SPEED AND EFFICIENCY OF CHAOS
DETECTION METHODS

Aron Siili

Department of Astronomy
Lorand Eotvés University
Pazmany Péter sétany 1/A4
1117 Budapest, Hungary
a.suli@astro.elte.hu

Abstract In this article four chaos indicators were compared using the framework of the
2D standard map. These methods, namely the LCE, FLI, RLI and SALI may
provide a global picture of the evolution of the mapping. Until now a de-
tailed comparison of these methods have not been performed. This imperfection
should be supersede. This is the aim of the paper.
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1. Introduction

The problem to separate ordered and chaotic motion in dynamical systems,
especially in one with many degrees of freedom, is a fundamental task in sev-
eral area of modern research. In order to determine the type of an initial con-
dition in the phase space one needs fast and reliable tools. These tools are ex-
tremely useful in those cases when the inspected dynamical system has more
than two degrees of freedom and therefore it’s phase space can’t be explored
in a direct way or the classical method of Poincaré surface of sections can not
be applied.

The mathematical foundation of the theory of Lyapunov characteristic ex-
ponents (hereafter LCE) arose progressively in the literature. The use of such
exponents dates back to Lyapunov [9], but was firstly applied by [11] to char-
acterize trajectories. In his paper Oseledec provides a general and simple way
to compute not only the largest, but all the LCEs. The first numerical char-
acterization of stochasticity of a phase space trajectory in terms of divergence
of nearby trajectories was introduced by the classical paper of [6]. They found
that two orbits initially close diverge either linearly or exponentially depending
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Table 1. Enumeration and classification of the methods.

analysis of the orbits analysis of the tangent vector

1. Poincaré surface of section 1. Lyapunov characteristic exponents (LCE) [9]
2. Frequency analysis method (MFT) 2. Generalized Lyapunov indicators (GLI) [3]
[8]

3. Low frequency power spectra [16]
4. Sup-map method [8]

5. Spectral analysis method (SAM) [10]

. Spectra of stretching numbers [14]

. Spectra of helicity and twist angles [2]

. Fast Lyapunov indicators (FLI) [4]

. Spectral distance [15]

Mean exponential growth of nearby orbits
(MEGNO) [1]

8. Relative Lyapunov indicator (RLI) [12]

9. Smaller alignment index (SALI) [13]

N oL AW

on whether the initial points lie in an integrable or in a stochastic region of the
phase space.

In the last three decades much work, both analytical and numerical have been
performed to investigate the chaotic properties of classical dynamical systems.
In addition to the elaborated theory of LCE several new methods have been
developed in order to establish the true nature of an orbit in the shortest possible
timespan. These methods are based on the analysis of the orbits, or on the time
evolution of the tangent vector i.e. the solution of the linearized equations of
motion. Accordingly the methods can be classified in two groups (see Table 1).

In this paper the LCE, the FLI, the RLI and the SALI methods will be in-
vestigated and compared in the framework of the 2D standard map, defined by
the

Tit1 = T+ Vi
mod 27 (1)
Yit1 = yi — Ksin(z; +yi),

equations, where K > 0 is the non-linearity parameter. Throughout the paper
the K' = 0.3 case is considered. For this value of the non-linearity parameter
the complete phase space of the system and the vicinity of the hyperbolic point
(7,0) 1s depicted in Fig. 1.

In Section 2 the methods are shortly described. In Section 3 the speed of the
methods are presented and compared, and also their dependence on the initial
tangent vector £ is discussed. In Section 4 the results are summarized.
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Figure 1. The phase space of the standard map for K = 0.3. The vicinity of the hyperbolic
point is enlarged to visualize the initial condition of the weakly chaotic orbit.

2. Methods: LCE, FLI, RLI and SALI

Let us briefly review the definition of the different methods! The definition
of the largest LCE for an initial value problem or mapping

dy (¢
% = f(t.y). y(0)=yo, (2)
yit1 = M(yi), ¥Yi=0o = Yo, 3)
1s given by
1 HE@I _ .
LCE — 1 1 — lim (¢ 4
A 18 oy ~ A (B yo- o). 4)

where &(t) is the solution of the first order variational (i.e. linearized) equations
and the function (¢, yo, &) measures the mean rate of divergence of the orbits.
The linearized equations are:

dé(t) _ ot(t.y)

o Dy £ £(0) = &, (5)
0 i

Eiv1 = %&, Ei=o = &o- (6)
y

The value of LCE reveals the sensitivity of the given trajectory to the initial
conditions. The problem of the LCE is that it is defined as a limit. Though
the largest LCE can be calculated up to a (very) large time 7' but the limes
as ¢ tends to infinity cannot be evaluated numerically. Therefore the func-
tion y(t, yo, &o) is called the Lyapunov characteristic indicator (hereafter LCI),
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which is a finite estimate of the LCE. Thus the evolution of LCI(¢, g, §) is fol-
lowed up and we plot logLL.CI versus log ¢. If the curve has a negative constant
slope, the trajectory is ordered; if it exhibits an inflection of the slope, which
comes close to 0 and the function converges to a certain value, the orbit is
chaotic.

The FLI was introduced as the initial part (up to a stopping time ¢5) of the
LCE’s computation:

FLI(§(0).y0,t) = sup [I5(0)] 9
ij=1,....n
where n is the dimension of the phase space. To determine the FLI of a given
orbit one has to follow the evolution of n tangent vectors, which initially span
an orthogonal basis of the tangent space. The FLI tends to zero in both ordered
and chaotic regions as the number of iterations (in the case of maps) or the time
(in Hamiltonian systems) increases, but on completely different time scales
which makes it possible to separate the phase space.
The RLI was introduced as the difference between the LCIs of two initially
nearby orbits:

RLI(E(0). y0. ) = T/LCIE(0),y0, t) ~ LOKE0) yo + Ay t)l, )

where Az is the distance in phase space between the two orbits.

The basic idea behind the SALI method is the intoduction of a simple quan-
tity that indicates if a tangent vector is aligned with the direction of the eigen-
vector corresponding to the maximal LCE.

In order to check the directions of the vectors, the evolution of two tangent
vectors are followed. The parallel and the antiparallel alignment indices are
respectively defined as

d- = 1|6(t) = &@)l|,  dy = [[&1(t) + &()]].
The SALI is defined as the minimum of the indices:
SALI(t) = min (d4+,d_). 9)

SALI tends to zero when to orbit is chaotic, and to a non-zero positive value
when to orbit is regular. In the special case of 2D maps, SALI tends to zero for
every initial conditions but follows completely different time rates for ordered
and chaotic orbits.

3. Efficiency and dependence

Both the efficiency and the dependence was study in the case of four different
kinds of orbits. The initial conditions are given in Table 2, the corresponding
orbits are plotted on Fig. 1.
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Table 2. Classification of the orbits and initial conditions.

Orbit
Ordered Chaotic
non-resonant  resonant  strongly weakly
(1;0) (0;2.15)  (3.14;0)  (3.1024048;0)

First the number of iterations needed to establish with certainty the nature
of an orbit was determined. An orbit can be classified as ordered (regular) or
chaotic. An ordered orbit can be divided into two subclasses: non-resonant and
resonant. An orbit is non-resonant, when there does not exist such linear com-
bination of the frequencies of the motion which vanishes, otherwise the orbit is
resonant. The chaotic orbits may be further classified, accordingly to the rate
of divergence of nearby orbits. In this context, one can speak about strongly
and weakly chaotic orbits. If two initially nearby trajectories diverge fast, the
orbit is strongly chaotic, if the divergence is slow (comparing to the previous
case), we speak about weakly chaotic or sticky orbit. The above classification
is presented in Table 2, where also the initial conditions of the different orbits
for the standard map are listed.

In Fig. 2 the time evolution of the four indicators are plotted for the above
mentioned different kinds of orbits. The stopping time was set to 10? iterations.
In the case of FLI, RLI and SALI an additional stopping criteria was used:
whenever the FLI, RLI or SALI reached 102°, 1072° or 10716, respectively
the computation was stopped.

Between 1 and some times 10 iterations none of the methods is capable to
establish the type of the orbit: all four curves are overlapping each other in-
hibiting the classification. At the earliest at 100 iterations the strongly chaotic
orbit can be separated from the ordered one, but with certainty the classifica-
tion can be done at 1000 iterations.

In the case of LCI, FLI and SALI the indicator corresponding to the weakly
chaotic orbit (dotted line) follows exactly the curve belonging to the strongly
chaotic orbit (solid line) for the first 10 iterations. Afterwards the weakly
chaotic curve essentially follows the curves corresponding to the ordered or-
bits for approximately 10° iterations. In the case of LCI the classification is
only possible after approximately 10° iterations, when the curve has a turning
point, and its slope becomes zero. It is worth noting, that after some 10° itera-
tions the LCI suddenly jumps form 1.21x107° to 6.03 x 10~3, than it climbs to
2.55x1072 which is very close to the value belonging to the strongly chaotic
orbit (3.45x1072). This is a numerical evidence, that both orbits originate in
the chaotic domain. In the case of the FLI approximately 2x 10°, whereas in
the case of the SALI about 9 x 10° iterations are needed for the assignment.
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In the case of the RLI, the weakly chaotic curve does not follow any other,
but it wildly oscillates around 10~ 2. Between 100 and 1000 iterations it over-
laps with the ordered curves, beyond 10° it goes close to the strongly chaotic
curve. The classification is possible after 10% iterations.
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Figure 2. Variation of the CIs with the number of iterations for four kinds of orbits of the
standard map. The dotted curves correspond to the weakly chaotic orbit.

A careful examination of the curves in Fig. 2 allows one to distinguish also
between resonant and non-resonant motion. Although the curves correspond-
ing to a non-resonant and a resonant motion are separated in the case of FLI,
RLI and SALI, the oscillations prevent definite distinction between the two
cases. Therefore, following the idea of [5], the definitions are replaced by their
running average

Cl(t) = 5= > CI, (10)
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where CI denotes one of the methods and /V is the width of the running win-
dow. In the following N = 50 was used.

In Fig. 3 the running average of the indicators are shown. In the case of LCI
and SALI the two curves can not be distinguished from each other, whilst the
FLI and RLI curves are well separated after 100 iterations. It appears clearly

that using flTI(t) and I/{I\JI(t) resonant and non-resonant motion are clearly
separated. We note that the corresponding lines appear to be parallel. This
averaging technique does not influence the behaviour of the indicators in the
case of chaos.
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Figure 3. Variation of the E?\I(t)s with the number of iterations for four kinds of orbit of the
standard map.

It 1s obvious, that the methods are sensitive to the initial direction of the
tangent vector £(0). To quantify therefore the methods’ dependence on the
direction of £(0), the tangent vector is rotated, and the indicator is calculated
up to several stopping times. This dependence is confirmed in Fig. 4 in which
the values of the Cls are plotted against the angle ¢, for the resonant, non-
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resonant and chaotic orbits for 1000 iterations. The ¢ is the angle between
€(0) and the (1,0) vector (x-axis). From Fig. 4 it is obvious that these values
are far from being constant when varying the angle ¢. In order to plot all four
curves together, a normalization was performed, i.e. the CI values were divided
by their maximum value (see Table 3).

The normalized curves have extremum at the same ¢, which is a natural
consequence of that, that all four methods are based on the evolution of the
tangent vector. The LCI and RLI are periodic with 7, since these methods are
based on one £(0), while the FLI and SALI are periodic with /2, because
they are based on two tangent vectors which are initially perpendicular to each
other.

Table 3. Dependence and relative variation for the resonant orbit.

LCI FLI RLI SALI
max  0.00653987 692.198 5.77967e-15 0.00307465
min  -0.00075530 489.790 2.97609¢-15 4.17417e-06
Acr  1.937 1.15 1.288 3.867

bmaz  81°.5(261°5)  81°.5(171°.5) 171°.5(351°.5) 81°.5(171°.5)
bmin  171°.5(351°.5)  36°.5(126°.5) 171°.0(351°.0) 36°.5(126°.5)
A¢  180° 90° 180° 90°

In Table 3 the maximum and minimum values for the resonant orbit are
listed. Introducing the quantity

(11)

min(C1
ACI:1—10g10< ( )>,

max(C1)

also the measure of dependence was determinded. According to the third line
of Table 3, we see that the SALI has the largest, and the FLI has the smallest
value which could already be observed in Fig. 4.

4. Summary

In this article a possible classification of the chaos detection techniques was
given, and four methods, namely the LCI, the FLI, the RLI and the SALI were
briefly described in Section 2. These methods were compared using the 2D
standard map. The efficiency of these techniques was tested via applying them
to four different types of orbits. It was shown that all the four methods are
capable to distinguish between strongly chaotic and ordered motion after ap-
proximately 100 iterations. To reveal the true nature of a weakly chaotic orbit,
it turned out that the new methods are not superior to the classical method of
LCI: in short time interval they failed to properly classify the orbit. This is
because the weakly chaotic orbit pretends regular behaviour for a priori un-
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Figure 4.

the resonant (top), non-resonant (middle) and chaotic (bottom) orbit.
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Variation of the Cls as a function of the initial direction of the tangent vector(s) for
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known time interval. The length of this time interval may be considered as the
measure of chaos: the longer the interval the weaker the chaos is.

Introducing the running average technique, the FLI and the RLI can separate
between resonant and non-resonant orbits. This technique does not improve the
capabilities of LCI and SALI.

The sensitivity of the methods to the initial direction of the tangent vector
£(0) was demonstrated and compared. It was shown for three types of orbits
that the Cls have extremum at the same ¢, which is the angle between &(0) and
the z-axis. The LCI and RLI are periodic with 7, while the FLI and SALI are
periodic with /2. With the definition of Acy the dependence of the methods
were quantitatively described. The least sensitive is the FLI, the most one is
the SALL.

In the future it is necessary to calculate these methods on a large portion of
the phase space, and also to extend these calculations for Hamiltonian dynam-
ical systems.
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