzyme intermediate similarly in both reaction systems where the two 
enzymes were freshly mixed or allowed to form complex. Disregarding the possibility that the 
heterologous complex formation dnring the catalysis might be very rapid, the finding of 
Grazi and Trombetta (1980~ fits the "'leaky channel" mechanism. 

The reports arc contradictory also for interaction between phosphoglycerokinase and 
glyceraldehyde-3-phosphate dehydrogenase both in respect to finding any complex 
formation and concerning the details of interaction (Friedrich, 1985). While gel- 
chromatographic and fluorimetric measurements as well as the transient time analysis with 
muscle enzymes by Vas and Batke (1981) proved no complex formation between these 
enzymes, experiments with immobilized enzymes (Ashmarina et al., 1984) or kinetic 
approaches with halibut enzymes (Weber and Bernhard, 19821 or enzymes from pea 
chloroplasts (Macioszek and Anderson, 1987) led to an apparently contradictory result. Our 
intention is not to discuss in detail the pro and contra data (we refer to the discussion of 
possible sources of discrepancies by Friedrich, 1985 ), but rather a special attention is paid to 
the kinetic analysis measured at different molar ratio of phosphoglycerokinase and 
glyceraldehyde-3-phosphate dehydrogenase in different laboratories. 

It is assumed that 1,3-diphosphoglycerate dissociates apparently very slowly (Huskins et 
al., 1982) from 1,3-diphosphoglyceroyl-phosphoglycerokinase if the reaction is not coupled 
with glyceraldehydephosphale dehydrogenase (Weber and Bernhard, 1982: Sukhodolets ~,t 
al., 1987}. Weber and Bernhard (19821 suggested that the binding of dehydrogenase to the 
acylenzyme facilitated the liberation of 1,3-diphosphoglyceratc from kinasc by a direct 
transfer mechanism. It has been pointed out (Friedrich, 1985: Sukhodolets et al., 1987) that 
formally such a "'one-encounter type ofmetabolite transfer" cannot be distinguished from the 
random mechanism involving free I by transient time measurement. Moreover, in the 
transient time measurements of Vas and Batke (1981) the concentration of glyceraldehydc- 
phosphate dehydrogenasc was 20 times higher than that of phosphoglycerokinase. 
Therefore, a small fraction of thc dehydrogenase could be complcxed by the kinase. 
Accordingly, practically no changc in the transient time can bc expected even at high 
glyceraldehydephosphate dehydrogenase concentrations. Howcvcr, it remains to be 
scrutinized, why the interaction between phosphoglycerokinase and glyceraldehyde- 
phosphate dehydrogenase is not reflected in the measurements of stcady-statc velocity of 
coupled reactions vs phosphoglyccrokinasc concentration in thc cxperiments of Vas and 
Batke {1981). If the dissociation of 1,3-diphosphoglyccrate is facilitated by tile binding of 
dehydrogenase as suggested by Weber and Bernhard (19821 then it is not unlikely that at 
relatively high glyceraldehydephosphate dehydrogenase concentrations non-linear depen- 
dence of the steady-state velocity ti.e. of phosphoglycerokinasc activity) o n  the phospho- 
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glycerokinase concentration should have been observed. Obviously, the kinetic effect of 
complex formation on the activity of phosphoglycerokinase depends on: (i) how much the 
dissociation of 1,3-diphosphoglyceroyl-phosphoglycerokinase is facilitated by the glycer- 
aldehydephosphate dehydrogenase. The quantitative data are not unequivocal; and (ii) the 
relative concentration of the phosphoglycerokinase complexed with glyceraldehyde- 
phosphate dehydrogenase may depend on the oligomeric form of the dehydrogenase which 
in the experiments of Vas and Batke (1981) is predominantly in tetrameric form. The 
available data are insufficient to prove or disprove the reasons of the contradictory data. 

The direct transfer also of NAD/NADH between alcohol dehydrogenase or lactate 
dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase or glycerophosphate 
dehydrogenase was demonstrated (Srivastava and Bernhard, 1984, 1985, 1986a,b, 1987a,b: 
Srivastava et al., 1985; Bernhard and Srivastava, 1987), as well as the competition of 
glycerolphosphate dehydrogenase and lactate dehydrogenase for NADH produced by 
glyceraldehyde-3-phosphate dehydrogenase (Friedrich and Hajdu, 1987). However, this 
type of direct coenzyme transfer seems to be absent in the system of NADP-dependent 
isocitrate dehydrogenase and glutamate dehydrogenase (Ehrlich, 19871 and even the original 
findings were recently questioned (Chock and Gutfreund, 1988). However, due to several 
recent reviews mentioned before we will not discuss in detail these data. 

The modulation of dynamic channelling complexes of enzymes has been investigated only 
in a few cases. Kinetics of aldolase-catalysed conversion of fructosephosphates was analysed 
by coupling the aldolase reaction to the metabolically sequential enzymes, glyceraldehyde- 
phosphate dehydrogenase (Neuzil et al., 1989) or glycerolphosphate dehydrogenase 
(V6rtessy and Ovfi.di, 1989). At low enzyme concentrations polyethylene glycol was added to 
promote complex formation of aldolase and glyceraldehydephosphate dehydrogenase or 
glycerolphosphate dehydrogenase resulting in a significant increase in K m of fructose-l,6- 
bisphosphate and no change in kc~ t. Gel-chromatography and fluorescence measurements 
showed positive modulation of the interaction of aldolase with either of the dehydrogenases 
by fructose-1,6-bisphosphate. While the presence of fructose-1,6-bisphosphate increased the 
affÉnity of aldolase for the dehydrogenases, the presence of neither fructose-l-phosphate nor 
dihydroxyacetonephosphate affected the dissociation constant of the heterologous enzyme 
complexes. We have concluded that the site for the binding of the C-6 phosphate group of the 
substrate on aldolase is likely to be involved directly or indirectly in the interactions. Since 
there are several similarities in the interaction of aldolase with glycerolphosphate 
dehydrogenase and glyceraldehydephosphate dehydrogenase, we suggested that their 
binding involves similar mechanisms and their binding sites on aldolase might overlap. 
Therefore, we suggested that fructosebisphosphate modulates the formation of channelling 
complex between aldolase and dehydrogenases. Obviously, the effect ofmetabolite levels and 
the alternative enzyme assemblies may mutually act upon each other. Therefore, any effect 
which influences the specificity of enzyme interactions may consequently result in an 
alteration of substrate level of the flux of metabolic pathways (Ovfidi, 1988). 

Another type of experiment led to the detection of complex formation between aldolase 
and fructosebisphosphatase which in liver catalyse successive reactions of gluconeogenesis. 
However, one should mention that in this case also we may find controversial data in the 
literature. 

An early indication of an interaction between aldolase and fructosebisphosphatase came 
from the observation that rabbit liver aldolase lends to copurify with fructosebisphosphatase 
when the latter enzyme is isolated from liver of fed but not fasted rabbit (Pontremoli et al., 

1980). Other evidence for complex formation between aldolase and the phosphatase was 
provided also with purified enzymes by Horecker et al. (1981). They observed that the 
presence of fructosebisphosphatase which does not contain tryptophan caused a blue shift in 
the fluorescence emission spectrum of aldolase, indicating conformational changes in the 
aldolase molecule due to the binding of the phosphatase. Further, it was found that the 
amount of Zn 2 + bound to the high affinity site of fructosebisphosphatase was significantly 
reduced by aldolase. Changes in the conformation of fructosebisphosphatase could also be 
monitored by measuring its susceptibility to limited proteolysis by sublilisin in the presence 
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of a small molar excess of liver aldolase (Pontremoli et al., 1982). It is noteworthy that each of 
the effects described was specific for the mixture of enzymes isolated from liver, but no similar 
phenomena were found with muscle enzymes. 

Attempts to demonstrate the formation of a higher molecular mass complex containing 
liver fructosebisphosphatasc and aldolase by equilibrium or velocity sedimentation, light 
scattering or gel-filtration have failed. However, equilibrium penetration experiments 
showed that the addition of liver aldolase to a solution containing liver fructose- 
bisphosphatase reduced the ability of the latter to enter into the interior phase of the gel. The 
molecular mass of the complex between the two enzymes was estimated to be approximately 
300,000 Da which corresponded to a 1:1 molar complex (Horecker et al., 1981 ). Any gross 
change in the catalytic properties of either enzyme induced by the other protein could not be 
detected. However, aldolase has been shown to undergo inactivation in liver of fasted rabbits 
without significant change in molecular mass or loss of its ability to bind antialdolase 
antibody (Pontremoli et al., 1979a, 1980). 

Pontremoli et al. (1982) reported, for both aldolase and fructosebisphosphatase, that 
inactivation by cathepsin M was accompanied by the loss of a segment from the C-terminus. 
Complex formation between the two enzymes (Botelho et al., 1977; Pontremoli et al., 1979b) 
is affected by this modification of aldolase but not by similar modification of the C-terminus 
of the phosphatase. 

2. In Search o [a  Mul t i enzyme  Aggregate  

Studies carried out over several years have yielded some evidence for the existence of a 
multienzyme complex in E. coli containing all enzymes of glycolysis (Macnab et al., 1973; 
Mowbray and Moses, 1976; Moses, 1978; Gorringe and Moses, 1980). However, no other 
laboratories confirmed these results. 

Data showing the compartmentalization of glycolysis in yeast cells (Rothstein et al., 1959; 
Green et al., 1965), in Zygorrhyncus  moelleri (Moses et al., 1959), in the endospermium of 
castor oil semen (Dennis and Green, 1975), in Trypanosoma brucei (Opperdoes and Borst, 
1977; Visser et al., 1981 ), in CrithidaJasciculata and Trypanosoma cruzi (Taylor et al., 1980; 
Aman et al., 1985) has been reported. The unique compartmentation of the glycolytic 
pathway inside an intracellular organelle is the glycosome (Opperdoes et al., 1984; Misset et 
al., 1986; Opperdoes, 1987, 1988). 

The enzymes within the glycosome influence the ATP synthesis (Hammond et al., 1985) 
and have a half-life about one order of magnitude higher than in the cytosol (Hart et al., 
1987). The glycosomic enzymes at variance with the cytosolic ones--have a marked excess 
of positive charges, distributed in two or more clusters about 40 A apart, which may serve as 
topogenic signals for import into the glycosomes (Wiesenga et al., 19871. 

The possible existence of a multienzyme complex of glycolytic enzymes has been 
investigated also in the cytosol of muscle cells (Melnick and Hultin, 1973b). Kwon and 
Olcott (1965) reported the enhancement of aldolase activity of myogen by glyceraldehyde-3- 
phosphate dehydrogenase observed under conditions in which the dehydrogenase was 
enzymatically inactive. 

A specific sedimentation technique to test association of glycolytic enzymes has failed to 
detect any significant amount of multienzyme aggregates (De Duve, 1970; Anderson and 
Green 1967). Clarke and Masters (1973a) reinvestigated this problem. They provided 
evidence in support of the occurrence of a multienzyme aggregate of glycolytic components 
under physiological conditions of pH and ionic strength by sedimenting a cytosol fraction 
(myogen) of rat muscle. It has been pointed out that the complex is very sensitive to factors 
such as pH, ionic strength and the concentrations of proteins and metabolites. 

The compartmentalization of glycolytic enzymes (the upper and lower part ofglycolysis in 
two separate compartments) is demonstrated in ascites tumour cells (Coe and Greenhouse, 
1973), and experiments with permeabilized mouse L-929 cells indicate that none of the 
glycolytic enzymes can exist completely in solution, suggesting enzyme organization (Clegg 
and Jackson, 1988). 

Several attempts are known to search enzyme~nzyme interactions within the glycolytic 
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pathway in erythrocytes. Many enzymes of erythrocytes have been purified and studied 
enzymologically. A number of hypotheses on the glycolytic control mechanism and ATP 
stabilization and some mathematical models of this metabolic system have appeared in the 
literature (Segel et al. ,  1975; Atkinson, 1968; Rapoport et al. ,  1974, 1976, 1977). The results 
suggested that any supramolecular organization of red cell glycolysis was unnecessary to 
describe the behaviour of the system. Nevertheless, a number of studies have proposed that 
many of the classical "cytoplasmic" proteins of the cell exist in ordered structures which may 
include interactions with membranous elements of the cell. 

Early observations suggesting some interaction between cell membrane and soluble 
enzymes came from the study of incorporation of inorganic phosphate into glycolytic 
intermediates in erythrocytes. Since ATP was labelled faster by 32P i than was intracellular P~, 
some authors suggested that glyceraldehyde-3-phosphate dehydrogenase is located at or in 
the membrane both in erythrocytes (Gourley, 1952; Prankerd and Altman, 1954; Gerlach et 
al. ,  1958; Latzkovits et al. ,  1972), and in HeLa cells (Niehaus and Hammerstedt, 1976). The 
binding of soluble enzymes by the erythrocyte membrane was further suggested by the 
localization of some glycolytic enzymatic activity on the membrane fraction after hypotonic 
haemolysis (Green et al. ,  1965; Schrier, 1966, 1967; Mitchell et al.,  1965; Arese et al. ,  1974). 
The experimental data are summarized in Table 4. 

TABLE 4. ENZYME MEMBRANE INIERACTIONS IN ERYTHROCYTES 

Enzyme bound to the membrane 
through band-3 protein 

Enzymes located near the cell 
membrane detected by the molecular 
sieving property 

Saponine-induced release from intact 
cell 

Autoradiographic localization of 
3H-iodoacetate labelled enzyme 

Crosslinking in intact erythrocyte 

NMR 

Glyceraldehyde-3- 
phosphate 
dehydrogenase* 

Aldolase 

Phosphofructokinase 

3-Phosphoglycerate 
kinasc 

Glyceraldehyde-3- 
phosphate 
dehydrogenase. 

Lactate 
dehydrogenase, 

Phosphoglycerate 
kinase 

Glyceraldehyde-3- 
phosphate 
dehydrogenase 

Glyceraldehyde-3- 
phosphate 
dehydrogenase 

Glyceraldehyde-3- 
phosphate 
dehydrogenase 

Glyceraldehy.:te-3- 
phosphate 
dehydrogenase 

Kant and Steck, 1973; McDaniel and 
Kirtley, 1975; McDaniel et  al . ,  1974; 
Solti and Friedrich, 1976; Shin and 
Carraway, 1973; Girotti, 1976; Letko 
and Bohnensack, 1975; Allen et al. ,  1987 

Green et al . ,  1965; Solti and Friedrich, 
1976: Strapazon and Steck, 1976, 1977; 
Yeltman and Harris, 1980; Wilson et  al. ,  
1982 

Karadsheh and Uyeta, 1977; Higashi et 
al . ,  1979 

Green et al. ,  1965; Schrier, 1966; Tillmann 
et al . ,  1975; Braun and Kirtley, 1977 

Cseke and Szabolcsi, 1983; Cseke et al. ,  
1978: Szabolcsi and Cseke, 1981 

Kliman and Steck, 1980 

Solti et al. ,  1981 

Yeltman and Harris, 1980: Keokitichai 
and Wrigglesworth, 1980 

Wilson et al. ,  1982 

* The glyceraldehyde-3-phosphate dehydrogenase-binding site of bovine band-3-protein is at a distance of 
molecular mass ~ 5000 Da from its N-terminal end t Moriyama and Makino, 1987 t. However. the physiological 
binding of glyceraldehyde-3-phosphate dehydrogenase to the erythrocyte membrane was questioned on the basis 
that it was observable only at low ionic strength (Maretzki et al. ,  1974: Fujii and Sato, 1975: Maretzki et al. ,  19891. 

Experimental data strongly suggest that there is a supramolecular structural organization 
at least of the upper part of glycolysis under the erythrocyte membrane (Salhany and Gaines, 
1981; Friedrich, 1984). Such localization is further suggested by the compartmentation of 
glycolytic intermediates in the erythrocytes, as tested by the experiments with an enzyme- 
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probe (Friedrich et al., 1977: Solti and Friedrich, 1979). The structural network ol 
erythrocytes including the band-3-protein and spectrin-actin reticulum is probably 
responsible for the formation of enzyme enzyme complexes of the glycolytic pathway near 
the membrane, which on the other hand causes the compartmentation of intermediates 
(Friedrich, 1974: Murthy et al., 1981: Haest, 19821. 

3. Interactions q[" Enzymes  with Structural  Elements  

(a) Interaction q f  soluble cytosolic enzymes  with membranes  

Mitochondrial membranes can also bind enzymes. Mitochondrial membrane in brain was 
the first shown to bind hexokinase (Crane and Sols, 1953; Knull et al., 1970; Wilson, 1978), 
but the same phenomenon was demonstrated in liver (Rose and Warms, 1967: Felgner et al., 
1979), heart (Font et al., 1975), small intestine (Mayer and Hfibscher, 1971) and ascites 
tumour cells (Rose and Warms, 1967). The binding of hexokinase to the mitochondrion 
activates the enzyme and effects metabolite channelling (Gots et al., 1972: Wilson, 1972: 
Gots and Bessman, 1974: Viitanen and Geiger, 1979). Brain hexokinase binds to porin ta 
binding protein of the mitochondrial outer membrance which concomitantly l\~rms the 
contact points between the outer and inner membranes, ~;f. Jancsik et al., 1988) and the 
hexokinase- porin complex is located in a cholesterol-free membrane domain (Dorbani et al., 
1987). 

It is also theoretically conceivable that the kinetic and regulatory properties of membranc- 
adsorbed (soluble) enzymes are different from those of the free (soluble) forms (Kurganov 
and Loboda, 1979; Kurganov et al., 1978). Experimentally the cytosolic glycerolphosphatc 
dehydrogenase was found to bind reversibly to synthetic and mitochondrial membranes 
(Jancsik and Horwith, 1984) and to be regulated by the adsorption~tesorption phenomenon 
(Jancsik and Keleti, 1986). Similarly, glyceraldehyde-3-phosphate dehydrogenase may be 
bound to liposomes, the result of which is the change of the conformation of the enzyme 
(Michalak et al., 1987). Lactate dehydrogenase also associates with cellular structures and 
the different isoenzymes have different adsorption properties (Gfittler and Clausen, 1967: De 
Domenech et al., 1970: Ehman and Hultim 1973). 

Binding of glyceraldehyde-3-phosphate dehydrogenase and phosphoglycerokinase to 
sarcolemmal and sarcoplasmic reticular membranes has been demonstrated. The binding 
was found to be reversible, charge-dependent and inhibitory (Pierce and Philipson, 1985~. 

Glycolytic and other cytoplasmic enzymes associate also with the membranes of the 
particulate fraction of lysed nerve endings. Hexokinase and fumarase are associated with 
mitochondrial membrane. Aldolase, glucosephosphate isomerase, phosphofructokinasc, 
glyceraldehyde-3-phosphate dehydrogenase, pyruvate kinase and lactate dehydrogenasc 
show enrichment in fractions containing synaptosomal membranes (KnulL 1978). Glucose- 
phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolasc, pyruvate 
kinase and lactate dehydrogenase became fixed when intact synaptosomes were incubated 
with glutaraldehyde. The immobilized enzymes are located near the synaptosomal 
membrane, perhaps in association with actin found at this site iKnull, 1980). Indeed, 
subcellular distribution of aldolase, glyceraldehyde-3-phosphate dehydrogenasc and 
pyruvate kinase in brain parallels that of brain actin (Tamir et al., 1972: Clarke and Masters. 
1973b: Blitz and Fine, 1974: Clarke and Morton, 1982), and they are bound, as is 
phosphofructokinase, to the particulate fractions (Clarke and Masters, 1972 ~. 

About 40% of hexokinase, 10% of glyceraldehyde-3-phosphate dehydrogenase, 8% of 
pyruvate kinase and 1% of 3-phosphoglycerate kinase is associated with the cytoplasmic side 
of the plasma membrane of glioma cells (Daum et al., 19881. 

(b) Interactions with skeletal  elements  and cell particles 

The first findings showing the interaction of cytosolic enzymes with muscle proteins was 
published in the late 1960s and early 1970s (Karpatkin, 1967; Arnold and Pette, 1968, 1970: 
Melnick and Hultin, 1973a: Clarke and Masters, 1976). The apparent molecular mass of 
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some glycolytic enzymes is increased due to their binding to the proteins of contractile 
apparatus (Clarke and Masters, 1973a, 1974a; F61di et  al. ,  1973). The adsorption seems to be 
reversible and depends upon pH and ionic strength (Arnold et  al. ,  1971), as well as on the 
nature of the soluble enzyme (Arnold et  al. ,  1969), the structure of the individual isoenzymes 
(Masters and Holmes, 1975; Masters et  al.,  1987) or on the concentration of specific 
metabolites (Clarke and Masters, 1975). Correlation exists between the phylogenetic 
stability of actin and that of several glycolytic enzymes in muscle and other tissues (Pollard 
and Weihing, 1974; Anderson et  al. ,  1969; Perham, 1969; Cohen et  al.,  1973). On the other 
hand, in the presence of Mg 2÷, the formation of actin filaments is hindered by 
glyceraldehyde-3-phosphate dehydrogenase and this effect is counteracted by KC1 required 
for their correct formation (Lanzara and Grazi, 1987). Phosphofructokinase and 
filamentous actin form a specific association as demonstrated by electron microscopy and 
this reversible association may play a role in regulating the enzymatic activity and 
consequently the glycolysis during metabolic acidosis (Roberts and Somero, 1987). Not only 
actin but also troponin and tropomyosin must be considered as potential binding sites for 
glycolytic enzymes (Walsh et  al. ,  1977), and the binding depends on ionic strength (Clarke 
and Masters, 1975; Walsh et  al. ,  1980). 

Moreover, it was found that the phosphorylation may play a role in the regulation of 
phosphofructokinase since the phosphorylated form of the enzyme has a higher apparent 
affinity for F-actin than does the non-phosphorylated form (Luther and Lee, 1986). F-actin 
acts as a positive effector of the phosphorylated form and the effect of F-actin is specific. 
These results seem to be consistent with in v i tro  observation which shows that upon 
stimulation of muscle contraction, the enzyme is phosphorylated to a greater extent and the 
binding to muscle matrix is increased. 

Interactions of soluble enzymes with skeletal elements can lead to the formation of 
compartments for glycolytic enzymes and intermediates (Ottaway, 1979; Kurganov et al. ,  
1985; Ureta, 1985), which was found in rat diaphragm (Shaw and Stadie, 1957, 1959; Landau 
and Sims, 1967; Kalant and Breitner, 1971 ), rat skeletal muscle (Dully et  al. ,  1969), rat liver 
(Threlfall and Heath, 1968) and mouse ascites cells (Moses and Lonberg-Holm, 1966). 

The thin filament F-actin-tropomyosin-troponin binds strongly glyceraldehyde-3- 
phosphate dehydrogenase, aldolase, phosphofructokinase, lactate dehydrogenase, pyruvate 
kinase, glucose-6-phosphate dehydrogenase but weakly triosephosphate isomerase, phos- 
phoglycerate kinase, phosphoglycerate mutase, enolase and hexokinase (Clarke and 
Masters, 1975). It is interesting to note that troponin-T and glyceraldehyde-3-phosphate 
dehydrogenase share a common antigenic determinant (Sanders et  al., 1987). Association 
between thin filaments of muscle and aldolase was demonstrated by electron microscopy 
(Morton et  al. ,  1977), ultracentrifugal analysis (Clarke et al.+ 1974) and affinity 
chromatography (Bronstein and Knull, 1981). The experimental results obtained with F- 
actin tropomyosin are best described by a model in which there is one aldolase binding site 
pcr heptameric repeat unit on the filament (Masters et  al.,  1981 ). 

The binding of aldolase to actin increases the susceptibility of aldolase to proteolytic 
attack by trypsin or chymotrypsin (Dedman et al. ,  1975). The binding of aldolase (or 
aldolase + glyceraldehyde-3-phosphate dehydrogenase) to the thin filaments of glycerinated 
rabbit psoas muscle produces a significant change in their small angle X-ray diffraction 
pattern (Stewart et al. ,  1979). Aldolase crosslinks the filaments of F-actin or F- 
actin tropomyosin and F-actin-tropomyosin-troponin as shown by electron micrographs 
of their paracrystals (Stewart et  al. ,  1980). The extent of aldolase and glyceraldehyde-3- 
phosphate dehydrogenase bound to actin filament is increased by electrical stimulation of 
anaerobic muscle (Clarke et al. ,  1980). Under physiological conditions aldolase should be 
regarded as an equilibrium mixture of free and myofibril-bound forms, the relative 
proportions of which are a function of the metabolic state of the cell (Kuter et al.,  1983: 
Harris and Winzor, 1985, 1987). 

Recently, Walsh and Knull (1988) reported that PEG enhanced several glycolytic 
enzyme F-actin, enzyme-myogen and purified enzyme-enzyme interactions. These interac- 
tions, in which one protein may associate with any of several other proteins, including the 
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enzyme enzyme F-actin interaction and depicted by Clarke as "piggy-backing'" (Clarke et 
al., 1983) are consistent with the microtrabecular lattice structure. 

One of the potentially most significant factors affecting metabolic regulation in the cellular 
microenvironment may be the interaction between enzymes and cellular structures (Masters, 
1977, 1978; Kuter et al., 1981 ). For example, binding of aldolase to F-actm tropomyosm 
troponin filaments produces major alterations in the kinetic parameters and renders them 
C a  2 + - s e n s i t i v e  (Arnold and Pette, 1970: Walsh et al., 1977). Similarly, the kinetic parameters 
of glyceraldehyde-3-phosphate dehydrogenase, phosphofructokinase and lactate dehydro- 
genase are altered by adsorption to muscle proteins (Dagher and Hultin, 1975: Pette, 1978: 
Liou and Anderson, 1980; Eronina et al., 1975: Sugrobova et al., 1983). 

Recently, the existence of a glycolytic minicomplex in the muscle and the facilitated 
binding of triosephosphate isomerase to myofibrils when both aldolase and glyceraldehyde- 
3-phosphate dehydrogenase were bound to the filament was demonstrated (Stephan et al., 
1986). Glyceraldehyde-3-phosphate dehydrogenase and phosphofructokinase have distinct 
active sites for actin, as revealed by proteolysis (Humphreys et al., 1986t. Interaction ofactin 
and xanthine oxidase was also demonstrated (Lanzara et al., 1988). 

Aldolase can be bound also to the microsomes in the muscle and this interaction results in 
an increase of the Micfiaelis constant for fructose-l,6-bisphosphate (Weiss et al., 1981 ). 
Similarly, lactate and malate dehydrogenase is bound to the microsomal fraction in chicken 
liver (Sagristfi and Bozal, 1987) and rat brain (Franco et al., 1988). The glycolytic enzymes 
are bound to particulate fraction also in carrot and sugar beet (Moorhead and Plaxton, 
1988). Glyceraldehyde-3-phosphate dehydrogenase associates with mono- and polyribo- 
somes and is one of the three major RNA-binding proteins of reticulocytes (Ryazanov, 1985: 
Ryazanov et al., 1987, 1988 ~. 

The enzyme binds to microtubules and this binding modulates the enzymatic activity and 
quaternary structure (Durrien et al., 1987a,b). Muscle aldolase, glyceraldehyde-3-phosphate 
dehydrogenase, pyruvate kinase and muscle-type lactate dehydrogenase have been found to 
be bound as well to the cytoskeletal tubulin as to actin (Karkhoff-Schweizer and Knull, 1987) 
suggesting that the model of the microtrabecular network involving the association of 
soluble enzymes with actin filaments may need to be slightly modified. 

Very recently a model has been developed which proposes that the glycolytic sequence is 
best described as consisting of a number of segments in t,it~o, each segment formed by a cluster 
of isozymes (@ Ureta, 1978), many of which can interact with the actin filaments. Such 
segmentation and compartmentation are suggested to play a role in meeting the different 
types of energy requirement in the cytoplasm of divergent cell types (Masters et al., 1987). 
This model based on the adsorption of enzymes on subcellular structures has been extended 
by the "direct transfer" hypothesis of Bernhard (Ryazanov, 1988). The basic idea is that the 
binding of metabolites results in desorption of the enzymes from subcellular structures 
during each catalytic act which makes the enzymes mobile and capable ot" directly 
transferring metabolites to the other enzymes. 

IV. I N T E R A C T I O N S  OF M I T O C H O N D R I A L  ENZYMES 

1. Citr ic  Acid  ( ) ' t i e  and Some  Closely  Related Enzymes  

Before the 1970s it was generally believed that the enzymes ot" the citric acid cycle were 
dispersed randomly in the mitochondrial matrix (for reviews, ~:L Srere, 1972: Stere and 
Mosbach, 1974), but later it was suggested that proteins in it interact as multienzyme 
complexes (Srere and Henslee, 1980; Srere, 1980~ Glund and Walther, 1982; F6rster, 1988). 
This idea has been based on the following observations: 

(i) The experimentally observed rate of the Krebs cycle is much higher than the 
calculated rate of the citrate synthase reaction. In other words, the apparent 
mitochondrial concentration of free oxaloacetate is low (4 x 10 s M) and since the K m 

for oxaloacetate of rat liver citrate synthase is about 4 x 10  ~' g. citrate synthase 
would express only about 1% of its maximal activity, which is too low to account for 
the observed rate of respiration of liver mitochondria (Halper and Srere, 1977). To 
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reconcile this apparent discrepancy the existence of a complex of citrate synthase and 
malate dehydrogenase was proposed by Srere (1972). In such a complex the 
channelling of oxaloacetate may result in the observed high rate of the Krebs cycle. 

(ii) Oxaloacetate is a key metabolite also of other metabolic pathways in mitochondria, it 
regulates the activity of succinate dehydrogenase and the aspartate malate shuttle: 
further, it is a starting point for gluconeogenesis. Thus channelling of oxaloacetate is 
likely (Marco et al. ,  1974) since the organization of the citric acid cycle enzymes would 
create a special microenvironment and in this way maintain a high flux through the 
cycle (Halper and Srere, 1977; Beeckmans and Kanarek, 1981 ). 

(iii) Srere (1980) concluded that the concentration of enzymes in rat liver mitochondrial 
matrix is over 50% by weight and a direct consequence of this is that these enzymes 
probably exist and behave as a multienzyme complex rather than as enzymes in 
solution. Recent experiments with gently disrupted rat liver mitochondria suggest 
that the tricarboxylic acid cycle exists as a sequential complex of enzymes, a 
metabolon, in s i tu  (Srere, 1985; Robinson et al.,  1987; Lyubarev and Kurganov, 
1987). Moreove, linear relationships were found between mitochondrial forces and 
cytoplasmic flows. These findings are suggestive of extensive enzyme organization 
within these metabolic pathways (Berry et al. ,  1987). 

Several publications appeared in the last 10 years indicating the existence of physical 
interactions between the enzymes of the citric acid cycle and other metabolically related 
enzymes (cf. Table 5 and references therein). Five enzymes (i.e. aspartate aminotransferase, 
malate dehydrogenase, citrate synthase, pyruvate dehydrogenase complex and glutamate 
dehydrogenase) may have exceptional importance in this respect. 

(i) Interaction of aspartate aminotransferase and malate dehydrogenase: Backman and 
Johansson (1976) assumed that complexes between aspartate aminotransferase and 
malate dehydrogenase on both sides of the membrane might be involved in the 
regulation of NAD+/NADH ratio (~J~ also the review of Dawson (1979)). The 
original finding on the channelling of oxaloacetate between aspartate aminotrans- 
ferase and malate dehydrogenase (Bryce et al.,  1976) was questioned (Manley et al.,  

1980). More recently a large citric acid cycle (malate dehydrogenase aspartate 
aminotransferase shuttle) multienzyme complex has been indicated by Beeckmans 
and Kanarek (1981 ). This complex was assumed to have physiological implications 
on the regulation of metabolic fluxes by channelling oxaloacetate towards the citric 
acid cycle or towards the aspartate malate shuttle. 

(ii) Interaction of malate dehydrogenase and citrate synthase: Malate dehydrogenase 
catalyses the only reaction of the citric: acid cycle with a rather unfavourable 
equilibrium, [L-malate]/[oxalate] = 10 ~ tNewsholme and Start, 1973). This equilib- 
rium forces the cell to remove oxaloacetate rapidly in order to enstire the running of 
the cycle. On the other hand, citrate synthase, the enzyme next to malate 
dehydrogenase, is considered to be the main control point of the cycle (Newsholme 
and Start, 1973; Srere, 1974). Therefore Beeckmans and Kanarek (1981) reckoned 
"that besides extensive control by different substances on this enzyme itself, the fact of 
switching on and off a physiological interaction between malate dehydrogenase and 
citrate synthase would be an extra way of regulating the cycle activity especially with 
the equilibrium of the former reaction lying far to the left." 

The apparent dissociation constant of the complex of mitochondrial citrate 
synthase and mitochondrial malate dehydrogenase is 10 ~'M while that of the 
complex of mitochondrial citrate synthase and the cytoplasmic malate dehydro- 
genase is 1.5 × 10 -5 M (Tompa et  al..  1987b). 

(iii) Interaction of pyruvate dehydrogenase complex with other enzymes: Pyruvate 
dehydrogenase complex is also considered as a regulator at the switch point between 
energy metabolism and gluconeogenesis (Hucho, 1975). As a result of the close 
functional relationship between pyruwtte dehydrogenase complex and citrate 
synthase it was assumed there is an interaction between them (S/imegi et al. ,  1980; 
Si.imegi and Alkonyi, 1983). They found that the K m value of CoA on the pyruvate 
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TABLE 5. INTERACTIONS OF MITO('HONI)RIAI. ENZYMES (CITRI(" A¢'ID CYCLE AND CLOSELY RELATED ENZYMES) 

Enzyme complex Remarks References 

Binary-enzyme complexes: 

Malate 
dehydrogenase ~zitrate 
synthase(MDH CS)* 

MDH fumarase 

MDH aspartate amino 
transferase (AATt 

AAT glutamate 
dehydrogenase (GLuDH 1-[" 

Citrate synthase thiolase 

Citrate synthase pyruvate 
dehydrogenase complex 
(PDCI 

~-Ketoglutarate 
dehydrogenase 
(KGDH} succinate 
thiokinase 

KGDH NAD-dependent 
isocitrate dehydrogenase 

KGDH NADH: ubiquinone 
oxidoreductase 
(UQORase) 

UQORase PDC 

UQORase MDH 

UQORase fi hydroxyacyl 
CoA dehydrogenase 

fl hydroxyacyl CoA 
dehydrogenase specific 
binding protein in inner 
mitochondrial membrane 

Activation of malate dehydrogenase by 
citrate synthase 

Channelling of oxaloacetate 
Polyethylene glycol induced formation of 

the enzyme complex 

Fumarase MDH is considered as an 
anchor to succinate dehydrogenase 
(located in mitochondrial inner 
membrane, Ernster and Kuylenstierna, 
19701 giving connection between citric 
acid cycle and respiratory chain 

The complex is detected by counter 
current distribution only between the 
mitochondrial enzymes 

Interaction of pig liver mitochondrial 
enzymes was demonstrated by gel- 
chromatography and steady state 
fluorescence anisotropy 

Bovine liver GLuDH and pig heart 
cytoplasmic AAT interact especially in 
the presence of NADH plus ammonium 
ion or NAD plus aspartate 

The complex is stabilized by bifunctional 
crosslinker dimethyl-yY-dithiobis- 
propion-imidate 

Detection of complex by analysing the 
consecutive reaction. Data are fitted to 
a model of direct transfer of the 
intermediate assuming 1: I stoichiometry 
in binding of GLuDH and AAT 

Complex of beef liver enzymes was 
indicated by time-resolved fluorescence 
anisotropy 

Coprecipitation 

The K m value of CoA on PDC and that of 
acyI-CoA on CS is decreased in the 
complex 

Srere, 1974; Fahien et al.,  1979: 
Bryce et al.,  1976 

Tompa eta/., 1987b 

Datta et al.,  1985 
Merz et a l ,  1987 

Beeckmans and Kanarek, 1981 

Backman and Johansson, 1976; 
Dawson, 197% Fahien et al., 
1979; Beeckmans and 
Kanarek, 1981 : Fahien and 
Kmiotek, 1983 

Fahien et al.,  1979; Fahien and 
Kmiotek, 1983: Salerno et al., 
1975 

Fahien and Smith, 1969, 1974 

Hucho et al., 1975: Fahien et 
at., 1978 

Salerno et al.,  1982a 

Churchich and Lee, 1976 

Salerno et al., 1982a 

Sfimegi et al., 1985 

Sfimegi et al., 1980: Sfimegi and 
Alkonyi, 1983 

PorpS.czy et al.,  1983 

Porpa.czy et al., 1987 

Porpficzy et al.. 1987 

Sfimegi and Stere, 1984 

S/imegi and Stere, 1984 

Sfimegi and Stere, 1984 

Kispfil el al., 1986 
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GLuDH MDH 

CS AAT 

Ternary-enzyme complexes: 

MDH 
acetyl CoA carboxylase 
phosphoenolpyruvate 

carboxylase 

Fumarase MDH AAT 

Fumarase MDH CS 

MDH CS lactate 
dchydrogenase 

MDH AAT KGDH 

In Eu,qlena ,qracilis this complex 
participates in CO 2 fixation 

Immobilized three-enzyme system. A 
model for micro-environmental 
compartmentation in mitochondria 

MDH activity is enhanced due to decrease 
in K m of malate 

:~-Ketoglutarate and citrate enhance the 
dissociation of MDH from this complex 

Fahien et al., 1979 

Fahien et al., 1979: Fahien and 
Kmiotek. 1983 

Wolpert and Ernst-Fonberg, 
1975a,b 

Beeckmans and Kanarek, 1981 

Beeckmans and Kanarek, 1981 

Srere et al., 1973 

F'ahien et al., 1988 

* K d (in absence ofsubstrates)-  1 t~M: K d (in presence ofz~-KG)- 0.2 l~M; Ka (in presence ofNADH ) - 5 I~M: K d Iof 
complex of mitochondrial CS and cytoplasmic M D H ) -  15 I~M; Tompa et al.. 1987b. 

t K d - - 8 . 6  I~M: Salerno et al., 1982a. 
Kd: apparent dissociation constant assuming I:l stoichiometry in the complex. KG: ~-ketoglutarate. 

dehydrogenase and that of acyl-CoA on citrate synthase decreased in the coupled 
system when compared to those of the individual reactions. 

(iv) Interaction of aspartate aminotransferase and glutamate dehydrogenase: Complexes 
between glutamate dehydrogenase and mitochondrial aminotransferases may even 
play a physiologically significant role in converting amino acids to keto acids plus 
ammonium ions in liver mitochondria. This statement is based on the following 
reasons: (a) glutamate dehydrogenase, alanine aminotransferase and aspartate 
aminotransferase are in the same mitochondrial compartment (De Rosa and Swick, 
1975; Sottocasa et al., 1963); (b) in liver mitochondria the level of glutamate 
dehydrogenase is even higher (Schmidt et al., 1963; Klingenberg et al., 1965) than that 
required in vitro to form a complex with mitochondrial ornithine, alanine or aspartate 
aminotransferase (Fahien and Smith, 1974; Fahien et al., 1977): (c) complexes 
between glutamate dehydrogenase and these mitochondrial aminotransferases are 
quite active in vitro in catalysing an amino acid dehydrogenase reaction even in the 
absence of :~-ketoglutarate or glutamate (Fahien and Smith, 1974: Fahien et al., 
1977); (d) the reductive amination of oxaloacetate could occur more efficiently 
through the consecutive reaction catalysed by the complex of aspartate aminotrans- 
ferase and glutamate dehydrogenase than by the free enzyme and within the complex 
practically complete channelling was observed (Salerno et al., 1982). The efficiency (~ t 
of the intermediate transfer (0 c. also Section II.2.c) in this complex was determined 
recently (Tompa et al., 1987a) and experimental values could be fitted by using ~ -  0.9 
and (t ' )  = 0. 

Considering the rather great and continuously increasing number of observed enzyme en- 
zyme interactions presented above in 0k(iv) (@ also Table 5), to answer the question aboul 
the hierarchy (specificity) of the possible complex formation (in competing cases) as well as 
about the effect of various intermediates and other factors becomes especially important in 
respect of in t,ivo functions of these complexes. Unfortunately, although many individual 
observations and data are known, we did not possess a general outline till now. However, 
some evidence concerning the specificity of complex formation and the regulation of complex 
association/dissociation by intermediates suggests the possible role of enzyme enzyme 
interactions even in in t,ivo conditions. 

Mitochondrial malate dehydrogenase and aspartate aminotransferase can form helero- 
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complexes with either glutamate dehydrogenase (Fahien et al., 1979) or citrate synthase. As 
indicated by Fahien and Kmiotek (1983) the complexes with aspartate aminotransferasc arc 
favoured over those with citrate synthase. At low enzyme concentration the only detectable 
complex is that of aspartate aminotransferase and glutamate dehydrogenase. 

NADPH disrupts the complexes with malate dehydrogenase but has little effect on the 
complexes with aspartate aminotransferase. Oxaloacetate disrupts the complexes with 
citrate synthase but has hardly any effect on the complexes with glutamate dehydrogenase. 
NADH + malate abolish the complexes of malate dehydrogenase and glutamate dehydro- 
genase, aspartate aminotransferase and glutamate dehydrogenase, malatc dehydrogenase 
and citrate synthase but favour the formation of the complex of aspartate aminotransferase 
and citrate synthase. 

NAD ~, oxaloacetate, citrate, ATP, L( -- ~- or D( + )-malate had no effect on the association 
of citrate synthase and malate dehydrogenase, whereas e-ketoglutarate increased and 
NADH decreased it. On one hand, :~-ketoglutarate, as a Krebs cycle intermediate, also htJs 
alternate metabolic fates, it is involved in glutamate formation or in the malate aspartate 
shuttle. The activation of malate dehydrogenase by citrate synthase indicated by Tompa et 

al. (1987bl is consistent with the necessity of maintaining balanced fluxes between :~- 
ketoglutarate dehydrogenase and citrate synthase (~Ji Williamson and Cooper, 1980). On the 
other hand, since NADH affects the strength of the association between citrate synthase and 
malate dehydrogenase, the degree of enzyme interaction (and hence the oxaloacetate citrate 
flux) may be readily controlled by changes in the NAD +/NADH ratio. Accordingly, the 
NAD+/NADH ratio may serve a dual role. First, it is a major determinant of the 
energy-generation flux in the Krebs cycle by virtue of the regulatory effects on various 
enzymes therein (Williamson and Cooper, 1980). In addition, it may function in the control 
of metabolic flow of carbon moiety between catabolism and anabolism. 

Bovine serum albumin, alpha-globulin, ovalbumin and lactate dehydrogenase did not 
alter the nanosecond and/or steady-state fluorescence polarization of labelled mitochondrial 
aspartate aminotransferase. Similar results for the specificity of aspartate aminotrans- 
ferase glutamate dehydrogenase complex were obtained by precipitation experiments in 
polyethylene glycol solution (Fahien and K miotek, 1979). 

Other proteins (bovine serum albumin, citrate synthase, cytoplasmic malate dehydro- 
genase) did not coprecipitate with either glutamate dehydrogenase or aspartate aminotrans- 
ferase. The coprecipitation of aspartate aminotransferase and glutamate dehydrogenasc was 
markedly decreased by increasing either the pH and/or ionic strength (Salerno et al., 1982b 
or by addition of ligands such as malate plus NADPH, NADH or GTP (Fahien and 
Kmiotek, 1983). 

Other observations also indicate that formation of enzyme enzyme complexes can be 
influenced by substrates (Fahien et al., 1977: ~f Table 5J. it was found that in the presence of 
NADPH and ammonium ions glutamate dehydrogenase can react with the pyridoxal- 
phosphate form of aspartate aminotransferase to produce the pyridoxaminephosphate form 
of this enzyme and NADP (Fahien and Smith, 1974: Fahien et al., 1971 ; Shemise et al., 1972 t. 
The affinity of aspartate aminotransferase to glutamate dehydrogenase can be enhanced in 
the presence of NADP plus glutamate or aspartate (Fahien and Smith. 1974). 

Interaction between bovine liver glutamate dehydrogenase and pig hearl cytoplasmic 
aspartate aminotransferase could also be observed especially in the presence of NADH plus 
ammomum ions or NAD plus aspartate (Fahien and Smith, 1974). 

2. Other  Mitochondrial  Enzyme.~ 

Mitochondrial creatine phosphokinase is compartmentalized (Bessman et al., 1978: 
Erickson-Viitanen et al., 1982a,b) and coupled not only to oxidative phosphorylation 
(Erickson-Viitanen et al., 1982a) but also to nucleotide translocase (Brooks and Suelter, 
1987). The carbamoyl phosphate metabolism and the arginine pathways in the mitochondria 
o fNeurospora  crassa are compartmentalized by channelling (Wasternack, 1984: Davis, 1986: 
Davis and Ristow, 1987). Moreover, in Saccharomyces  cerevisiae carbamylphosphate 
synthetase associates with aspartate transcarbamylase (Belka'id et al.. 1987: Penverne and 
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Herv6, 1983) and as a consequence of this complex formation carbamylphosphate is 
channelled between the two enzymes (Belkai'd et al., 1988). 

V. C O N T R O L  OF M E T A B O L I S M  BY M A C R O M O L E C U L A R  I N T E R A C T I O N S  

For the description of regulatory properties of metabolic pathways a control analysis has 
been developed (Higgins, 1963, 1965; Savageau, 1972, 1976; Savageau et al., 1987a,b; Kacser 
and Burns, 1973, 1979; Kacser, 1983; Heinrich and Rapoport,  1973, 1974a,b, 1983: Heinrich 
et al., 1977; Newsholme and Crabtree, 1973, 1976; Crabtree and Newsholme, 1985). Kacser 
(1983) has suggested the idea of "molecular democracy" to characterize each enzyme in a 
metabolic process as an autonomous entity and the control as a sort of linear superposition 
of the effects of the individual enzymes. The milieu of this "molecular society" is a bulk 
aqueous solution with non-interacting enzymes and non-compartmentalized metabolites 
homogeneously dispersed therein. The links in such a metabolic network are the 
intermediate metabolite pools. 

1. Control  o f  Metabol i sm in Bulk Med ium 

Assuming a chain of unsaturated but reversible enzymes carrying out the overall 
conversion ot" external substrate )(1 to the final external product X 2 via successive 
intermediary metabolites S~, S 2 . . . .  S,_ 

~(1 Et E2 En 
- + $ 1  - ' $ 2 - -  ~ " " " S n - 1  ~ ~J(2 

it follows (Kacser and Burns, 1973) by using the term of kinetic power (Keleti and V4rtessy, 
1986; Welch et al., 1988) that the overall flux, F, for this system is: 

F =  ([)(1] - -  [ X 2 ] / K e q . l K e q . 2  . . . Keq.,)/(l/kr. 1 + 1/kr.2Keq. t + l / k F . 3 K e q . , K e q , 2  + . . . ) .  (22)  

The factor describing the response of the overall rate to an infinitesimal change in enzyme 
concentration is the control coefficient (Kacser and Burns, 1973; Heinrich and Rapoport,  
1974a). The manner by which the control of a homogeneous, bulk-phase metabolic process is 
shared amongst all of the enzymes is revealed from the Summation Theorem (Kacser and 
Burns, 1973, 1979) which shows that the sum of all control coefficients of a given metabolic 
pathway equals unity. 

In the metabolic control the control coefficients of the individual enzymes are connected 
by the Connectivity Property (Kacser and Burns, 1973, 1979; Heinrich and Rapoport,  
1974a; Heinrich et al., 1977). The Elasticity Coefficient (Kacser and Burns, 1973, 1979, 
Heinrich and Rapoport,  1974a; Heinrich et al., 1977) reveals the relative infinitesimal change 
of enzyme velocity in the function of relative infinitesimal change in substrate concentration. 

The Control Coefficient, Elasticity Coefficient, Connectivity Property and Summation 
Theorem are the most important parameters of metabolic control. 

Metabolic cycles and cascades have an important role in the amplification mechanism of 
enzyme activity and thus in the control of metabolic pathways (Newsholme and Crabtree, 
1973, 1976; Crabtree, 1976; Newsholme et al., 1984; Goldbeter and Koshland, 1982: 
Sorribas and Bartrons, 1986) similarly to the futile cycles (Hue, 1982). In this type of bulk 
medium metabolic control, the kinetic properties of the enzymes in the pathway are related 
to the extent to which the same enzymes control the steady-state concentration of 
metabolites (Westerhoff and Chen, 1984). The calculation of the flux control coefficients can 
be performed from the kinetic parameters by using a simple matrix algebra procedure (Fell 
and Sauro, 1985) which was extended to allow determination of the concentration control 
coefficients (Sauro et al., 1987) even if moiety conserved cycles (Hofmeyr et al., 1986) are 
involved in the pathway. Hofmeyr (1986) elaborated the method of steady-state modelling of 
metabolic control. The theory was extended to branched metabolic systems (Heinrich et al., 
1987; Giersch, 1988c: Small and Fell, 1989) and to parallel systems working with isoenzymes 
or alternative enzymes (Derr and Derr, 1987). 

The control theory was successfully applied to the glycolysis of erythrocytes (Rapoport 
et al., 1976: Heinrich et al., 1987) or of some streptococci (Poolman et al., 1987), to the 
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conversion of glucose in rat liver extract (Torres et al., 1986), the gluconeogenetic pathway 
(Groen et al., 1986), the aromatic amino acid metabolism in isolated rat liver cells (Salter et 
al., 1986), the arginine pathway of Neurospora  crassa (Flint et al., 1981), mitochondrial 
respiration, oxidative phosphorylation and translocator action (Groen et al., 1982a,b, 1983: 
Tager et al., 1983: Wanders et al., 1984a,b; Mazat et al., 1986), the electron flux through 
cytochrome oxidase (Murphy and Brand, 1987), serine biosynthesis in mammals (Fell and 
Snell, 1988) and interrelation between glycolysis and hexose monophosphate shunt in 
erythrocytes (Schuster et al., 19881. The possibility of the application of control theory to 
central metabolic pathways of E. coli [Holms. 1986, 1987), to microbial growth and 
metabolism in general (Kell and Westerhoff, 1986: Kell, 1987), and to the Calvin 
photosynthesis cycle (Pettersson and Ryde-Pettersson, 19881 was discussed. 

2. Control  (?l Me tabo l i sm  in Or~lanized S y s t e m s  

The previously discussed bulk-phase, "pool" view of metabolic control may be valid for 
some enzymatic process in cilo: however, it is not valid for many others. In the previous 
sections it was shown that there is now abundant evidence that much perhaps the 
majority+-of cellular metabolism is spatially organized on a scale much smaller than that of 
any of the well-known organelles. This organization includes membrane-bound enzyme 
clusters, multienzyme complexes and enzyme arrays attached to the cytomatrix. While our 
present knowledge of the actual microenvironments in these organized enzyme regimes is 
very limited, it is quite apparent that the thermodynamic and kinetic character of the 
reaction diffusion flow therein is distinctly different from the condition in an aqueous bulk- 
phase solution, where the only links in a metabolic network are homogeneous pools of 
substrates and products. Consequently, the cell metabolism is more likely controlled in a 
manner of "supramolecular socialism" (Welch and Keleti, 1987) where the "cytosociologi- 
cal" behaviour of the enzymes is manifested in the evolutionarily governed formation of 
multienzyme systems (Welch and Keleti, 1981). 

The kinetic consequence of supramolecular organization of the enzymes is manifested 
most effectively if channelling occurs (Hess and Wurster, 1970: Welch, 1977b: Bartha and 
Keleti, 1979; Easterby, 1981, 1986: Keleti, 1984, 1986b; Wasternack and Hause, 1986: 
Tompa et al., 1987a; Hofer et al., 1987: Ovfidi et al., 1989: Keleti et al., 1988). The existence of 
intracellular microenvironments demands us to modify our concepts about cell metabolism 
and its control traditionally based on simplistic bulk-phase view. 

The relationships for the velocity of the individual enzymes in the pathway and for the flux 
in organized systems remain formally identical with those derived in the case of the bulk- 
phase system: however, the meaning of the constants will be different (Welch et al., 1988). 

The flux-control coefficients for an organized multienzyme system represent the change in 
the kinetic properties of each enzyme due to its interaction with the next one in the pathway 
(Welch et al., 1988). 

The flux itself depends on the state of organization of the enzyme system. If the organized 
system entails localized "pools" of metabolites and enzymes, the structural constraints in 
such microenvironments might impart a vectorial character onto the metabolic flow therein, 
along with an anisotropic distortion of the local concentrationmliffusion fields. For tightly 
interacting multienzyme complexes which channel metabolites, the "pool" concept for 
intermediate substrates does not apply (Welch et al., 1988). 

The kinetic parameters of metabolic control for organized multienzyme systems were 
formulated and the control analysis for organized heterogeneous enzyme systems was 
presented recently (Keleti and V6rtessy, 1986: Welch et al., 1988: Keleti, 1989b). The 
difference between the bulk-phase and organized systems was proved for the control 
coefficient (Crabtree and Newsholme, 1987, 1988: Giersch, 1988a) and the connectivity 
relation (Giersch, 1988b). It is reasonable to stress that enzymes behave differently providing 
they are in free solution or in a living cell (@ Kacser and Porteous, 1987), since due to the 
compartmentalization of both enzymes and metabolites, enzyme catalysis and consequently 
metabolic pathways are vectorial processes (Kell and Westerhoff, 1985). Moreover, the fixed 
charges of biological membranes attract or repulse mobile ions (among them H+) and 
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consequently the concentration of these ions which modulate enzymatic activity will be 
different in the vicinity of the membranes and in the bulk-phase. Therefore, metabolic 
pathways organized by one or more enzymes associated with membranes are controlled 
differently than those in the bulk medium (Ricard and Noat, 1984; Ricard, 1989). 

If the catalytic capacity of an enzyme in the cell is much higher than that of the other 
enzymes which react with the same substrates, then it will bring its own reaction partners 
very close to thermodynamic equilibrium. This is called "near-equilibrium relation" (Holzer 
et al., 1956; Bficher and Klingenberg, 1958; Hohorst et al., 1959; Krebs and Veech, 1969; 
Veech et al., 1969, 1970). Since the kinetic requirements for a near-equilibrium relation are 
not too restrictive it can be expected that whole pathways may consist of them (Reich, 1976). 
If we assume the whole metabolic pathway in near-equilibrium, the KeqS defined as the 
equilibrium constants between the intermediate pools will be simply the thermodynamic 
equilibrium constants of the reversible reactions catalysed by the respective enzymes. 

The equation of the flux (eqn (22)) in this case will have the form: 

, . r ,' F =  Xl kv ~ i - kro ,, D,. 
i = 1 [ =  

(23) 

where 

fi fi ' fi 3 fi . - ,  De= klv.i+k~,l k[, i+ [ I  k[-j kvf,: + I-[ k[-j k¢v,i + ' ' ' +  l-I k[,j (24) 
i = 2  i = 3  j 1 i = 4  j = l  i=5  j = l  

and superscr ip tsfand r refer to the forward and reverse reaction, respectively. 
The rates in a near-equilibrium system depend only on kinetic power and metabolite 

concentrations. The flux depends on the concentration of the first substrate and last product 
in the whole pathway and on the kinetic power of all enzymes. The control coefficients 
depend only on kinetic powers. 

According to the rules of reversible Michaelis-Menten mechanisms (Keleti, 1986c) the 
relation of the individual kinetic constants of the enzymes with the kinetic parameters of 
metabolic control will be different depending on whether the reversible reaction reaches the 
steady-state at infinite time (diffusion controlled reactions) in the forward and reverse 
reactions or the kinetics in one direction is rapid equilibrium (Keleti, 1989b). 

For  complex metabolic networks as organized, bifurcating and oscillating systems, etc., 
complex mathematical formulations are elaborated (Savageau, 1969a,b, 1970, 1971a,b, 
1985: Liao and Lightfoot, 1987; Palsson et al., 1985; Palsson and Lightfoot, 1985a,b; Palsson 
and Groshans, 1988: Bohnensack, 1985). 

3. Thermodynamics o f  Metabolic Control 

The thermodynamic control theory was elaborated by Westerhoff et al. 11987a j. The free 
energy elasticity coefficient is defined as 

i (25} s.; ~ ln[v,[/c? ,n lnlv,]/? ln(l,s/RT)};,.iEl=s. -s={C ln[S] }tel.[El = ,¢ 

where/t  s is the chemical potential of the substrate. 
Relationships exist between flux control coefficients and free energy elasticity coefficients. 

This approach can also resolve some problems in the bulk medium control analysis caused 
by compartmentation. The thermodynamic control theory was successfully applied to the 
control of mitochondrial respiration by the adenine nucleotide translocator (Westerhoff et 
al., 1987b). 

In order to obtain a better physical feel for the channelling process, we explore more deeply 
the apparent first-order rate constant, the reciprocal of transient time within an enzyme 
complex. 

In the formalism of the absolute rate theory in a channelled system the reciprocal transient 
time is a real first-order rate constant, which is directly related to the standard activation free- 
energy of the respective coupled reaction (Keleti, 1986b; Keleti et al., 1988) and is 
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characteristic of the rate-limiting intramolecular conversion I - - ,P  within the bienzyme 
complex. As such, it (like all first-order rate constants for the transformation of enzyme- 
bound intermediates)is constrained by the theoretical upper limit specified by the universal 
frequency kn])"h (=6.21 x 1012 sec 1 at 298 K) (Keleti et al., 1988). 

Since the bulk-phase form of the reciprocal transient time is only an apparent first-order 
rate constant, the transition-state theory cannot be applied, in general, to the coupled 
reaction involving the separated enzymes in bulk solution (i.e. where there i~ no 
intramolecular product formation). However, if the rate of this coupled reaction is diffusion- 
controlled, then 1/kD[E2] r (where k D is the Smoluchowski diffusion-rate coefficient) sets the 
lower limit for the bulk-phase transient time (Keleti and Welch, 1984). 

In conclusion, we can quantitate the kinetic (transition-state) barrier for the coupled 
enzymatic conversion I ~ P  in the two extreme cases as follows (Keleti et al., 1988). We have 

AG] - - 2.48 ln[(h,k,~TI/r] 1261 

in k J/tool at 298 K, for the first-order case of perfect channelling within the bienzyme 
complex, E 1E:, where r is the transient time within the complex. For the diffusion-limited, 
second-order reaction of I and E 2 , occurring in a system of non-interacting enzymes, we find 

AG~ = 2.48 ln(kD/O'). (27) 

The transition-state free energy, AG r~, represents the barrier for diffusive particle motion 
in the liquid state, and q~' is a pro-pre-exponential factor (Keleti, 1983 ), whose form depends 
on the particular model of the liquid state (Glasstone et al., 1941; North, 1964; Hill, 1985). 

Obviously, the association/dissociation of multienzyme complexes may have direct 
consequences on the overall energy profile of coupled reactions (Keleti, 1986b; Srivastava 
and Bernhard, 1986b, Keleti et al., 1988; Bernhard, 1988). 

However, one should be aware that the validity of thermodynamic arguments of Albery 
and Knowles (1976) for balancing changes in basic free energy in a metabolic pathway 
catalysed by reversible enzymes depends on kinetic factors and is not general (Kamp et al., 

1988). 

V | .  C O N C L U D I N G  R E M A R K S  

Studies on purified enzymes have contributed a good deal to the understanding of the 
catalytic action of several enzymes at the molecular level. However, the results obtained with 
enzymes taken out from their natural milieu do not necessarily demonstrate how the enzymes 
function in vivo. The structural and functional organization of enzymes can be influenced by 
the presence of other enzymes and macromolecules as well. This validates the search for 
enzyme-enzyme interactions. Many examples presented previously demonstrate that the 
catalytic efficiency of the enzymes involved in consecutive reactions is increased if the 
enzymes are clustered and organized into multienzyme complexes. Enzyme-enzyme 
interactions may occur either in tight complexes or in weak ones among so-called soluble 
enzymes in different compartments  of the cell, like cytosol, mitochondrial matrix, etc. 
Compar tments  for soluble enzymes are furnished by intracellular structures or elements of 
the contractile system. In addition, microcompartments  for metabolites can be formed in the 
channels of complexes of functionally related enzymes. The simultaneous existence of 
interactions between enzymes, structural elements and metabolites may ensure a dynamism 
of the weak complexes. This dynamism manifests itself in the association dissociation of the 
complexes resulting in the alternation of catalytic efficiency or regulatory behaviour. 

The existence of dynamic microcompartments  may ensure alternative vectorial motions of 
metabolites, a means for the coordination of metabolic pathways of the same intermediates. 
In this way the living cell spares energy by preventing undesirable side reactions of 
intermediates. Vice versa, lhe metabolites themselves influence the state of the dynamic 
microcompartments.  In other words, the metabolic control of heterogeneous organized 
enzyme systems differs from that of enzymes in homogeneous bulk medium. 

The choice of interactions, complexes, compartments  we have dealt with in this review 
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reflects mainly our special interest and certainly does not give a comprehensive picture 
covering all ramifications of this rapidly developing field. 
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N O T E  A D D E D  I N  P R O O F  

The theories concerning metabolic control have been reviewed recently (Melhndez-Hevia et al., 1987; Tortes et 
al., 1988a; Cornish-Bowden, 1989a,b; Sorribas and Savageau, 1989a,b,c). The control analysis was extended for 
convergent metabolic pathways (Tortes et al., 1988b), and for homologously (subunit subunit) and heterologously 
(enzyme-enzyme, enzyme~zytomatrix) interacting organized systems (Kacser, 1989, Kacser et al., 1989; Welsh and 
Keleti, 1989) including the role of external ligands (Khodolenko, 1988). The matrix method for the calculation of the 
parameters was further developed (Reder, 1988; Cascante et al., 1989a,b) and the graph method elaborated 
(Hofmeyr, 1989). The transit time and metabolic flux control analyses were combined (Acerenza et al., 1989; 
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