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Abstract This paper describes a method to calculate the elements of orbit of a celestial
body, detected by two telescopes situated in the Lagrangian points L4 and Ls
by two satellites. Here the angles between the object and the points L4 and Ls
are surveyed. Then it is possible to calculate by only these two measurements
simultaneous in these points all elements of orbit of the detected object very fast
and accurate.
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1. Introduction

The problem to calculate the elements of the orbit of a detected object was
solved in the beginning of the ninetenth century by the methods of J. P. Laplace
and C. F. Gauss. We need in order to use these methods at least two observa-
tions from one point (Earth or satellite). Both methods have the disadventage,
that after the first measurement more measurements are necessary in order to
approximate the elements of orbit better and better!. It is assumed, that one
satellite is situated in the Lagrangian Point L4 and a second one in Ls. The
satellites are equipped with telescopes, in order to observe and to measure the
angles of objects in the plane of the Ecliptic and also the perpendicular an-
gles to this plane. With these angles it is possible, to calculate the distance
of a detected object, to the Earth and the Sun by only one observation. Also
it is possible to computer the other orbital elements of such an object by two
observations.
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2. Calculation of the distance AE by the angles o and 3
measured in L, and Ly

mmm Plane and orbit of the object

WSS Ecliptic plane and orbit of the Earth

Figure 1. Oblique view

From the points L4 and L5 the angles are measured in the plane of the Eclip-
tic (ain L4 and B in L5) and the angles of elevation ({4 at L4 and (5 at Ls).
For the orientation see Fig. 22

2.1 Calculation of the distances d 44 and d 45 in the
triangle A :AL,Ls:

Here the telescope in Ly (angle «) is orientated with 0° in the direction to
L5 and the angle counts clockwise. The telescope in Ls (angle () is orientated
with 0° and counts conterclockwise. Therefore it is possible that o and 3 can
accept values between 0° and 360° (see Fig. 2).
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Figure 2. Orientation of the angles

For angles o and (3*, between 270° and 360° we calculate with the angles
o’ = 360° — a* respectively 3 = 360° — 3*.

Known are the distances between the Lagrangian points L4 and L5 and also
the distances L4 and Ls from the Earth (Ly — Ls = dss = /3 AU). It
is assumed that the necessery angles o and 3 are determined with very high
precision simultaneous.

We observe the angles a and 3 with errors Aa and ASB. Also we can
observe the angles between the the two Lagrangian points and the Earth.
These observations are “surplus measures”, because the condition o + 3 =
(o’ +30°) + (B + 30°) exists (o resp. 3 are the angles object — Lagrangian
point — Earth).

First we have to calculate the distances d 44 = distance L4 — object and d 45
= distance L5 — object. The calculation is done in the plane of the Ecliptic (see
Equ. (1) and Equ. (2)).

sin G
_ -7 1
dag = dss sin (o 1 5) (1)
and: )
sin
— - - 2
das = dys sin (a1 5) (2)

2.2 Distance AE by mean of the angles o and 3 .

We calculate now the distance Earth — object 7 in the plane of the Ecliptic by
the calculated angles 7 and ( in the triangle Earth — L., — object, resp. the trian-
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Figure 3. Calculation of the distances d a4 and d a5

gle Earth — L5- object (see Equs. (3) and (4) also see Fig. 3). The real distance
Earth — object now we can calculate with the measured angles of elevation (4
in Ly resp. (5 in Ls.

In the same manner we can calculate the distance R’ (Sun — object) by the
calculated angles £ and w in the Plane of the Ecliptic. (see Equs. (3) and (6)
also Fig. 3) Also we can calculate the real distance R by the angles (4 and (5.

It is useful to make these calculations by the distance Ly — Ls = dys5 =
v/3 AU, because this distance is the longest in this configuration and by this
kind of calculation we achieve the best values (All values of angles are given in
degrees, because the telescopes should show degrees). In order to calculate the
angles 1 and ¢, which are necessary to determine the distance Earth — object
resp. the angles £ and w for the distance Sun — object , there is a distinction
necessary, because the angles o and 3 can be smaller or bigger than 30° .

The values of 7’ in the plane of the ecliptic are:

i — 30°
= gy 220 30) )
sin n
and: _ 200
Y = dag S0 =30 @
sin (
now we can set Equ. (3) = Equ. (4):
sin (a — 30° sin (B — 30°
d a4 ( ) _ das ( ) (5)

sin n sin (
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Also we can calculate:

R —dy sin (a + 30°)
sin &
and . i
R —dy sin (6—|— 30°)
sin w

and in similiar manner: Equ. (6) = Equ. (7)

sin (o + 30°) sin (8 + 30°)
: =das :
sin & sin w

daa

Importing auxiliar values y, h1,hs we get the following equations:

sin (3
y = =
sin «
sin (o — 30°)
hh = =
sin (8 — 30°)
sin (a + 30°)
hy = =
sin (8 + 30°)
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(6)

(7)

(8)

)

(10)

(1)

Now we can calculate the following equations for the angles 1 and ¢ by mean

of Equ. (3) and Equ. (4)

t p—
an n -
and /3
3
tanC——l_thl

and for the angles £ and w by mean of Equ. (6) and Equ. (7).

V3yhs
th — 2

tan & =

and:
V3

tanw = ————
an w 247

(12)

(13)

(14)

(15)

With these angles from the Equ. (12) or Equ. (13) and Equ. (3) or Equ. (4)
now we can calculate 7" and R’ by the equations Equ. (6) or Equ. (7) by the
equations: Equ. (14) or Equ. (15). The possibility to calculate 7’ and R’ by two

calculations should be used in every case in order to control the calculations”.
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2.3 Observation of the angles n and ¢ from the Earth.

An additional possibility to determine the distance Earth — object directly
from the Earth. This are the angles i’ and (' (see Fig. 3). After reduction of
these angles to the center of the Earth we can find the angles  and ¢. From
this indirect determination and the values of the angles by measuring from L4
and Lsnow we can calculate an average value and so we have more accurate
values.

2.3.1 Another possibility is the calculation with the Cosine theorem.

With the triangles: L4 — Sun — object, or Ls — Sun — object it is possible to
calculate R’ (distance Sun — object, see Fig. 3) Also it is possible to calculate r’
(distance Earth - object) with the triangle L., — Earth — object, or the triangle L5
— Earth — object . The distances d 44 and d 45 are known from the calculations
from chapter 1.2. The distance Earth - L4 and Earth — L5 is known. See
Equ. (1) and Equ. (2)

=y + 1 - 2das cos (a— 30°) (16)

R = \Jd%, +1—2da cos(a+30°) (17)
or:

v = \Jds + 1~ 2das cos (8- 30°) (18)

R = \Jd% +1—2das cos (3 +30°) (19)

We do not use this kind of calculation because of the minor precision o the
square root.

2.4 Determination of the distance AE = » and R from »’
and R’ in the plane of the Ecliptic.

Now we can calculate by the measured elevation — angles (4 in L4 and (5 in
L5 the distances 7 and R: (See Equ. (25) or Equ. (26) for the distance r and
Equ. (28) or Equ. (29) for R)

h = daqtan (4 (20)

or
h = dastan (5 (21)
By the calculation of d 44 rsp. da5 from Equ. (1) and Equ. (2) we can find:
sin «

h = d45 m tan C4 (22)
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or

sin 3
h = t 23
5 Gn(a+ ) an (s (23)
and with:
r? =17 4 h? (24)
r = \/r’2 + d?, tan? (4 (25)
or
r=\/1"? + & tan? G (26)
and for the distance Sun — object:
R? = R? 4+ p? (27)
R— \/ R? + &2, tan? ¢4 (28)
or
R= \/ R? } d2 tan? (s (29)

The values for d 44 and d 45 ar known from Equ. (1) and Equ. (2).

For small values of the angles (; we cannot find exact values for r and R ,
but that means only, that the position of the object lies nearly in the plane of
the Ecliptic, therefore we can say that the distances at this moment are: R ~

R'andr ~7'. 4
3. Calculation of the elements of orbit of the object

A = vp+(60°—w) (30)

pr = vp—(60°—¢) €29
and .

SOAZUE—§(W—§) (32)
3.1 Calculation of the rectangular coordinates of the
object.

Now it is possible to calculate the rectangular coordinates by the angles &
and w and the angle ¢4 and (see Fig. 4 and Equ. (32)):
Therefore the rectangular coordinates X 4,Y4, Z 4 are now:
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Figure 4. Calculation of the elements of orbit

X4 = R cospy (33)
Yy = R sinpga (34)
Zsa = h (35)

The calculation of ¢4 can be done by the Mean Anomaly M by Kepler’s
equation. %y is the time of passing the perihel. These values come from the
U.S. Naval Observatory, Astronomical Applications Department 2001: Earth’s
seasons; Equinoxes, Solstices, Perihelon, and Aphelion 1-2-2005 . (e.g for
2005 January 2.at 1Th UT).

vg is the True Anomaly of the earth in the moment of observation.

3.2 Determination of the plane of orbit

From the observation of two or more locations of the asteroid we can cal-
culate by the distances R’ and the elevation h above the plane of Ecliptic the
equation of the plane of orbit in rectangular and polar coordinates as follows:

Because the Sun as origin of the system lies in the plane of orbit, we have
the equation:

ar+by+z2=0 (36)

With two values of the vector R (X, Y, Z) (see Equ. (33) to Equ. (35)) the
coefficients of the plane of orbit are:
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 Yarho—Yarly
a = 37)
Xa1Yar — Xa2 Y1

Xarhya —Xa0h
b o— A1 2 A2 I (38)
Xa1Yar Y
To calculate the trace of the plane of orbit with the Plane of the Ecliptic
2z = 0 so the equation of the plane is: ax + by = 0, or with the values for a

and b:

(Yarho —Yash1)x + (Xarho — Xash1)y =0 (39)

After the first observation it is possible to make more measures of the angles.
So we do a smoothing of the values with the method of Least Squares. We have
n — 2 more values then we need. Therefore we can calculate the values of the
parameters a and b more and more exactly.

For n measurements the parameters a and b are therefore:

n n n n
DTy D Yizi— Yy, TiZi »,Yili
i=1 i=1 i=1 =1
— 40
a o) (40)
n n n n
DoTiT Y Yizi— Y, Tili Y, Tiz
i=1 i=1 =1

b = =1 5 (41)

n 2 n n
D—@)WJ—ZﬁmZﬁm (42)
1=1 1=1 1=1

The gradient of the plane of orbit can calculated from two observations as
follows:

N = Rix Rip (43)
and so we get for the gradient:
N.
1 = arc cos (—f) (44)
V]
3.3 Calculation of the other necessary parameters of the

orbit

We assume: After the first measurement of the angles further observations
follow. By two measures at times ?g and ¢; with a relatively short difference of
time, now it is possible to calculate the velocity of the asteroid as follows:

. Ry— R,
Vg = ——— (45)
to — 11



30 TROJANS AND RELATED TOPICS

and the vector of angular momentum C:
C = Ryp x 1 (46)

Also we calculate the Runge — Lenz Vector P

P =y x C— 2112 (47)

The distance of Perihelion w now is (see Equ. (48))

w-arccos(P'N> (48)

|PIIN]

for N # 0. If N = 0 ist, the slope of the orbit z = 0.
By substituting the Gauss — constant k£ and the value of the angular momen-

tum C it is possible to calculate by the following equation the parameter p (see
Equ. (49)) of the equation of orbit:

C 2
p= ('—k') (49)

From the initial values of F and Vo we can calculate the specific energy Fy
by

1 k?
Eo == |vi2]? — = (50)
2 |T‘12|
With this value Ey from Equ. (50) we can calculate the excentricity of the
orbit e. .
Ey|C|?
e=1+2 kl 1 | (51)
and the major axis a by Equ. (52)
1
= —— 52
= (52)

The further values of the orbit: €2 (see Equ. (53)) and w (see Equ. (54)) we
also can calculate by the equations:

2 = arccos ('A@J) (53)

V]
) (54)

2

P
W = arccos ——
|P N
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and again (see Equ. (55))
sl
C]
So we have all elemtes of the orbit of the asteroid by two observations of the
angles o and S3.
This method was preferred, because the for this method necessary basis is
with /3 AU the longest basis that could be easy realised. (The ocillation of
the Lagrangian Points is very small and could be taken in mind by an error

calculation.). Also all observations are free from influences of the earth’s at-
mosphere.

7 = arc cos (55)

4. Conclusion

By observation of objects by satellites positioned in the Lagrangian points
and simultaneous determination of the angles a and (3 and it is possible to
calculate the distances r (Earth — object) and R (Sun — object) only by one cal-
culation. By two simultaneous observations we can calculate all other elements
of orbit of the detected methods very exactly.

Notes

1. After a meeting between R. Dvorak and W. Grandl about the possibility to observe objects from the
Lagranian points L4 and Ls by satellites.

2. Note: This method is not applicable for angles a and 8 = 90°, or 270°. If o and § = 0°,
a =180°, 6 =0°ora = 0°, 8 = 180°, or a and 3 = 180°, the object is situated on the straight line
L4 — Ly and it is not possible to calculate the position for any angle of elevation (;. (The object lies in a
plane, perpendicular to the plane of the Ecliptic, wich includes the straight line L4 — L5 )

3. The possibility to use the triangles Earth — object — L4 resp. Earth — object — L in order to determine
7’ should not be used, because the distance Earth — L4 resp. Earth — L5 is only 1 AU and therefore smaller
then the distance Ly — Ls = /3 AU.

4. In the case that the position of the object lies in a plane perpendicular to the plane of the Ecliptic
through L4and Ls, the angles « and (3 are 0° or 180° and therefore there exists no possibility to determine
the distances r’, and R’ but we can measure the angles at an other time ¢;
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