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Abstract The stability of P—type orbits in a binary system (mass—ratio equal to 0.5) was
studied on the semi—major axis vs. inclination plane, similar to [10]. In the
present work we investigate a larger part of the phase space, by calculating the
relative Lyapunov Indicators and maximal eccentricities.
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1. Introduction

Observations show that 60% of the main sequence stars are in binary or
multiple systems (see [3]). Moreover, pre-main sequence stars may indicate
that almost all of the stars are born in multiple systems (see [4], [5]). On
the other hand, until now more than 160 exoplanets have been discovered, and
some of them belong to binary systems. These facts show, that the investigation
of the stability of planetary orbits in binaries is very important.

The discovered planets in binaries move on satellite orbits i.e. the planet
revolves around one stellar component (S—type orbit; see Fig. 1). Theoretically
there is another possible type of motion, the so called planetary orbit (P—type;
see Fig. 1), whereas the planet moves around both stars. The S—type orbits
were studied for some known systems by [6], [7], [8] and [9].

The stability of P—type orbits was also studied by [10] on the semi—major
axis vs. inclination plane for a binary’s mass—ratio (u = ms/(m1 + my))
equal to 0.5 by calculating the Fast Lyapunov Indicators (FLI) and escape
times. They concluded that the stability limit varies between 2.1 and 3.85
binary separation (bs) depending on the eccentricity of the binary, and found a
finger-like unstable island at inclinations 7 = 15° to ¢ = 45°.
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Figure 1. In the left panel: satellite—type or S—type motion: the planet revolves around one
of the stars; right panel: planetary-type or P—type motion: the planet revolves around both star,
i.e. it moves around the barycenter (BC).

In this paper we also study the stability of P—type orbits in a larger part of the
phase space by using the methods of the Relative Lyapunov Indicators (RLI)
and the maximum eccentricity. In the next section we give a description of the
investigated system, the initial conditions and the applied numerical methods.
After that we delineate and summarize our results.

2. Numerical setup
2.1 Initial conditions

For the integration of the equations of motion of the 3D restricted three-body
problem we used the Bulirsch-Stoer integrator with adaptive stepsize control
in the case of the RLI, and the Runge-Kutta-Neystrom-Felhberg RKN7(8) in-
tegrator with adaptive stepsize control for calculating the maximum eccentrity.
The orbit of the primaries, and initially the massless planet’s orbit is also circu-
lar, i.e. the eccentricity of the planet e = 0. The semi—major axis of the planet
a 1s measured in the unit of the distance between the primaries and the initial
value ag varies from 0.55 to 4 with stepsize Aa = 0.005. We use four starting
mean anomaly (M) values for the planet: 0°, 45°, 90° and 135°. These an-
gles are measured from the connecting line of the primaries (see Fig. 2). (The
resulting maps are the average of the four M. See later.) The inclination ¢ is
the angle between the orbital plane of the planet and the reference plane (zy—
plane), which is the orbital plane of the binaries; initial value ¢¢ varies from
0° to 180° with stepsize A7 = 1.25°. The x—axis is the line connecting the
primaries at t = 0. We note, that this line coincides with the line of node if
i # 0,t = 0, i.e. the node of the planet is 29 = 0°. Initially the argument of
the pericenter of the planet is wg = 0°.

The above defined orbital elements are referred to a barycentric reference
frame, where the mass of the barycenter is M = M; + M>. Using the usual
procedure, the barycentric co-ordinates and velocities were calculated. After
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Figure 2. Configuration of the system: BC is the barycenter, the separation of the stars is the
unit of distance, ¢ is the planet’s inclination with respect to the reference plane and My is the
initial mean anomaly of the planet.

that we transformed our co-ordinate and velocity vectors to a frame of refer-
ence with Sy in the origin.

2.2 The maximum eccentricity method (MEM)

For an indication of stability a straightforward check based on the eccentric-
ity was used. This osculating orbital element shows the probability of orbital
crossing and close encounter of two planets, and therefore its value provides
information on the stability of the orbit. We examined the behaviour of the
eccentricity of the planet along the integration, and used the largest value as a
stability indicator; in the following we call it the maximum eccentricity method
(hereafter MEM). This is a reliable indicator of chaos, because the overlap of
two or more resonances induce chaos and large excursions in the eccentricity.
We know from experience, that instability comes from a chaotic growth of the
eccentricity. This simple check has already been used in other stability studies,
and was found to be a powerful indicator of the stability character of an orbit
(see [2], [1]).

Calculating the maximum eccentricity an upper threshold was used. When-
ever the eccentricity reached 0.8, the orbit was considered unstable, and the
integration was stopped.
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2.3 The relative Lyapunov indicator (RLI)

The method of the relative Lyapunov indicator (RLI) has been introduced
by [11] for a particular problem, but its efficiency was demonstrated in a later
paper [12] for 2D and 4D symplectic mappings and for Hamiltonian systems.

This method based on the idea that two initially nearby orbits are integrated
simultaneously and also the evolution of their tangent vectors are followed.
For both orbits the Lyapunov characteristic indicator (LCI) is calculated and
the absolute value of their difference averaged over time is defined as RLI:

RLI(¢) — %|LCI(:1:0) _ LCI(zo + A)], ()

where Az is the distance in phase space between the two orbits. The definition
of RLI contains an arbitrary parameter Ax, which may affect the result. The
authors have tested the sensitivity of RLI versus the norm of this parameter
and found that the RLI depends almost linearly on Az in the regular domain,
while it is practically independent of it in the chaotic domain. Nevertheless,
the value of the RLI is characteristically always several order of magnitudes
smaller in a regular domain than in a chaotic region.

3. Results

The resulting figures were obtained as follows: we started the integration at
mean anomaly My = 0°,45°,90°, 135° so we got RLI ©), RLIWS) RLI(0)
RLIM3%) and maximum eccentricity M E©), ME®) M E®O A E(35)
also. The plotted value is an average:

RLI(a,i) 1 3 RLIMo)(q, ) )

ME(a,i) 4 Mo=0,45.90,135 MEMo)(a, i)
We note, that this averaging in the case of the RLI stress the chaotic behaviour
of an orbit, whereas in the case of the maximum eccentricity it is not so drastic.

At first we calculated the same part of the phase space as in [10], which is
ap = 1.8—2.5and 7o = 0—50°. We performed the calculations on a finer grid:
Aap = 0.005 bs and Azg = 1.25° (see Fig. 3). Our maps are very similar to
[10], except that our figures are more detailed, especially the second RLI map,
where the system was integrated up to 1000 binary periods (bp). In Fig. 3 one
can see some resonant formations, which appear at lower inclinations and are
deviated at higher inclinations.

In Fig. 4 we show two maps for a larger domain of the phase space, which
corresponds to ag = 0.55—4 bs and 19 = 0—180°, with stepsizes Aag = 0.005
bs Aig = 1.25°. Both maps contain 691 x 145 points, resulting more than 10°
orbits, if we take into account the averaging detailed above this number rises to
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Figure 3. Upper right: FLI for 10000 bp in [10] Black indicates the stable zone, white the
unstable. Upper lefi: Maximum eccentricity for 1000 bp. White shows the stable zone, black
the unstable. Lower left: RLI for 200 bp. Colors like in max. ecc. Lower right: RLI for 1000
bp. Colors like in max. ecc.

4 x 10° orbits. Each orbit was integrated for 1000 bp in the case of the MEM
and for 500 bp in the case of the RLI.

It is interesting, that the stable regions are wider in the case of retrograde
orbits (z9p > 90°) than for direct ones (29 < 90°). In the RLI map we can see
several resonant formations. A resonant curve splits into three stronger and
some fainter branches which makes it similar to a fork. The shape is generated
by the applied averaging. For example in the case of the 3:1 resonance: when
My = 0°, we can see a sharp vertical line at a = 2.085 bs, at My = 45°, the
centre of the line is shifted to a = 2.175 bs and at My = 90° the centre is at
a = 2.23 bs. The case of My = 135° 1s similar to My = 45°. The width of
the line grows with the distance from the 3:1 resonance (a = 2.08 bs). The
averaging shows simultaneously the three cases, producing the fork shape. The



100 TROJANS AND RELATED TOPICS

0.000

_ 0.194
0.588
20 0.583

0.777 __

0.971

log,e(ME

100
_ 1.165

1.560

Inclination of the test particle

1.554
150

1.748

\ 1.942
4.0 3.5 3.0 2.5 2.0 1.5 1.0
Semi—major axis of the test particle

—0.000
s e B 1O

- —1.815

ot = R

B 5529

RLI

| —4.536 =<
100

lag,

—5.444

—6.351

Inclination of the test particle

—7.238
1ad

-2.16%

. —9.073
4.0 3.5 A.0 2.3 2.0 1.5 1.0
Semi—major axis of the test particle

Figure 4. Upper: MEM for 1000 bp Lower: RLI for 500 bp White shows the unstable zone,
black the stable.

fork belonging to the 3:1 resonance iduces Pilat-Lohinger’s finger-like unstable
island (see Fig. 4).
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4. Summary

We investigated the stability region around a binary on the a — ¢ plane by
calculating the RLI and the ME. Our results are in very good agreement with
the results of [10], on the other hand they give information about a more ex-
tended part of the phase space. The maps obtained by the RLI show very fine
resonant structures. The stable regions are wider when g > 90° (retrograde
orbits). The resonant curves have a fork-like shape which is caused by the av-
eraging. We demonstrated that Pilat-Lohinger’s unstable island is created by a
triple fork-like resonant shape.
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