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Abstract It is well known that in low degrees of freedom dynamical systems chaotic be-
haviour appears. To examine this phenomenon the Sitnikov problem is a very
good example which is a special case of the restricted three-body problem. In
this paper we investigate the changing of the phase space structure due to the
variation of the initial positions of the primaries in the configuration.
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1. Introduction

The investigation of the dynamical systems in the past 50 years shows that
chaotic behaviour appears not only in difficult, many degrees of freedom sys-
tems but in simple configurations as well. Therefore one of the most relevant
tasks is to study these simple dynamical systems to understand the chaos, and
on the other hand it is a good starting point to investigate the more difficult
problems.

Out of the simplest and most interesting system in celestial mechanics is
the Sitnikov problem. Essentially, it is a special case of the restricted three-
body problem. Namely there are two equal masses m; and my revolving in
Keplerian orbits around each other, a the third massles body m3 moves on an
axis perpendicular to the plane of the primaries through its barycenter.

Mac Millan (1913) [6] showed that in the circular problem, when the pri-
maries revolve on circular orbit, the problem is integrable and the solution is
expressed by elliptic integrals. The motion of the masless body is more vari-
ous when we allow the two primaries to move in eccentric orbits. In this case
quasi-periodic and chaotic orbits appear beside the periodic ones. The solution
of the problem was first given by Sitnikov in 1960 [9], after that many authors
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examined the existence of periodic orbits in this configuration. The first map-
ping model was derived by Liu and Sun (1990) [5], who showed that for small
eccentricities the phase space becomes very complex. Perdios and Markellos
(1998) [8] studied the stability and the bifurcations in the Sitnikov problem.
Dvorak (1993) [1] investigated numerically the problem by using Poincaré’s
surfaces of section. Martinez Alfaro an Chilart (1993) found that for certain
eccentricities the fixed points z = 2 = 0 in the center becomes unstable.
Kallrath et al. (1997) [4] explored the phase space in detail laying emphasis
on resonances. For small eccentricities Hagel (1992) [3] and Faruque (2003)
[2] applied perturbation methods and gave an analitical approximation to the
problem.

In this study we investigate the phase space structure for different initial
conditions, eminently for different initial positions of the primaries. For the
visualization of the results we use Poincaré’s surfaces of section.

2. Equation of motion

As mentioned above, we investigate the motion of a massles body which
moves along a line perpendiclar to the plane of the primaries through their
baricenter (see Fig. 1). By introducing suitable units we can write the equation
of motion. We choose the total mass of the primaries as mass unit, the rotating
period equal to 27, the semi-major axis of the orbit of the primaries as distance
unit (m; and my), so the Gaussian constant becomes 1. Then the equation of
motion of the massles body is

ﬁz7 (1)

where

r=+vR2+22, R=1-—ecosE. ()

R is the distance between the primaries , z is the distance of the massles
body from the plane of primaries, e is the eccentricity, and E is the eccentric
anomaly, which depends on the time according to Kepler’s equation:

t—T=F—esink. 3)

The 7 = 0 phase constant corresponds to the pericenter passage at t = 0.
Since the problem is only one degree of freedom, we can introduce the true
anomaly v as for independent variable instead of the time. (See [4].)
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Figure 1. The Sitnikov problem.

3. Structure of the phase space

We studied the Sitnikov problem for different initial conditions. On the phase
portraits we plotted many trajectories corresponding to different initial condi-
tions. The set of initial conditions was zg = 0.15 — 1.8 with Az = 0.05, and
the initial velocities were z = 0 in all cases. We choosed the integration time
to be 10000 periods of the primaries.

The circular case is equivalent to the two center problem, which was solved
already by Euler in 1764. In this case, when the third mass has bounded mo-
tion, the solutions are periodic or quasi-periodic depending on the initial con-
ditions. The trajectories corresponding to these latter give close curves on a
convenient surface of section in the phase space. Such curves are shown in
Fig. 2.

In the eccentric case we have more various phenomena in the phase space. It
is well known that increasing the parameter e the structure of the z — 2 space
is also changing (Kallrath et al., 1997) [4]. For initial conditions close to the
plane of the primaries the solutions are quasi-periodic motions by invariant
cueves on the surface of section (see Fig. 3). However, small islands appear
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Figure 2. Invariant curves in the circular case of the Sitnikov problem. There are 17 initial
conditions, zp = 0.2 — —1.8, Az =0.1.
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Figure 3. e = 0.4 and vo = 0° (pericenter passage). The islands outside the invariant curves
correspond to the 1:1 and 2:1 mean motion resonances. Between the islands there are escaping
trajectories.

for particular initial distances outsid these invariant curves. These formations
correspond to reasonances with the primaries. The massles body escapes from
the system in the region between the islands (see Fig. 3).

In this paper we investigated the changing of the phase portraits when the
primaries are not in the pericenter at £ = 0. We calculated the motions for four
initial positions of the primaries v9 = 45°, 90°, 135° and 180°. Fig. 4 and
Fig. 6 show the results.

The eccentricity of the binary was 0.4 (see Fig. 4). It can be seen that the 2:1
mean motion resonance (the two small islands in the Fig. 3) remains in all cases
except vg = 180°. For example in the case vop = 45° these islands dissolve
to three smaller ones (see Fig. 4, top left panel). In addition, chaotic motion
appears close to the separatrices. In Fig. 4 the bottom right panel shows a quite
distinct picture. Except for initial conditions close to the baricenter, there are
chaotic motions.
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Figure 4. e = 0.4. Top left panel: vo = 45°, the islands split up at the edge of the figure
and the trajectories appear close to the separatrix. Top right panel: vo = 90°, here it can be
seen that a separatrix appears also between the invariant curves, and the 2:1 resonance is more
unstable. Bottom left panel: vo = 135°, the area of the chaotic region increases between the
invariant curves and the 2:1 resonance. Bottom right panel: vo = 180°, the total phase space is
chaotic except some initial conditions close to the primaries’ plane.

Figure 5. e = 0.8 and vo = 0°. It is an interesting phase space portrait of the problem. Close
to this value of the eccentricity (0.8) the fixed point in the middle becomes unstable. This was
studied by Martinez Alfaro and Chiralt in 1993 [7]. In our case there is only one invariant curve
for the initial distance zo = 0.15. In [7] the center is unstable for e = 0.8558625.

Fig. 5 shows the case where the eccentricity of the primaries was 0.8 and
vo = 0°. This is an interesting phase space portrait, because the parameter e
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Figure 6.  The eccentricity of the primaries is 0.8. Top left panel: vo = 45°, the structure
of the phase space is very similar to that of Fig. 4. However, in this panel the resonances are
more complex. Top right panel: vo = 90°, the chaotic domain grows between the islands.
Bottom left panel: vo = 135°, there are many islands in the chaotic sea. Bottom right panel:
vo = 1807, the phase space is mostly chaotic.

is very close to the value where the stable fixed point becomes unstable in the
center of the 2 — Z plane [7]. We can see only one island which corresponds to
zo = 0.15 initial distance from the primaries orbital plane.

The four panels in Fig. 6 where e = 0.8 are similar to those of Fig. 4. There
are resonances and for this larger the eccentricity there are stronger separa-
trices. The phase space is also very chaotic when the primaries are in the
apocenter at t = 0.

4. Concluding remarks

We investigated the phase space of the Sitnikov problem for different ini-
tial conditions. Four initial positions of the primaries were studied beside the
pericenter passage. There are closed curves on the surfaces of section corre-
sponding to quasi-periodic orbits and small islands which means resonances.
These small islands break up with varying the initial true anomaly, or higher
order resonances appear. It is important to note that increasing the initial value
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of v more and more chaotic motion occur close to the separatrices. Finally, if
the initial true anomaly is 180° then almost the whole phase space is chaotic.
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