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Abstract
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Several methods used in celestial mechanics require to solve ordinary differ-
ential equations (ODEs) and also derived equations like linearized ones. Lie-
integration is known to be one of the fastest ODE-integrators and it is widely
applied in long-term investigations. However, an inconvenience of this method
is that auxiliary recurrence relations must be deduced which is different for each
problem.

We present a lemma which can be used to derive such recurrence relations
almost automatically for the linearized equations if the relations for the original
ODEs are known. This lemma is then applied to the equations of the classical 2-
body problem. The knowledge of such relations may imply other chaos detection
methods; some concerning (and preliminary) results are also presented.

Numerical integration — Lie-integration — Linearized equations

1. Introduction

The integration method based on the Lie-series ([1]) is widely used in ce-
lestial mechanics (see [2] and articles refering to it). The basis of this method
1s to generate the coefficients of the Taylor expansion of the solution by using
recurrence relations. Let us write the differential equation to be solved as

T; = fi(x)> (1)
where x isan R — RY and f = (f1,..., fn) is an RY — RY function. Let
us also introduce the differential operator

0
D; = — 2
1 (9:[:17 ( )
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and the derivation

5,0
Lo := X_; figy = FiD: 3)

The latter is known as the Lie-derivation which is also a differential operator:
it is linear and Leibnitz’s rule stands for it,

Lo(ab) = aLy(b) 4+ bLo(a). 4)

It can easily be proved that the solution of Equ. (1) at a given instance ¢ + At
is formally

x(t+ A) = exp (At - Lo) x(t), (5)
where N
exp (At - Lg) = Ak—fL’g. (6)
k=0

Hence, the Lie-integration is the finite approximation (up to the order of M)
of the sum in the right-hand side of Equ. (6), namely

N k N k
x(t + At) ~ ( Ak—t!L’(§> x(t) =" Ak—l; (L’gx(t)) . 7

k=0 =

The proof of Equ. (5) and other related properties of the Lie-derivation can be
found in [2].
2. Linearized equations

For numerous chaos detection methods the knowledge of the solution of lin-
earized equations is required. Let us again write the differential equation as

& = fi(x). (8)
The linearized equations can be written as
-, 9fix)
=D &ng ©)
m=1 m
Using the above conventions (see Equ. (2)) it can be re-written as:
& = EnDnfi- (10)
Let us introduce the differential operator
0
0; i= —. (11)
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Thus the coupled system of equations (both the original and the linearized) is
& = fi,
i fi 12)

Using the differential operators defined in Equ. (2) and Equ. (11), one can write
the Lie operator of Equ. (12) as

L = LO + L€ - szz + ngmfzgz (13)

Lemma. Using the same notations as above, the Lie-derivatives of & can
be written as
L™, = EmDm L"xp, = Em D Ly Tk (14)

Proof. Obviously, Equ. (14) is true for n = 0:
DmLOxk = Dinx = O, (15)
hence

EmDm Lz = Embmik = - (16)
Let us suppose that it is true for all 0 < j < n and calculate the (n + 1)th
Lie derivative of &:
L"e = L(&nDmL™xy) =
- (szz + ngszaz) (meanxkr) —
= [iDi§nDm L™z, +
—|—§j(Djfi)[5imDan£Ck + §mDm8iL"xk]. (17)
Here the last term (&,,, D,,, 0; L™ x},) cancels, because z and L™z forall0 < n
do not depend on . So:
L™, = fiDiémDmL ), + &(D; f;) Dil "y =
= SnfiDmDiL"z} + gm(Dmfi)(DiLnxk) =
= &n (fiDm + D fi) (DiL"xy) =
= EnDm(fiDi)(L"xy) =
= EnDmL(L"xy) = EnDm L Moy, = Dy L 2. (18)

Here we have used the Young’s theorem:
Dy, Di = D; Dy, (19)
and Leibnitz’s rule,

Din(fiDi) X = D fi(Di X) = fi(DmDi X ) + (D fi)(Di X),  (20)
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where X can be any function of x, in Equ. (18) X = L"xj. Thus Equ. (18)
is the same relation for n + 1, as Equ. (14) for n. Continuing the scheme
described above, the relation Equ. (14) can be proved for all positive integer
values of n.

3. Equations for the two-body problem

The recurrence relations for the Lie-derivatives of the equations of motion
of the N-body problem can be found in [2]. Here we present the equations
for the two-body problem with almost the same notations. Let us detone the
relative coordinates and velocities by r = (71,72, 73) and w = (w1, we, w3),
respectively and introduce the following variables:

p = |r]=+/r] + 7573, 1)
¢ = p? (22)
A = rjwyp 4+ rowg + ryws = ryw;. (23)

The total mass of the system is M + m. Using these notations, the equations
of motion are

ri = wi, (24)
w; = —G(M +m)or;.
(Here G = k2, the gravitational constant.) The differential operators D; and
A; are defined as
0

D; = — 25
1 ari Y ( )
0
A; , 26
B, (26)
and the Lie-operator of Equ. (24) can be written as
Lo =w;D; — G(M -+ m)@“,AZ 27)
It can be proved easily (see [2]) that the recurrence relations are
Ly, = L'w;, (28)
n
L"A = ) (Z) LFr, L *w;, (29)
k=0
" /n
Ly = —G(M +m)) ( k) LFoL™ *r;, (30)
k=0
Lo = p?) FuL""oLFA, (31)

k=0
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where

Fu = (=3) (Z) +(-2) (kil) (32)

Using the lemma Equ. (14) the recurrence relations for the linearized equa-
tions of Equ. (24) can be derived without knowing these equations explicitly.
Let us denote the linearized variables by &; and n; (respecting to r; and w;) and
introduce

o= (& om), (33)
D;

D; = ( Ai) ; (34)

ED = ZD;=&D; +nA;. (35)

Since the right-hand sides of the equations Equ. (28) — Equ. (31) are only
bilinear in the Lie-derivatives of 7;, A, w; and ¢, using Leibnitz’s rule the
recurrence relations for &;, w; and the auxiliary variables =ZD¢ and =DA can
be calculated automatically:

L"eg = L'y, (36)
n
EDL'A = ) (Z) (L& w; + DL Fay),
k=0
1 n
Ly = —G(M+m)) <k) [<EDLk¢)Ln_kTi +Lk¢Ln_k&] ’
k=0
EDL" ¢ = —2p7 % LMo+

+p2 zn: Fo [(EDL“_%)L’“A + L”_’“gb(EDL’“A)} .
k=0

For the initialization of the recurrence method, the value of EDL¢ = ZD¢

has to be known:
ED¢ = —3p & (37)
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