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Abstract In this investigation we integrated the orbits of the planets of our Solar System
over 1 billion years (-500 million back and 500 million into the future) based on
the Newtonian model of the Solar System including the 8 major planets Mer-
cury to Neptune. For the integration we used the very stable and highly precise
Lie-Integration method. The output of the simulation were the osculating or-
bital elements, stored every 66,6 years. We transformed the data set to Laplace-
Lagrange variables and analyzed it using windowed fourier transformation with
a windowsize of 10 million years, overlapping with 1 million years. In this pa-
per we present the maximum and minimum values of the orbital elements of the
planets and give the time varying fundamental frequencies of all eight planets.
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1. Introduction

The numerical simulation of the dynamics of our Solar System on computer
systems is a field not older than 50 years. Various people have been working
on it: Eckert et al. (1951) integrated the system, using the 5 outer most planets
over 3.5 x 10? years. Cohen & Hubbard (1973), Kinoshita & Nakai (1984),
Applegate et al. (1986), Sussman & Wisdom (1988), Nobili et al. (1989),
Nakai & Kinoshita & (1995) used the same model (5 planets) but varied the
stepsize (between 0.5 and 40 days) and increased the integration time of the
simulation. Newhall et al. (1983) integrated the whole system of major planets
(9) using a very small stepsize (0.25 days), so did Richardson & Walker (1989)
(0.5 days), Quinn et al. (1991) (0.75 days), or Sussman and Wisdom (1992)
using a stepsize of 7.2 days but integrated the whole system for 10° years. Ito
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et al. (1996) increased the simulation time up to 4.3 x 10'° years but only took
the outer four planets into account. Duncan & Lissauer (1998) used Venus to
Neptune in their model and integrated the system for 10? years.

The main question is still open: How long will our Solar System be sta-
ble inspite of its chaotical nature? Are there resonances, which will kick one
of our planets from its nowadays known orbit, thus leading to a completely
different configuration of our Solar System? Laskar (1990) used a semiana-
lytical solution and showed, that there are no secular variations in the semi
major axes. He integrated the Solar System in his paper for 200 Myr years
and found secular resonances between the precession periods of Earth and
Mars, 2(g4 — g3) — (s4 — s3) and between the main secular frequencies as-
sociated with the perihelia and nodes of the planets (Mercury and Jupiter,
(g1 — g5) — (81 — s2)). In this paper we extended the integration time for the
full system up to 10 years to see the variation of the fundamental frequencies
and the possible chaotic nature of our planetary system.

This paper is organized as follows: In the second section we give an overview
of the methods used to produce the results outlined in this paper. We intro-
duce the reader into the windowed fourier transform (WFT) - also known as
Gabor transform, a special topic from wavelet analysis, and show the mech-
anism, how we separated the spectral lines in the corresponding power spec-
trum. In the third section we summarize the evolution of the elements of the
planets during 1 billion years of integration time. We present the maximum
and minimum values of the eccentricities and semi major axes of the main
planets of our Solar System and take a look on the evolution of their charac-
teristic orbital elements in short. The fourth section introduces the frame work
of Laplace-Lagrange and defines the fundamental frequencies based on the
Laplace-Lagrangian (h, k, p, q) coordinate system. The fifth section reflects
the main results of the present work and compares them with those found by
Laskar and other results found in literature.

2. Methods

To calculate the motions of the eight major planets we used a standard New-
tonian model and integrated the full system of nonlinear equations of motions
using the Lie - integration method (Hanslmeier & Dvorak, 1984) in the Carte-
sian reference frame. Starting from present time we simulated the system
500 million years into the back and 500 million years into the future and col-
lected the positions and velocities referring to the classical orbital elements of
all planets every 66,6 years. Thus the time span of 1 billion years resulted
in 15 million "observations" of their orbital elements leading to a multivari-
ate time series of 90 million data points, which leads to a set of 720 million
real numbers, which is necessary to represent the evolution of our Solar Sys-
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tem (eccentricity ey, semi major axes ag, inclination 7y, argument of pericen-
ter wy, longitude of the ascending node () and mean anomaly My, where
k =1 (Mercury), ..., 8 (Neptune)).

The initial values for the simulation were taken from the JPL (1st August,
1965), the effective computation time just for the integration was about 1 year.
To organize and analyze the resulting data set we wrote sophisticated algo-
rithms in Mathematica and Fortran. The method used for the frequency anal-
ysis of the time series was the approximated windowed fourier transformation
(WFT) also known as Gabor Transform and an exponential fitting and opti-
mization algorithm in the power spectrum. For the analysis we split the data
set into pieces of equal length — 10 million years per unit, overlapping with
1 million years. Thus we were able to get a time evolution of the frequency
space of the system resulting in 1000 data points in time per element, frequency
and planet.

To cope with the known problem in Celestial Mechanics, when doing fre-
quency analysis of the orbital elements, namely the mixture between high
and low frequencies — resulting from the chaotic structure of the system, we
tried various filter methods to smooth the spectrum (Hanning, Hamming and
Blackman - Tukey windows) and compared with the respective methods, when
smoothing in the time domain, before starting the frequency analysis on the
whole data set. In the end we decided to use a linear filter in the time domain,
to get rid of high oscillation components. The second problem is, that there are
actually no constant frequencies in the orbital elements (because of the non-
linear character of the system, they are time and amplitude dependent). Thus
every method based on Fourier analysis will fail, as it was invented for signals
of infinite length and a constant frequency domain. This problem can be solved
using the WFT: When we split the data set into smaller pieces, we can regard
the elements being constant within those lag windows: But using a lag win-
dow, which is to small will not cover the frequency range, we are interested in,
using a lag window, which is to big, will result in a dispersion of the frequen-
cies in the power spectrum of the signal. So it is a non trivial and difficult task
to find the right tuning for the parameters (size of lag windows, overlapping
& filtering) to cope with this kind of problems. Other approaches doing fre-
quency analysis in Celestial Mechanics were done by e.g. Laskar (1993) and
Chapront (1995).

Our approach used in this paper was to use the WFT on the one hand to cope
with the time dependence of the frequencies and to refit the frequency lines in
the power spectrum on the other hand using an exponential fitting model. Thus
we considered a set of lines around a peak in the power spectrum as belonging
to the same line and fitted an exponential curve through it to get a more accurate
and not dispersed form of each spectral line. The resulting fitting model was
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maximized and so we could easily improve the accuracy of the determination
of the frequency.

The windowed fourier analysis is the simplest way to extract both the fre-
quency and its respective time evolution of a time series, giving us insights
of the evolution of the signal in the time and frequency domain. The back-
ground or theory can be found in Wavelet analysis, where the WFT is based
on the implementation of Gabor functions. In our approach we approximated
the method and used lag windows of equal length of 10 million years (150
000 data points per element and planet) and used a simple but fast FFT proce-
dure to obtain the power spectrum within the window. The overlapping of the
windows was 1 million years, thus leading to 1000 frequency spectra for each
element and planet. In the next step we used a self written sorting algorithm,
which extracted the spectra lines according to their amplitudes and fitted each
spectral line within using an exponential model. We calculated the maxima in
the models of the first dominant 100 frequencies in each element and planet
and searched within for the set of fundamental frequencies according to a ref-
erence list given by Bretagnon (1984), Laskar (1992) and Gamsjédger (2002).
To check our results, we visualized random samples and overlooked our re-
sults to proof the correctness of the automatized identification method of the
spectral lines.

3. Evolution of the Orbital Elements

The evolution of the semi major axes of the eight major planets over the
integration period is almost constant, which is due to the quasi conservation of
energy of every single planet, because of the smallness of the inclinations and
eccentricities. This is also a first indicator for the accuracy of the integration
method. There are no slopes or gradients in the data set — regarding long time
scales. The semi major axes just oscillate around their mean values with small
amplitudes. Mercury, the inner most planet moves at 0.39 AU over the whole
time span, Neptune — the outer most planet stays at approximately 30 AU.
Fig. 1 takes a closer look onto the evolution of the semi major axes of Mercury
- the most influenced body in our Solar System 500 million years ago (left
graph) vs. 500 million years in the future (right graph). One can see, that
the evolution of the semi major axes still lies in the range of present time (see
Table 1) but that there are large and chaotic variations, which seem not to
follow any periodic behaviour.

In contrast to the nearby constant semi major axis of our planets the eccen-
tricities show large variations with large periods. This effect raises, when going
from the outer Solar to the inner Solar System and becomes largest, when ar-
riving at the inner most planet Mercury, where the eccentricity may lie between
~ 0.08 and ~ 0.3. In Fig. 2 one can see the coupling between the eccentric-
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Table 1. The maximum and minimum values of the orbital elements of our planets. The semi
major axes are given in AU, the eccentricities are numeric, the inclinations are given in degrees.

Planet Umax Amin €max Emin Tmag Imin
Mercury 0.3871 0.3870 0.30120 0.078730 11.40720 0.17599
Venus 0.7233 0.7234  0.07709  0.000020 491516 0.00246
Earth 1.00003 0.9998 0.06753 0.000083 449496  0.00075
Mars 1.5239 1.5235 0.13110  0.000080 8.60320 0.00291

Jupiter 5.2050 52012 0.06188  0.025140 2.06597 0.55867
Saturn 9.5927 9.5128 0.08959  0.007423 2.60186  0.56037
Uranus 19.3351 19.0989  0.07834  0.000095 2.73889  0.42615
Neptune  30.4325 299101 0.02316  0.000024 2.38176  0.77977

ities of Earth and Venus due to the 13:8 mean motion resonance and also the
coupling between Jupiter and Saturn (due to the 5:2 mean motion resonance)
as an example for the outer planetary system: one minima of the first leads to
a maxima of the second and vice versa. These resonances stabilize the system
over the whole integration time. The mean values and the minima and maxima
of the eccentricities can be found in Table 1.

mercury - a [AU] mercury - a [AU]

0.387102 0.387102
0.387101 0.387101
0.3871 0.3871
0.387099 0.387099

0.387098 0.387098
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Figure 1.  The evolution of the semi major axes of mercury (a;) 500 million years ago and
500 million years in the future. Although there are chaotic variations around a constant mean
value, there is no secular trend, which indicates the stability of the integration method (Lie -
integrator).

The inclinations of the orbits of the planets show a similar resonant be-
haviour like those found in the eccentricities. The influence of the other planets
in contrast seems to be more dominant, than e.g. in the eccentricities, the max-
imum and minimum values of the inclinations of the 8 major planets can also
be found in Tab. 1, two representatives of the outer system (Uranus vs. Nep-
tune) are given in Fig. 3 (left graph), another two representatives of the inner
system (Mercury vs. Mars) are given in the right graph.

Resonances in our Solar System may stabilize or destabilize the system.
Looking to the evolution of the inner and outer planets one can see the cou-
pling of the orbital elements (e and 1). Although we are not able to calculate
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Figure 2. The evolution of the eccentricities of Venus and Earth (upper) and Jupiter and
Saturn (lower) over the last 3 million years of the integration time. One can see the coupling
between the planets also over the whole time span (upper:the curve with the higher amplitudes
belongs to Venus, lower:the curve with the higher amplitudes belongs to Saturn).

the real positions and velocities of all planets for long time scales, it is impor-
tant to see, that those resonances found last for long time scales. The answer to
the question of stability in our Solar System thus needs a better understanding
of the resonances in it — stabilizing, as one can see in the coupling effect of the
planets or destabilizing, like those found by Laskar (1990).

4. Canonical Elements

The question, if our Solar System is stable or not needs new analytical re-
sults and of course a highly accurate and precise numerical investigation of the
system. There have been several approaches to derive better and higher or-
der approximations for the analytical part of the solutions. It was first studied
by Laplace in the 18th century. He found out, that the semimajor-axes of the
planets of our Solar System suffer only from periodic changes up to first order.
Poincaré showed, that the formal series of small parameters, like the eccentric-
ities, the inclinations or the masses of the planets are not convergent due to the
problem of small divisors.
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Figure 3. The evolution of the inclinations in time of Uranus and Neptune (upper) and Mer-
cury and Mars (lower) over the last 3 million years of the whole integration time (lower:the
curve showing a higher frequency represents Neptune, upper: the curve with the higher ampli-
tudes belongs to Mercury).

Nowadays we are able to find good analytic approximations of the solutions,
which allow us to reconstruct the shifting of the proper mode frequencies and
the combinations of them, but it is still a problem to give long time predictions
of the evolution of our Solar System. Analytical approaches may lead to re-
sults, which are good for millions of years and with numerical techniques one
may integrate over billion of years, like in this paper. But without the knowing
of the structure of the solution, the exact resonance conditions for the inner and
outer planets, we will not be able to give a final answer to the question, if our
Solar System can be regarded as stable or not. In this chapter we introduce the
results of the theory of Laplace-Lagrange. We transform the orbital elements
to better ones, canonical and not singular. The benefit is the better treatement
when doing frequency analysis in the time depending orbital elements.

Using secular perturbation theory in the N-body system with one heavy mass
in the center of gravitiy it is possible to derive the Laplace — Lagrange solution
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of the system, given in Laplace-Lagrange coordinates (h, k, p, q) defined as:

N

hi = D ejisin(git+5i), (1)
i=1
N

kio= Y ejicos(git + ), 2)
i=1
N

pj = ij,iSiﬂ(Sz‘tJr%), (3)
i=1
N

g = Y Ijicos(sit+), 4)
i=1

which implies stability for the system for all times assuming small values for
the eccentricities e;; and for the inclinations /;;. The conjugated variables
(hj,kj) and (p;, g;) respectively are the vertical and horizontal components of
the eccentricities and the inclinations, so called Lagrange-Laplace coordinates
are defined via the relations:

hj = ejsin (w; + Q) , kj = ejcos (w; + ), (5)

and
pj =sin([1;/2)sin;, g; = sin (1;) cos ;. (6)

Here w; are the arguments of pericenter and (2, are the longitudes of the
ascending nodes. The quantities g; and s; refer to the fundamental frequencies,
the quantities 3; and ~y; are the corresponding phases in the solution of the
system. The indices (i, j) refer to the bodies in the system (Mercury =1, . . .,
Neptune = 8). The advantage of using this variables is the fact, that they are
canonical conjugated to each other and can not become singular. The orbital
elements e; and I; can be easily derived via the equations:

ej:@/hﬁ—l-ka, Ij:4\/p?—|-q]2-. (7)

The solution of Laplace-Lagrange given here to introduce the idea of the fun-
damental frequencies used in the proceding sections, is based on a secular and
second order perturbation theory (in e and I) and neglects nonlinear effects,
which lead to chaotic phenomena in our Solar System. Looking to equations
(1) - (4) one can see that the elements are bounded and somewhat called lin-
early stable. But this is not true, when going to higher orders of approximations
in the analytical formulas.
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5. Resulting Fundamental Frequencies

The frequency analysis in the variables (h, k, p, ¢) show more or less regu-
lar periodic behaviour in the evolution of the elements for the outer planets,
complex and irregular evolution in the time series of the elements of the inner
planets (see Fig. 4 and Fig. 5), overlapping of different frequencies and beats
for example in Mars. The parameters h and £ are identical but phase-delayed,
which is the same for the canonical conjugates p and ¢. In principle we will
find every fundamental frequency of the planets in the frequency spectrum of
the other planets, limited due to the fact, that the basic frequencies of the plan-
ets of the outer Solar System are more dominant in the spectra of the planets
of the inner Solar System, than vice versa and that frequencies, which can be
found in (h, k) may be too small to be found in (p, q) and vice versa (note
that this effect can not be described by the Lagrange-Laplace solution, given
in (1)-(6)). In fact we did the frequency analysis in all four elements using the
WEFT method. We searched for the fundamental frequencies in the frequency
space of all four elements and planets and averaged corresponding ones in-
cluding their influence according to their amplitudes. To check consistency
we compared the results given by the canonical conjugates and found minor
neglectible differences between them.
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Figure 4.  The evolution of the time varying fundamental frequencies g1 of Mercury (upper
left), g5 of Jupiter (upper right), s1 of Mercury (lower left) and s2 of Venus (lower right) over
1 billion years. The samples shown correspond to the critical angle (g1 — g5) — (s1 — s2).

In Laskar (1990) two angles related to the combinations of the secular fre-
quencies associated with the perihelia and nodes of the planets are responsable
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for the positive value of the Liapunov exponent in the order of 1/5 million
years. Another numerical integration Laskar et al. (1992) confirmed the re-
sults found in the previous paper over the time span of 6 million years. The
work of Dvorak et. al (2003) has increased the integration time up to 200 mil-
lion years. Based on an extension of this work we will improve the accuracy
of the determination of the critical angles and may find additional ones, when
analyzing the fundamental frequency set.
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Figure 5. The evolution of the time varying fundamental frequencies gs of Earth (upper
left), g4 of Mars (upper right), ss of Earth (lower left) and s4 of Venus (lower right) over
1 billion years in arcseconds per year. The samples shown correspond to the critical angle

2(gs — g4) — (83 — 84).

The evolution of the time varying fundamental frequencies g; of the inner
planets over the whole time span can be found in Fig. 6 (upper) and of s;
(lower). The time evolution of the respective frequencies for the outer planets
g; and s; show no significant variations. The mean values of them over the
whole integration time can be found in Tab. 2 (NEW). The standard deviation
is small regarding the evolution of the frequencies of the outer planets, it is
larger for the inner planetary system. The table compares the results of this
work with an analytical work by Lagrange (LAG), a semianalytical approach
by Laskar (NGT) and the values found by Gamsjiger (GAMS).

Due to the nonlinear structure of the system, the fundamental frequencies
which are constant in the first order approximation of Laplace (see Eq.(1) -
(3)) are in reality varying with time. Some of them look like, they are chang-
ing randomly (see Fig. 4 and Fig. 5), others look like they follow secular trends
or seem to have periodic changes around their mean values. If some of them
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Figure 6. The evolution of the time varying fundamental frequencies g; (upper panel) and s;
(lower) of the inner planets given in arcseconds per year.

in combination - called critical angles - lead to secular frequencies, their cor-
responding orbital elements may change from libration to circulation, so that
they will cross the separatrix in the phase space - which will directly lead to
chaos.

6. Conclusions

Although we were yet not able to confirm the resonant structure of our So-
lar System, we showed that the system is stable over 1 billion years. There
1s no planet showing any slightest sign of beeing unstable. The maximum
values of the orbital elements also give no evidence, why one of the planets
should escape in the next future. There exist a couple of resonances, which
stabilize the whole system. The frequency spectrum, particularly the time
evolution of the fundamental frequencies of the planets show a very irregu-
lar behaviour over the whole time span, if you take a closer look on it. The
variances from the mean values are quite big — indicating the chaotical nature
of the system. The outer bodies of the system show a more regular behaviour in
their time-evolution of the orbital elements and fundamental frequencies (see
Fig. 6, lower left and right panels), the inner bodies are highly chaotic but seem
to be stabilized by the more massive outer bodies (see Fig. 6, upper left and
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Table 2. Fundamental Frequencies of the planets in arcseconds per year. LAG is based on the
analytical result of Lagrange (analytical), NGT is the work of Laskar (semianalytical), GAMS
presents the results of Gamsjager (numerical). Our new results are based on windowed fre-
quency analysis with a lag size of 10 million years (1000 lag windows) and average over the
clements (h, k, p, q).

Planet LAG NGT  GAMS NEW
g1 54615 55689 52130  5.1832 & 0.0086
92 73459 74555  7.3343 73592 4 0.0124
g3 17.3307  17.3769  17.5022  17.2541 £ 0.0419
94 18.0042  17.9217  17.8921  17.8176 = 0.0050
s1 52007 -5.6043 55010  -5.5467 £ 0.0739
$2 65701  -7.0530  -6.2230  -6.8978 4 0.1528
s3 _18.7455 -18.8499 -18.8574 -18.8069 + 0.02501
s4 -17.6358  -17.7614  -17.7167 -17.7363 £ 0.0216
s 37109 42489 42567  4.2743 % 0.00007
g6 222868  27.9606  28.2445  28.2523 £ 0.00006
g 27014 3.0695  3.0468  3.1075 & 0.0022
gs 0.6333  0.6669  0.6727  0.6711 % 0.00003
S5 -0.0000  -0.0000  -0.0000 _ 0.0000

56 257411  -26.3300 -26.3473  -26.3256 & 0.00007
s7 29038  -2.9854  -2.9944  -2.9818 4 0.00008
sg 0.6777  -0.6927  0.7381  -0.6710 & 0.0001

right panels). The windowed fourier transform is a good tool, when analyzing
the time dependent and nonlinear time-evolution of the orbital elements, lag
windows of 10 million years overlapping with one million year produced good
results. We were not able to confirm the resonances proposed by Laskar (1990)
yet, but look forward to find them and maybe additional ones, when using the
larger integration time for the simulation of our Solar System.
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