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Abstract The probability of detection of Earth-like exoplanets may increase after the
launch of the space missions using the transit photometry as observation method.
By using this technique, however, only the semi-major axis of the detected planet
can be determined, and there will be incomplete information regarding its orbital
eccentricity. On the other hand, the orbital eccentricity of an Earth-like exo-
planet is a very important parameter, since it gives information about its climate
and habitability. In this paper a procedure is suggested for confining the eccen-
tricity of an exoplanet discovered by transit photometry if beside the Earth-like
planet, an already known giant planet also orbits in the system.
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1. Introduction

After the discovery of the first extrasolar planet around 51 Pegasi (Mayor &
Quéloz, 1995), more than 190 exoplanets have been observed. The detection of
exoplanets has a great importance, since they form planetary systems around
their hosting stars, and by studying the main properties of these systems the
characteristics, the formation and the evolution of the Solar System could be
treated as a part of a more general phenomenon. The above picture is unfor-
tunately rather ideal than complete yet, since the exoplanets observed by now
are mainly Jupiter-like gas giants. This is the consequence of the fact that by
using radial-velocity measurements, which is the most effective ground-based
observing technique, there is no chance to detect Earth-like planets yet.
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138 TROJANS AND RELATED TOPICS

On the other hand, one of the most challenging questions of exoplanetary
research is the discovery of the Earth-like planets. Beside their importance in
testing and improving the formation theories of the planetary systems, another
major question is their habitability. If an Earth-like planet revolves in the hab-
itable zone of the hosting star, there may be chances of developing (a water
based) life on its surface. The habitable zone is that region around the star,
where liquid water can exist on the surface of a planet (Kasting et al 1993).

In order to find Earth-like planets, there are space missions in construction
and planning phase. Such a mission is COROT (sponsored by CNES, ESA
and other countries) to be launched in 2006, the Kepler Mission (NASA) with
a launch in 2008, Darwin (ESO), and Terrestrial Planet Finder (TPF, NASA)
with a launch in the next decade. The first two missions (COROT and Kepler)
will use the transit photometry as detection technique, which is based on mea-
suring the periodic dimming of the star’s light intensity caused by an unseen
transiting planet. Measurements performed by these instruments will provide
the semi-major axis a of the transiting planet calculated from Kepler’s third
law ;

a k2

T 472(
where T is the period of the transits, m, is the mass of the hosting star, and m,,
is the mass of the transiting planet, respectively (% is the Gaussian gravitational
constant). In the case of Earth-like planets m, << m, so neglecting m,, does
not affect significantly the accuracy of a. An uncertainity in the semi-major
axis a can appear since the stellar mass is known only with limited accuracy.
If this is for example 3%, the inaccuracy in a will be 1%. (We note that the
mass of the hosting star can be determined by spectroscopic observations and
by stellar model calculations.) However, in this paper we do not investigate the
error propagation due to these uncertainities in stellar mass and semi-major
axis, we intend to perform these studies in a future research.

In this paper we present a procedure which helps in confining the orbital
eccentricity and inclination of the transiting planet if (i) the duration of the
transit is known, and (i) there is another (giant) planet in the system. We derive
such an equation, which connects the mass and the radius of the star, the semi-
major axis, the eccentricity, the argument of the periastron, the inclination of
the transiting planet, and the duration of the transit. In this equation there are
three unknowns, namely e, w, and ¢. By fixing i, the corresponding (w, ) pairs
can be visualized as curves on the w — e parameter plane. Thus the problem
is underdetermined and there is no way to confine the orbital eccentricity e of
the transiting planet.

On the other hand, as suggested by planetary formation scenarios, we ex-
pect that next to the Earth-like planets Jupiter-like giant planets can also be
found in the majority of the planetary systems. Having discovered an Earth-
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like planet around a star, by using complementary techniques (as observations
by Space Interferometry Mission and ground-based Doppler spectroscopy) ad-
ditional more massive planets can be identified in the system, and their orbital
parameters can be determined too.

The presence of a giant planet (beside the transiting one) results in that both
ordered and chaotic regions can be found in the phase space of the system.
If the trajectory of the Earth-like planet is in the ordered region of the phase
space, the motion of the planet is stable for arbitrary long times. If the initial
conditions of its orbit are in a chaotic region of the phase space, the motion of
the planet can be unstable after a certain time. In this paper we exclude those
orbital parameters of the transiting planet, which result in chaotic motion. We
shall demonstrate that in some cases it is possible to determine an upper limit
for the eccentricity and a lower limit for the inclination of the transiting planet.
We stress again that the eccentricity is a very important orbital parameter not
only from dynamical point of view but also in studying the habitability and
climatic variations of the Earth-like planet.

The paper is organized as following: first we derive a connecting equation
between the duration of the transit and some important parameters of the star
and the transiting body, then we solve this equation numerically. After examin-
ing the solutions of this equation, we map the stability structure of the system
assuming the presence of a known giant planet. Then we can determine lower
limits for the inclination and an upper bounds for the eccentricity of the transit-
ing planet depending on the eccentricity and the semi-major axis of the known
giant planet.

2. A connecting equation between the orbital parameters
of the transiting planet

In this section we shall derive an equation between the orbital parameters of
the transiting planet, the star’s mass, and the duration of the transit from the
geometry of the transit.

Let us suppose that the star’s disc is a circle with a radius R, and a planet is
moving in a front of this disc with an average velocity vy. If the duration of
the transit is denoted by 7 and the lenght of the path of the transiting planet is
d (see Fig. 1), the following approximation holds:

oo L (1)
T

We note that according to Kepler’s second law, the velocity of the planet is
changing during the transit (except in the case of circular orbits), however this
change is negligible, if the planet orbits far enough the star. Since the triangle
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in Fig. 1 is a pythagorean one, it can be written

d\ 2
R =m?+ (§> . )
From Equation (2) the lenght of the transit’s path d can be expressed as
d =2v/R? — 12 cos? i 3)
where, according to Fig. 2,
m = rcosti, 4)

where ¢ is the inclination (e.g. the angle between the orbital plane and the
tangent plane to the celestial sphere), and r is the distance between the center
of the star and the planet.

star’s disc

path of the transit

Figure 1. The transit of a planet in the front of the stellar disc. The straight sections denoted
by R, m, and d/2 form a pythagorean triangle.

By using the well known formula for r:

a(l—€?)
" 1+4ecosv’

&)

(where a is the semi-major axis, e is the eccentricity, and v is the true anomaly
of the transiting planet), and Equations (1) and (3), the average orbital velocity
of the transiting planet (vy) can be written as

2
Ve = %\/ R2 — [a(l—_GQ)I cos2i . (6)

1+ ecosv

On the other hand, vy can also be approximated on the basis of the two-
body problem. In the coordinate system (&, n), in which the axes of the orbital
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Figure 2. Side-view of the transit, where r is the distance of the planet from the star’s center
and ¢ is the inclination of its orbital plane.
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Figure 3. The transit as viewed from above. At the mid of the transit vy is nearly equal to ¥.
The coordinate system (&, 7) is the rotation of the coordinate system (z,y) by w.

ellipse are on the axes £ and 7, the components of an orbital velocity vector are
(see Murray and Dermott, 1999):

¢ = — [Hgnw, 7
p

n = \/E(eJrcosv),
p

where p = a(1 — €?) is the parameter of the ellipse and u = k?(m. + my),
m and m,, are the stellar and planetary masses, respectively. Let (z, y) denote
a cartesian coordinate system where the x-axis is parallel to the line of sight
(e.g. the line connecting the center of the star to the observer). From Figure
3 it can be seen that the system (&, 7) is the rotation of the system (x,y) by
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w, which is the argument of the periastron of the transiting planet. Thus in the
coordinate system (z,y) formulae (7) transform as

r = Scosw—r')sinw, (8)
y = Esinw+ncosw.

From Fig. 3 it is clearly visible that the average velocity of the transiting
planet v, can be approximated with g, which is the velociy of the planet at the
mid of the transit. (We note that this approximation fails for large eccentricity
of the transiting planet.) Then by using the above approximation and Equations
(7) and (8) we find

vtrmy:—\/gsinvsianr\/g(eJrcosv)cosw. 9)

Studying again Figure 3, it is also true that at the mid of the transit
v+ w = 360°, (10)

thus the average orbital velocity of the transiting planet is

'Utr:\/g(l—l—ecosw). (11)

Combining Equations (6), (10), and (11) we obtain the following equation:

2
ﬁ(l—l—ecosw)—g\/R?— [a(l——e2)] cos?i =10, (12)

P T 1+ ecosw

where the unknown quantities are the eccentricity e, the inclination 7, and the
argument of the periastron w. The other quantities, such as the semi-major
axis a, the mass parameter (u), the radius of the star (&), and the duration
of the transit (7) are known with certain accuracies already discussed in the
Introduction.

3. Solution and analysis of Equation (12)

According to the last paragraph of the previous section, the unknown quan-
tities in Equation (12) are the inclination ¢, the argument of periastron w, and
the eccentricity e of the transiting planet. Thus by fixed values of 7, Equation
(12) can be solved numerically, and the (w, e) pairs of the solutions can be
represented as curves on the w — e parameter plane.

In order to study the solutions of Equation (12), we give specific values for
the parameters in Equation (12). Let us assume that the mass of the transiting
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planet is 1 Earth-mass, and it revolves around a 1 Solar-mass star with radius
R = 6.96 x 10® m, in an elliptic orbit characterized by a = 1 AU, e = 0.1
being its inclination ¢ = 89.95°. Then we suppose that the direction of the
observation of the planetary transit is w = 30°. It can be calculated easily that
in this case the duration of the transit ise 7 = 0.488029 day.
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Figure 4. Solutions of Equation (12) for different inclinations when 7 = 0.488029 day.
The original solution, which results in the above 7, is marked with a filled circle at w = 30°,
e =0.1,and 7 = 89.95°.

By observing transits caused by the above planet, we can measure their du-
ration 7 and period 7', from which the semi-major axis a can be calculated.
In our case 7 = 0.488029 day, and for different values of ¢ the corresponding
w — e curves are plotted in Fig. 4. We show these curves only for e < 0.5 since
we think that larger values of e are unrealistic for Earth-like planets. We also
mark the real (w,e) solution by a filled circle on the curve corresponding to
1 = 89.95°, but as we can see, there is no way to restrict efficiently the infinite
set of solutions. The only restriction is that the solutions can not be chosen
from the region above the w — e curve corresponding to ¢ = 90°.

Equation (12) has an infinite set of solutions formed by pairs of (w, €) values.
If only the duration of the transit is known, it is not possible to choose which
(w, e) pair represents the real parameters of the transiting planet.

4. A possible confinement of the eccentricity of the
transiting planet

In this section we shall investigate the case when, beside the newly discov-
ered planet, an already known giant planet orbits around the hosting star. The
presence of such a planet makes the problem non-integrable and both ordered
and chaotic regions can be found in the phase space of the system. We sup-
pose that the most probable orbital solutions of the transiting planets are those,
which emanate from the ordered regions of the phase space. The orbital pa-
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rameters of the transiting planet, which would result in chaotic behaviour are
unlikely, since in long terms the orbit of the planet could be unstable, there-
fore these solutions might be avoided. We expect that the presence of a second
(giant) planet r epresents a dynamical constraint reducing the infinit set of solu-
tions of Equation (12) by giving an upper limit for the maximum eccentricity of
the transiting planet. We shall also demonstrate that by studying the solution-
curves of Equation (12) together with the stability structure of the w — e plane,
a lower bound for the inclination can also be determined. In what follows we
shall investigate the stability in the (w — e) plane within the framework of the
planar restricted three-body problem.

In order to map the stability properties of the (w — e) plane we used the
Relative Lyapunov Indicator (RLI) (Sandor et al. 2000, 2004). The initial w
and e values are chosen from the intervals e € [0, 0.5] and w € [0°, 360°] with
Ae = 0.025 and Aw = 2°. The initial value of the semi-major axis of the
transiting planet is always a = 1 AU, while its true anomaly is calculated from
Equation (10) as v = 360° — w (see also Figure 3).

For each pair of the initial (w, €) values we assign the RLI of the correspond-
ing orbit calculated for 500 periods of the transiting planet. If the RLI is small
(~ 10712 — 10713, the corresponding orbit is ordered and stable. If the RLI
~ 10711 — 1079 the orbit is weakly chaotic. In practical sense this orbit could
be (Nekhoroshev) stable for very long terms as well, however, it can not be
stable for arbitrary long time. Thus the regions characterized by these RLI
values can already be the birth places of unstable orbits. Orbits having larger
RLI ~ 1078 — 107°, are strongly chaotic orbits, and they will be unstable after
certain time. In our stability maps the ordered regions are denoted by light,
the weakly chaotic regions by grey, and the strongly chaotic regions by dark
shades.

In what follows we consider the cases where the parameters of the known
giant planet having 1 Jupiter mass are the following: a; = 2.0 AU, e; = 0.1,
0.2, and 0.3 respectively. We fix the angular elements of the giant planet to
A = w = 0° In Fig. 5, Fig. 6, and Fig. 7 we show the dynamical structure
of the w — e parameter planes for increasing values of the eccentricity of the
giant planet. In these figures we also plot the solution curves of Equation (12)
by using 7 = 0.488029 day.

From Fig. 5 it can be seen that there are two upper bounds for the eccen-
tricity of the transiting planet depending on whether the transit occurs near the
periastron, or near the apoastron. If the transit is near the periastron w < 80°,
the upper limit of the eccentricity is e < 0.3, since the w — e curves cross
the chaotic region around this value. If the transit would happen at the apoas-
tron w € [180°,200°], the upper limit of the transiting planet’s eccentricity is
higher, e < 0.4. The real solution is marked (as a filled circle) on the curve
corresponding to 7 = 89.95°.
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Figure 5. The stability map of the w — e parameter plane, when a; = 2.0 AU and e; = 0.1.
The w — e curves for different ¢ are also plotted when 7 = 0.488029 day.
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Figure 6. The stability map of the w — e parameter plane, when a; = 2.0 AU and e; = 0.2.
The w — e curves for different ¢ are also plotted when 7 = 0.488029 day.

In Fig. 6, corresponding to e; = 0.2, there are two upper limits of the eccen-
tricity of the transiting planet as well. For w < 80° the eccentricity is e < 0.27,
for w € [150°,220°] the eccentricity is e < 0.22. In this case a lower limit can
be given for the inclination too, 7 > 89.°85.

If the eccentricity of the giant planet is e; = 0.3, see Fig. 7 the maximum
upper limit of the transiting planet’s eccentricity is e < 0.18. However, in
this case there exists a lower limit e > 0.05 as well. If the transit would take
place around the periastron the corresponding w and e values would result in
weakly chaotic orbits. A lower bound of the inclination in this case is ¢ >
89.89°. Among the three possible values of the giant planet, this latter would
represent the most effective dynamical constraint for the orbital parameters of
the transiting planet, whicharea = 1.0 AU, e = 0.1, w = 30°, and ¢+ = 89.95°.
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Figure 7. The stability map of the w — e parameter plane, when a; = 2.0 AU and e; = 0.3.
The w — e curves for different ¢ are also plotted when 7 = 0.488029 day.

We have also investigated the cases when the semi-major axis of the known
giant planet were smaller and larger than 2 AU. If a; is smaller, a smaller
e1 is enough to result in an effective dynamical constraint. If a; is larger,
the eccentricity of the giant planet should be larger as well for an efficient
dynamical constraint.

5. Conclusions

The detection of Earth-like extrasolar planets by using ground based spectro-
scopic methods is beyond the present capabilities of observational astronomy.
In the near future there will be launched space instruments such as COROT
and KEPLER which are devoted to observe such planets by using transit pho-
tometry.

In this paper we addressed the question whether it is possible to determine
the orbital elements of Earth-like planets discovered by transit photometry if,
apart from the period, the duration of the transit can be measured too. We
supposed that the mass and the radius of the hosting star is known. We derived
an equation, which connects the stellar and planetary masses, the duration of
the transit, the semi-major axis, the eccentricity, the argument of periastron and
the inclination of the transiting planet. By fixing the inclination, this equation
contains two unknown variables, the argument of periastron w and eccentricity
e of the transiting planet. Thus the solutions for different inclinations can be
represented as curves on the w — e parameter plane.

In the last section of the paper we assumed that beside the transiting Earth-
like planet a giant planet orbits around the star as well. This assumption is quite
reasonable if we accept the formation theories of planetary systems supporting
the simultaneous presence of both rocky, Earth-like and gaseous, Jupiter-like
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planets. Since the detection of giant planets is possible by measuring their
radial velocity by Doppler-effect, we assumed their orbital parameters to be
known. By using the framework of the restricted three-body problem, we in-
vestigated the influence of the known giant planet to the w — e parameter plane
of the transiting planet. We found that on the w — e parameter plane there
appeared chaotic regions as well, which in long terms may result in unsta-
ble motion for the transiting planet. Assuming that chaotic behaviour for the
transiting planet are unlikely, we could determine an upper limit for the eccen-
tricity, and a lower limit for the orbital inclination of the transiting planet.

In a future work we plan to extend our studies by investigating systemati-
cally the stability structure of the (w — e) parameter plane for various values
of the giant planet’s semi-major axis and eccentricity. Since the mass of the
hosting star is known only with a limited accuracy, we also plan to follow the
propagation of this error throughout the method presented in this paper. In our
future investigations we intend to consider the cases of more massive transiting
planets as well.

Acknowledgments

This work has been supported by the Hungarian Scientific Research Fund
(OTKA) under the grants D048424 and T043739. The support of the Austrian-
Hungarian Scientific and Technology Cooperation, grant number A-12/04 is
also acknowledged.

References

[1] Kasting, J. F., Whitmire, D. P., and Reynolds, R. T. (1993) “Habitable Zones around Main
Sequence Stars” Icarus 101, 108.

[2] Mayor, M., and Quéloz, D. (1995) “A Jupiter-Mass Companion to a Solar-Type Star” Na-
ture 378, 355

[3] Murray, C. D. and Dermott, S. (1999) Solar System Dynamics, CUP, Cambridge

[4] Sandor, Zs., Erdi, B., Efthymiopoulos, C. (2000) Cel. Mech. & Dynam. Astron. “The phase
space structure around L4 in the restricted three-body problem.” 78, 113-123.

[5] Sandor, Zs., Erdi, B., Széll, A., and Funk, B. (2004) “The Relative Lyapunov Indicator: An
Efficient Tool of Chaos Detection.”Cel. Mech. & Dynam. Astron. 90, 127.



