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The lattice cohomology and the graded root of an isolated curve singularity were
recently introduced in [3]. The lattice cohomology is a categorification of the
δ–invariant. The hope is that for plane curve singularities it encodes subtle
information about the analytic structure and concrete analytic invariants.

The present paper is a positive result in this direction: we prove that
the multiplicity of an irreducible plane curve singularity can be recovered from
its lattice cohomology (or, from its graded root). In fact, we give four distinct
proofs of this statement, each of them emphasizing a rather different aspect of
the theory of plane curve germs.

With these proofs we also create new bridges between the abstract analytic
type and the embedded topological type of the germ. In particular, we provide
a new characterization of the Apéry set of the semigroup of the germ in terms
of embedded data.
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1. INTRODUCTION

1.1.

Probably the oldest and most classical part of algebraic geometry is the
theory of plane curves incorporating the theory of their singularities as well.
The theory of complex plane curve germs (C, 0) ⊂ (C2, 0) amalgamates the
local analytic theory with low dimensional topology via their local embedded
topological types. According to this symbiosis, their invariants also reflect this
unity between analytic and topological data. Several classical invariants are
read from the embedded topological type (i.e. from the corresponding algebraic
link C ∩ S3

ϵ ⊂ S3
ϵ , 0 < ϵ ≪ 1), while several others from the structure of the
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local ring. Though the theory grows continuously and intensively, still there
are many-many old and new open problems and conjectures regarding e.g. the
classification problems, deformations, adjacencies. The newer theory of general
curve singularities (with arbitrarily large embedded dimension) is even more
exciting with even more unanswered questions.

Therefore, any new invariant of such germs creates a new possibility to
attack these open problems, or to illuminate the theory deeper.

Such a new invariant is the lattice cohomology associated with any isolated
(complex) curve singularity [3]. This is a multigraded Z–module H∗ = ⊕q≥0Hq

such that each Hq is a 2Z–graded Z[U ]–module. Formally it has many simi-
larities with the monopole cohomology, or with the Heegaard Floer homology
of compact 3–manifolds. (For the HF–theory see the long series of articles
of Ozsváth and Szabó, e.g. [20]. Some more connections will be mentioned
below). It is one of the members of a series of ‘lattice cohomologies’ associated
with singularities, like the lattice cohomology associated with the topological
type of a normal surface singularity [16], or its analytic counterpart [1], which
has an extension even for higher dimensional germs [2].

The lattice cohomology associated with a curve singularity is defined via
its local algebra (see section 4 here). In the case of an irreducible curve singu-
larity (C, 0) it can be derived from the numerical semigroup of values SC ⊂ Z≥0

as well (see sections 2 and 3 below).
In the case of plane curve singularities, the semigroup SC is a complete

embedded topological invariant, hence H∗ is in fact an output of the embedded
topological type of C ∩ S3

ϵ ⊂ S3
ϵ .

In the irreducible case it turns out that H>0 = 0, hence all the information
is coded in the Z[U ]–module H0. This module H0 has an enhanced version as
well, the graded root R of (C, 0) (which, in principle, is a stronger invariant
than H0), see section 2. In the case of plane curves, H0 has a deep connection
with the Heegaard Floer Link homology associated with the link C ∩S3

ϵ ⊂ S3
ϵ ,

see [19].

1.2.

It is natural to test in the case of irreducible plane curve singularities
whether one can recover certain analytic invariants from H0 (or, from R). In
this direction, the first analytic invariant which should be tested is the mul-
tiplicity of the germ (the smallest degree of a monomial in its expansion). It
is the starting point and the subject of several results regarding the analytic
classifications of germs and the topological characterizations of certain ana-
lytic invariants (e.g. Artin’s topological characterization of the multiplicity
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of rational surface singularities). Or, it appears in famous conjectures like
Zariski’s conjecture which predicts that the multiplicity of an isolated hyper-
surface singularity can be recovered from the embedded topological type. (This
is positively answered for plane curve singularities.)

Our main result is the following:

Theorem 1.1 (non-technical version). The multiplicity of an irre-
ducible plane curve singularity (C, 0) ⊂ (C2, 0) can be recovered from the graded
Z[U ]–module structure of the lattice cohomology H0 (or, from the graded root
R) associated with (C, 0).

Here some comments are in order. In order to understand better the
connection between H0 (or R) and the multiplicity m, it is worth describing
both of them in terms of the semigroup of values SC ⊂ Z≥0. The multiplicity
is the smallest element of SC \ {0}, and, as we already mentioned, both H0

and R are outputs of SC . In particular, the multiplicity of an irreducible plane
curve singularity can be recovered from its embedded topological type, and
also from its semigroup, and here we ask if it can be recovered from H0.

Here it is important to emphasize that any numerical semigroup (monoid)
S ⊂ Z≥0 can be realized as the semigroup of values of a certain (non unique)
curve singularity, e.g. of the curve with local algebra C[S], see e.g. [24].
Hence, in fact, our question regarding the multiplicity can even be generalized
into the following: can the smallest non-zero element of a semigroup S ⊂ Z≥0

be recovered from the lattice cohomology associated with S (defined combi-
natorially as in subsection 5.2(d))? In the case of plane curve singularities,
the semigroup has an additional (Gorenstein) symmetry property, so we might
restrict this question to symmetric semigroups as well. [For any semigroup
S ⊂ Z≥0 with Z≥0 \ S finite there exists a smallest element c of S, called the
conductor, such that c + Z≥0 ⊂ S. The semigroup is (Gorenstein) symmetric
if s ∈ S ⇔ c− 1− s ̸∈ S.]

The point is that the answer to both of these general questions is negative.
That is, there are pairs of irreducible curve singularities (not necessarily plane
curve germs) with the same graded root and lattice cohomology, but with
different semigroups and different multiplicities, see Example 1.2 below. (In
particular, in the above theorem, the fact that we consider only plane curve
singularities is not a weakness of the statement, but a necessary assumption.)

Example 1.2. Let a ≫ 0 be a big positive integer and consider the fol-
lowing semigroups (below ‘•’ represent the elements of S, while ‘◦’ denote the
gaps S := Z≥0 \ S). In both cases c = 2a + 10. The multiplicity in the first
case is m = a and in the second case it is m = a+ 1.
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ℓ 0 1 . . . a− 1 a a+ 1 a+ 2 a+ 3 a+ 4 a+ 5 a+ 6 a+ 7 a+ 8 a+ 9 a+ 10 . . . 2a+ 8 2a+ 9 2a+ 10

S1 • ◦ . . . ◦ • ◦ ◦ • • ◦ ◦ • • ◦ • . . . • ◦ •
h1 0 1 . . . 1 1 2 2 2 3 4 4 4 5 6 6 . . . a+ 4 a+ 5 a+ 5
w0,1 0 1 . . . 3− a 2− a 3− a 2− a 1− a 2− a 3− a 2− a 1− a 2− a 3− a 2− a . . . 0 1 0

and

ℓ 0 1 . . . a− 1 a a+ 1 a+ 2 a+ 3 a+ 4 a+ 5 a+ 6 a+ 7 a+ 8 a+ 9 a+ 10 . . . 2a+ 8 2a+ 9 2a+ 10

S2 • ◦ . . . ◦ ◦ • • ◦ • ◦ • ◦ ◦ • • . . . • ◦ •
h2 0 1 . . . 1 1 1 2 3 3 4 4 5 5 5 6 . . . a+ 4 a+ 5 a+ 5
w0,2 0 1 . . . 3− a 2− a 1− a 2− a 3− a 2− a 3− a 2− a 3− a 2− a 1− a 2− a . . . 0 1 0

In the tables above we inserted the Hilbert functions h and weight func-
tions w0 as well. h(ℓ) is determined from the numerical semigroup S as follows:
h(ℓ) = #{s ∈ S : s < ℓ}. The mapping ℓ 7→ w0(ℓ) := 2h(ℓ) − ℓ is the weight
function used in the definition of H∗ and R, see section 3.

One can check that both semigroups determine the same graded root:

rrr
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r
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...

w0 = 0

w0 = 3− a

w0 = 1− a

R1
∼= R2 :

(For details regarding graded roots, and the steps how one recovers H0 from
them, see section 3.)

Let (C, 0) ⊂ (C2, 0) be an irreducible plane curve singularity with multi-
plicity m and semigroup SC .

Technically speaking, the multiplicity of (C, 0) will be recovered from
the ‘local minimum points’ of the weight function w0, or from the degrees of
the local minimum points of the graded root. In fact, we have the following
statement.

Proposition 1.3. In the lattice cohomology of the irreducible plane curve
(C, 0) the local minimum points of the weight function w0 correspond to the
local minimum points of the associated graded root and their weights can be
recovered from the Z[U ]–module structure of H0. (Cf. Propositions 2.8 and
2.12 and Remark 3.1.)

We need to distinguish the two cases when (C, 0) is smooth or not.
By [3, Example 4.6.1] (C, 0) is smooth if and only if R has exactly one

local minimum point (by the notation of Example 2.5 below, if R = R0),
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or equivalently, if the reduced lattice cohomology H0
red is zero. In this case

m = 1. In all other cases R has at least two local minimum points, H0
red ̸= 0

and m ≥ 2. In particular, smoothness can be clearly identified from both R
and H0.

In the sequel we always assume that (C, 0) is not smooth, hence m ≥ 2.
Moreover, SC ̸= Z≥0, hence its conductor c ≥ 2.

In this non-smooth case, there are two ‘standard’ local minimum points,
corresponding to the points s = 0 and s = c, with values w0(0) = w0(c) = 0.
(We might call them ‘trivial’ ones.) All the other local minimum points are
located strictly between 0 and c. By the Gorenstein symmetry one has c = 2δ,
where δ = #{Z≥0\SC} is the delta invariant of (C, 0). The weight function and
hence the local minimum points are symmetric with respect to the involution
s ↔ c− s. Moreover, it turns out that the values w0(s) of the local minima s
are always non-positive (see subsection 5.2)

The multiplicity m = min{SC \ {0}} is also a local minimum point.

The characterization of the multiplicity m is the following.

Theorem 1.4. Assume that (C, 0) is a non-smooth irreducible plane curve
germ. Let s ̸∈ {0, c} be a local minimum of the weight function w0. Then

w0(s) ≤ 2−m,

and equality holds (at least) for the local minimum point s = m.

As we already mentioned, the multiplicity m = min{SC \ {0}} is a local
minimum point, in fact, it is the first non-trivial one with respect to the or-
dering of the integers. The difficulty is that the local minimum points of the
graded root (i.e. their ‘end-leaves’) are not marked by the corresponding semi-
group elements which generate them, so from the leaves (local minima) of the
graded root one cannot read off the order how they appear in the semigroup.
This is exactly the core of the problem: we have to show the following property
(P): the degree of the ‘highest-degree’ non-trivial leaf of the root is the weight
of the first non-trivial local minimum point of SC .

The fact that this property (P) does not hold in general (for non-plane
germs) can already be seen in Example 1.2, in the case of S2. (However, for
S1 it holds.)

In the next example, we provide a graded root, which can be realized by a
symmetric semigroup, but for any symmetric semigroup realization the above
property (P) fails.

Example 1.5. The above statement is not true for an arbitrary symmetric
semigroup (hence, for an arbitrary curve singularity). For example, consider
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the symmetric semigroup S = Z≥0⟨6, 7, 9⟩ with multiplicity m = 6 and con-
ductor c = 18. The weights are given in the diagram below.

ℓ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

SC • ◦ ◦ ◦ ◦ ◦ • • ◦ • ◦ ◦ • • • • • ◦ •
h 0 1 1 1 1 1 1 2 3 3 4 4 4 5 6 7 8 9 9
w0 0 1 0 −1 −2 −3 −4 −3 −2 −3 −2 −3 −4 −3 −2 −1 0 1 0

From the diagram we read that the local minimum points are {0, 6, 9, 12, 18}.
The highest non-trivial local minimum value is −3, it is realized for s = 9,
while w0(m) = w0(6) = 2−m = −4.

The graded root is the following:

rrrrr
r r
rr rr
�@

�
�

@
@

...

w0 = 0

w0 = −2

w0 = −4

R :

One can see also on R that there is the non-trivial local minimum with
degree −3 ̸≤ 2− 6.

At the start of our investigation we thought that the proof of the Main
Theorem 1.4 will be ‘easy’, we ‘just’ have to show that the local minimum
w0–values are non-increasing for local minimum points 0 ≤ s ≤ δ and (sym-
metrically) non-decreasing for local minimum points δ ≤ s ≤ 2δ = c. Well,
it turned out that this is not the case (hence we faced and had to investi-
gate a more complex structure). Already Example 1.5 and Example 1.2 (case
S2) provide examples of (non-necessarily plane) curve singularities when this
monotoneity of the local minimum values fails.

But, it fails even for plane curve singularities, even for irreducible germs
with one Puiseux pair.

Example 1.6. The weights of the local minimum points of w0 are not
necessarily monotone non-increasing between 0 and δ even for irreducible plane
curve singularities. For example if we take the singularity ({x11− y14 = 0}, 0),
then we get the following weight function:

ℓ . . . 54 55 56 57 58 59 . . .

SC . . . ◦ • • ◦ • ◦ . . .
w0 . . . −26 −27 −26 −25 −26 −25 . . .
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Here 55 and 58 are both local minima with w(55) = w(58)−1 but 58 < δ = 65.

In fact, one can construct for any n ∈ N an irreducible plane curve sin-
gularity for which, in the sequence of the weights of the local minimum points
between 0 and δ, there is a monotone increasing sequence of length at least n.

1.3.

In the body of the paper we provide four different proofs for the Main
Theorem. They reflect three different aspects of the theory of irreducible plane
curve singularities. For details regarding plane curve singularities see [5, 23,
24, 25].

The first two proofs are based on the combinatorics of the semigroup SC

(symmetry and some kind of ‘distribution’ property of the first generators).

The third proof uses the Apéry set of SC associated with its element m
[4]. Here we compare invariants associated with (C, 0) and the germ (C ′, 0)
obtained as the strict transform after one blow–up. Their Apéry sets are related
by a classical theorem of Apéry, but here we have to investigate further deeper
properties.

In fact the first three proofs are rather elementary. Most of the prepara-
tory parts are used only in the fourth proof.

In the fourth proof we investigate the embedded topological type: we use
the minimal embedded resolution graph Γ associated with (C, 0) ⊂ (C2, 0). We
rewrite the weight function in terms of a Riemann–Roch expression of certain
universal cycles of the resolution, and we use again the comparison between
(C, 0) and (C ′, 0).

1.4.

A considerable material, motivated by the fourth proof, but which might
have an independent interest, connects the embedded topology with the ab-
stract analytic setup. Namely, we establish a series of new statements con-
necting the combinatorics of the Lipman cone SΓ associated with the minimal
embedded resolution graph Γ with the combinatorics of the semigroup SC as-
sociated with the normalization of (C, 0). The connection is realized via a
sequence of universal cycles {x(ℓ)}ℓ (which was introduced earlier in the con-
text of almost rational normal surface singularities in [14]). In fact, in order
to establish this bridge, we needed to create and develop a little theory, which
will be useful in further studies and generalizations.
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The last section is also part of this discussion, it proves a new characteri-
zation of the Apéry set of the abstract semigroup SC in terms of the embedded
resolution graph Γ and the universal cycles {x(ℓ)}ℓ. This characterization re-
veals certain similarity between the third and fourth proofs.

1.5.

We proved our theorem for irreducible plane curve singularities. However,
we believe that the statement extends for non-irreducible germs as well.

Conjecture 1.7. The statement of Theorem 1.1 is true for any plane
curve singularity.

Since in this general case the structure of the semigroup of values is
much more complicated, one definitely needs some new techniques and ideas
to establish the proof in the extended case.

1.6.

The structure of the paper is the following. In section 2 we recall the
definition of the lattice cohomology and the graded root and some needed
properties. Additionally, we also prove some equivalences connecting their local
minimum points and values. Section 3 discusses the lattice cohomology of curve
singularities. The case of plane curve singularities is treated in section 4. Here
we review and prove several statements regarding the embedded topology, its
lattice, the structure of the Lipman cone, universal cycles, generalized Laufer
algorithms. We also re-express the weight function (originally defined from
the normalization of (C, 0) via the Hilbert function, or from SC) in terms
of embedded topological data. In section 5 we discuss the Apéry set of a
semigroup (associated with one of its elements), with a special emphasis on
plane germs. Sections 6,7,8 contain the four proofs. Section 9 contains the
new characterization of the Apéry set of SC in terms of Γ.

2. BASIC PROPERTIES OF LATTICE COHOMOLOGY AND
THE GRADED ROOT

2.1. Lattice cohomology associated with a weight function [14, 16]

2.1.1. Lattice with partial ordering. We consider a free Z–module,
with a fixed basis {Ei}i∈I , denoted by Zr (hence r = #{I}). There is a
natural partial ordering ≤ of Zr (and of Rr) defined coordinatewise induced
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by the fixed basis: for ℓ1, ℓ2 ∈ Zr with ℓj =
∑

i ℓjiEi (j = {1, 2}) one says that
ℓ1 ≤ ℓ2 if ℓ1i ≤ ℓ2i for all i.

The lattice cohomology construction associates a graded Z[U ]–module
with the pair (Zr, {Ei}i) and a set of compatible weight functions, see [14, 15,
16, 18]. In fact, the grading is 2Z–valued; we prefer this convention in order to
keep the compatibility with the Heegaard Floer (Link) theory, see [19]. (The
definition of a set of compatible weight functions will be given below in 2.1.)

2.1.2. Z[U ]–modules. Consider the graded Z[U ]–module Z[U,U−1], and
(following [20]) denote by T +

0 its quotient by the submodule U ·Z[U ]. This has
a grading in such a way that deg(U−d) = 2d (d ≥ 0). Similarly, for any n ≥ 1,
the quotient of U−(n−1) · Z[U ] by U · Z[U ] (with the same grading) defines the
graded module T0(n). Hence, T0(n), as a Z–module, is freely generated by
1, U−1, . . . , U−(n−1), and has finite Z–rank n.

More generally, for any graded Z[U ]–module P with d–homogeneous el-
ements Pd, and for any m ∈ Z, we denote by P [m] the same module graded
in such a way that P [m]d+m = Pd. Then define the modules T +

m := T +
0 [m]

and Tm(n) := T0(n)[m]. Hence, for m ∈ Z, T +
2m = Z⟨U−m, U−m−1, . . .⟩ as a

Z–module.

2.1.3. The cubical decomposition. Zr⊗R = Rr has a natural cellular
decomposition into cubes. The set of zero–dimensional cubes consists of the
lattice points Zr. Any ℓ ∈ Zr and any subset I ⊂ I of cardinality q define a
q–dimensional cube (ℓ, I), having vertices {ℓ+

∑
i∈I′ Ei}I′ , where I ′ runs over

all subsets of I. The set of q–dimensional cubes is denoted by Qq (0 ≤ q ≤ r).
(We regard these cubes as closed cubes, which contain their boundaries as
well.)

Next we consider a set of compatible weight functions w = {wq}q.

Definition 2.1. A set of functions wq : Qq → Z (0 ≤ q ≤ r) is called a set
of compatible weight functions if the following hold:

(a) for any integer k ∈ Z, the set w−1
0 ( (−∞, k] ) is finite;

(b) for any □q ∈ Qq and for any of its faces □q−1 ∈ Qq−1 one has
wq(□q) ≥ wq−1(□q−1).

In the present paper we will only give w0 : Q0 = Zr → Z and define the others
as follows:

(1) for any q–cube □q ∈ Qq : wq(□q) = max{w0(ℓ) : ℓ is a vertex of □q}.

When the dimension is clear from the context we will omit the index q from
our notation.
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2.1.4. The Sn spaces and the lattice cohomology. For each n ∈ Z
we define Sn = Sn(w) ⊂ Rr as the union of all the cubes □ (of any dimension)
with w(□) ≤ n. Clearly, Sn = ∅, whenever n < mw := min{w0(ℓ) : ℓ ∈ Zr}.
For any q ≥ 0, set

Hq(Rr, w) :=
⊕

n≥mw

Hq(Sn,Z) and Hq
red(R

r, w) :=
⊕

n≥mw

H̃q(Sn,Z).

Then Hq is Z (in fact, 2Z)–graded, the 2n–homogeneous elements Hq
2n con-

sist of Hq(Sn,Z). Also, Hq is a Z[U ]–module; the U–action is given by the
restriction map rn+1 : Hq(Sn+1,Z) → Hq(Sn,Z). The same is true for H∗

red.
Moreover, for q = 0, any fixed base point ℓw ∈ Smw ⊂ Sn provides an aug-
mentation H0(Sn,Z) = Z ⊕ H̃0(Sn,Z), hence an augmentation of the graded
Z[U ]–modules

H0 ≃ T +
2mw

⊕H0
red =

( ⊕
n≥mw

Z
)
⊕
( ⊕

n≥mw

H̃0(Sn,Z)
)

and H∗ ≃ T +
2mw

⊕H∗
red.

ThoughH∗
red(Rr, w) has finite Z–rank in any fixed homogeneous degree, in

general, without certain additional properties of w0, it is not finitely generated
over Z, in fact, not even over Z[U ].

2.1.5. Restrictions. Assume that T ⊂ Rr is a subspace of Rr consisting
of a union of some (closed) cubes (from Q∗). For any q ≥ 0 define Hq(T,w)
as ⊕n≥min (w0|T )H

q(Sn∩T,Z). It has a natural graded Z[U ]–module structure.
The restriction map induces a natural graded Z[U ]–module homomorphism

r∗ : H∗(Rr, w) → H∗(T,w) (of degree zero).

In some cases it can happen that the weight functions are defined only
for cubes belonging to T .

In our applications, T (besides the trivial T = Rr case) will be one of the
following: (i) the rectangle R(0, c) = {x ∈ Rr : 0 ≤ x ≤ c} for some lattice
point c ≥ 0, or (ii) the first quadrant (R≥0)

r.

2.1.6. The Euler characteristic of H∗ [17]. Let T be as in 2.1.5 and
assume that each Hq

red(T,w) has finite Z–rank. (This happens automatically
when T is a finite rectangle.) We define the Euler characteristic of H∗(T,w) as

eu(H∗(T,w)) := −min{w(ℓ) : ℓ ∈ T ∩ Zr}+
∑
q

(−1)qrankZ(Hq
red(T,w)).

2.2. Graded roots and their cohomologies [14, 15]

Definition 2.2.
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(1) Let R be an infinite tree with vertices V and edges E. We denote by [u, v]
the edge with end-vertices u and v. We say that R is a graded root with grading
χ : V → Z if

(a) χ(u)− χ(v) = ±1 for any [u, v] ∈ E;

(b) χ(u) > min{χ(v), χ(w)} for any [u, v], [u,w] ∈ E, v ̸= w;

(c) χ is bounded from below, χ−1(n) is finite for any n ∈ Z, and
#{χ−1(n)} = 1 if n≫ 0.

(2) v ∈ V is a local minimum point of the graded root (R, χ) if χ(v) < χ(w)
for any edge [v, w]. The set of local minimum points is denoted by Vlm.

(3) An isomorphism of graded roots is a graph isomorphism, which preserves
the gradings.

For some examples and general constructions see [14].

Remark 2.3. (1) For any vertex v set κv := #{w ∈ V : [v, w] ∈ E}.
One can verify that the set of vertices {v ∈ V : κv = 1} are exactly the

local minimum points Vlm of χ, and #
(
Vlm

)
<∞.

(2) A geodesic path connecting two vertices is monotone if χ restricted
to the set of vertices on the path is monotone. If a vertex v can be connected
to another vertex w by a monotone geodesic and χ(v) > χ(w), then we say
that v dominates w, and we write v ≻ w. ≻ is a partial ordering of V. It
is easy to see that for any pair v, w ∈ V there is a unique ≻–minimal vertex
sup(v, w) which dominates both.

Definition 2.4. (The Z[U ]–modules associated with a graded root.) Let us
identify a graded root (R, χ) with its topological realization provided by ver-
tices (0–cubes) and segments (1–cubes). Set the weight functions w0(v) = χ(v),
and w1([u, v]) = max{χ(u), χ(v)} and let Sn be the union of all cubes with
weight ≤ n. Then we might set (as above) H∗(R, χ) =

⊕
n≥minχH

∗(Sn,Z).
However, at this time H≥1(R, χ) = 0; so we set H(R, χ) := H0(R, χ). Sim-
ilarly, one defines Hred(R, χ) using the reduced cohomology, hence, as usual
H(R, χ) ≃ T +

2minχ ⊕ Hred(R, χ). The U–action is induced by the inclusions
Sn ↪→ Sn+1 similarly to paragraph 2.1.4. (For a different description of H(R, χ)
see [14].)

Example 2.5. (a) For any integer n ∈ Z, let Rn be the tree with vertices
V = {vk}k≥n and edges E = {[vk, vk+1]}k≥n. The grading is χ(vk) = k. Then
H(Rn) = T +

2n.

(b) The graded roots R1 and R2
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χ = 0

R2 :

are not isomorphic but the graded Z[U ]–modules associated to them are:
H(R1) = H(R2) = T +

−6 ⊕ T−4(1) ⊕ T−4(2), see Lemma 2.6. Hence, in gen-
eral, a graded root carries more information than its Z[U ]–module.

Lemma 2.6. [14] Let (R, χ) be a graded root. We order the set Vlm of
local minimum points as follows. The first element v1 is an arbitrary vertex
with χ(v1) = min{χ(v) : v ∈ Vlm}. If v1, . . . , vk is already determined, and
J := {v1, . . . , vk} ⊊ Vlm, then let vk+1 be an arbitrary vertex in Vlm \ J with
χ(vk+1) = min{χ(v) : v ∈ Vlm \ J}. Let wk+1 ∈ V be the unique ≻–minimal
vertex of R which dominates both vk+1, and at least one vertex from J . Then
one has the following isomorphism of Z[U ]–modules

H(R, χ) ≃ T +
2χ(v1)

⊕
⊕
k≥2

T2χ(vk)
(
χ(wk)− χ(vk)

)
.

In particular, with the notations minχ := min{χ(v) : v ∈ Vlm} and

Hred(R, χ) :=
⊕
k≥2

T2χ(vk)
(
χ(wk)− χ(vk)

)
,

one has a canonical direct sum decomposition: H(R, χ) ≃ T +
2minχ⊕Hred(R, χ).

The Z[U ]–module Hred(R, χ) has finite Z–rank. Moreover, Hred(Rχ) = 0 if and
only if #

(
Vlm

)
= 1 and R = Rminχ.

Remark 2.7. The Z[U ]–module splitting H(R, χ) ≃ T +
2m0

⊕Hred(R, χ) and
the presentation ofHred(R, χ) as

⊕
k T2mk

(nk) are (non–natural but) canonical:
the integersm0 and {(mk, nk)}k depend only on the Z[U ]–module isomorphism
type of H(R, χ). Indeed, the summand T +

2m0
can be characterized as follows:

2m0 is the smallest degree of a homogeneous element x ∈ H(R, χ) which can
be written as Uky for arbitrarily large k. Then, one proves the existence of
a graded Z[U ]–module splitting H(R, χ) ≃ T +

2m0
⊕ Hred(R, χ). For H(R, χ)

associated with a graded root as above, one sees that m0 = minχ.
Next we concentrate on Hred(R, χ). Let us consider a torsion module M

and let M2k = {x ∈M | deg(x) = 2k}. Define

2l := max{deg(x) : x ∈M homogeneous}
and take the submodule generated by M2l, i.e.

∑
k U

kM2l ≤ M. Denote
by n := min{k ∈ N | ker(Uk|M2l

) ̸= 0}. Then the submodule
∑

k U
kM2l will
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have r := rankZker(U
n|M2l

) many direct summands of the form T2m(n) with
m = l − n + 1. Hence M splits as M′ ⊕

⊕r
i=1 T2m(n) and we may proceed by

induction.

In particular, H(R, χ) can be written in the form T +
2m0

⊕
⊕

k≥1 T2mk
(nk)

in a unique way.

2.2.1. Degrees of the local minimum points. Consider the multiset
χ
(
Vlm

)
of the degrees of the local minimum points of the graded root. It can

be recovered from the U–action on H(R, χ) in the following way:

Proposition 2.8. The degree m appears in the multiset χ
(
Vlm

)
with

multiplicity km, where

km = rankZ

(
ker

(
H2m(R, χ)

U−→ H2m−2(R, χ)
))

.

Proof. Use the canonical direct sum decomposition of Lemma 2.6.

2.3. The graded root of a lattice and its local minimum points

2.3.1. The graded root associated with a lattice and a weight
function. Fix a free Z–module, a basis {Ei}i, and a system of compatible
weight functions {wq}q. Consider the sequence of topological spaces (finite
cubical complexes) {Sn}n≥mw with Sn ⊂ Sn+1 defined in paragraph 2.1.4. Let
π0(Sn) = {C1

n, . . . , C
pn
n } be the set of connected components of Sn.

Then we define the graded graph (Rw, χw) as follows. The vertex set
V(Rw) is ∪n∈Zπ0(Sn). The grading χw : V(Rw) → Z is χw(Cj

n) = n, that
is, χw|π0(Sn) ≡ n. Furthermore, if Ci

n ⊂ Cj
n+1 for some n, i and j, then we

introduce an edge [Ci
n, C

j
n+1]. All the edges of Rw are obtained in this way.

One verifies that (Rw, χw) satisfies all the required properties of the def-
inition of a graded root, except maybe the last one: |χ−1

w (n)| = 1 whenever
n ≫ 0. However, the graded roots associated with plane curve singularities
satisfy this condition as well (cf. Theorem 3.2).

This construction also works for weighted subcomplexes (T,w) as in para-
graph 2.1.5.

Proposition 2.9. [18, Theorem 11.2.15] If (Rw, χw) is a graded root
associated with (T,w) and #{χ−1

w (n)} = 1 for all n≫ 0, then

H(Rw, χw) = H0(T,w).

Definition 2.10. Consider a closed cubical complex T as in paragraph
2.1.5 and compatible weight functions {wq}q on it. Then a lattice point ℓ is a
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local minimum point of w if

w0(ℓ) < wq(□q) for all q–cubes □q such that ℓ is a vertex of □q.

In this case, w0(ℓ) is called a local minimum value. Let us denote the set of
local minimum points of w0 by Wlm.

Remark 2.11. If the weight functions {wq}q≥1 are derived from w0 through
formula (1), then ℓ is a local minimum point if and only if

w0(ℓ) < w0(ℓ± Ei) for all i ∈ I.
This definition is in fact adopted to our case of the weight functions of curve
singularities. For arbitrary weight functions w0 (e.g. for the topological weight
function of surface singularities, cf. [16]) it can happen that w0 is constant
along a larger zone (cubical subcomplex). However, the weight function of
curve singularities satisfies w0(ℓ) ̸= w0(ℓ ± Ei) for all ℓ and i (see Remark
3.1). This explains why we choose the above simple version in Definition 2.10.
It also has the consequence that the ‘local minimum zones’ of w0 are in fact
isolated points.

The local minimum points of a graded root (Rw, χw) correspond to the
local minimum points of the weight function w:

Proposition 2.12. The map ψ : Wlm → Vlm : ℓ 7→ Cj
w0(ℓ)

, where

ℓ ∈ Cj
w0(ℓ)

, is a well-defined injection. If the weight functions are defined via

(1) and we also know that w0(ℓ) ̸= w0(ℓ ± Ei) for all ℓ and i ∈ I (like in the
case of the lattice cohomology of curve singularities, see Remark 3.1), then ψ
is a bijection.

Proof. By Definition 2.10 the local minimum lattice point ℓ must be a
distinct component of Sw0(ℓ), and thus this component Cj

w0(ℓ)
cannot have any

preimage under the injection Sw0(ℓ)−1 ↪→ Sw0(ℓ) therefore κCj
w0(ℓ)

= 1. So ψ is

indeed well-defined and clearly injective.
For surjectivity we have to prove that every component Cj

n, with no preim-
age under the inclusion Sn−1 ↪→ Sn, must consist of a single lattice point ℓ with
weight w0(ℓ) = n. As Cj

n ⊂ Sn \ Sn−1, then all its cubes must have weight n,
but as w0(ℓ) ̸= w0(ℓ±Ei) for all i ∈ I, it cannot contain adjacent lattice points,
so neither higher dimensional cubes, thus, by connectivity, Cj

n must just be a
single lattice point.

Corollary 2.13. Take a closed cubical complex T as in paragraph 2.1.5
and compatible weight functions {wq}q on it, defined by the identities of (1),
having the property that

w0(ℓ) ̸= w0(ℓ± Ei) for all ℓ and i ∈ I.
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Consider the lattice cohomology module H(T,w) and the graded root R(T,w)
associated with it. Then w(Wlm) = χ(Vlm) as multisets, and they can be
recovered from the Z[U ]–module structure of H(T,w) as well.

3. THE LATTICE COHOMOLOGY OF CURVES

3.1. The definition and first properties of the lattice cohomology [3]

3.1.1. Some classical invariants of a curve via its normalization.
Let (C, o) be an isolated curve singularity with local algebra O = OC,o. Let
∪r
i=1(Ci, o) be the irreducible decomposition of (C, o) and denote the local

algebra of (Ci, o) by Oi. We denote the integral closure of Oi by Oi = C{ti},
and we consider Oi as a subring of Oi. Similarly, we denote the integral closure
of O by O = ⊕iC{ti}. Let δ = δ(C, o) be the delta invariant dimC O/O of the
germ (C, o).

We denote by vi : Oi → Z≥0 = Z≥0 ∪ {∞} the discrete valuation of
Oi, where vi(0) = ∞. This restricted to Oi reads as vi(g) = ordti(g) for any
g ∈ Oi. Let SC = (v1, . . . , vr)(O) ∩ (Z≥0)

r, or

SC = {v(g) := (v1(g), . . . , vr(g)) : g is a non-zero divisor in O} ⊂ (Z≥0)
r.

It is called the semigroup (monoid) of values of (C, o).
Let c = (O : O) be the conductor ideal of O, it is the largest ideal of

O which is an ideal of O too. It has the form (tc11 , . . . , t
cr
r )O. The lattice

point c = (c1, . . . , cr) is called the conductor of SC . From the definitions,
c+ (Z≥0)

r ⊂ SC and c is the smallest lattice point with this property. I.e.

(2) c+ (Z≥0)
r = {v(g) | g ∈ c}.

In the case of irreducible curves, the delta invariant can be computed from
the semigroup: δ(C, o) = #{Z≥0 \ SC}, in contrast with multiple components,
where #{Zr

≥0 \ SC} = ∞.

3.1.2. The valuative filtrations. Consider the lattice Zr with its nat-
ural basis {Ei}ri=1 and partial ordering defined coordinatewise (cf. paragraph
2.1.1). If ℓ = (ℓ1, . . . , ℓr) ∈ Zr we set |ℓ| :=

∑
i ℓi. Then O has a fil-

tration indexed by ℓ ∈ Zr given by F(ℓ) := {g ∈ O : v(g) ≥ ℓ}. No-
tice that F(ℓ) = F(max{ℓ, 0}). This induces an ideal filtration of O by
F(ℓ) := F(ℓ) ∩ O ⊂ O. By (2) we have F(c) = F(c) = c.

Set h(ℓ) = dimO/F(ℓ). Then h is increasing and h(0) = 0. It is called
the Hilbert function of the filtration.

If (C, o) is not smooth, dim(O/c) = |c| and dim(O/c) = h(c) implies that
δ = |c| − h(c). Since h(c) ≥ 1, δ ≤ |c| − 1, with equality if and only if c is the
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maximal ideal of O. On the other hand, δ ≥ |c|/2, with equality if and only if
(C, o) is Gorenstein (cf. [22, page 72]).

3.1.3. The weight functions. We consider the lattice Zr with its fixed
basis {Ei}ri=1, and the functions h and | · | defined in paragraph 3.1.2. We also
set I := {1, . . . , r}. For the construction of the lattice cohomology of (C, o)
we consider the lattice points Zr in Rr and the cubes from Rr. The weight
function on the lattice points ℓ ∈ Zr is defined by

w0(ℓ) = 2 · h(ℓ)− |ℓ|,

and for any q-cube □ ∈ Qq, wq(□) := max{w0(ℓ) : ℓ is a vertex of □}.

Remark 3.1. Notice that this weight function satisfies the property that

w0(ℓ) ̸= w0(ℓ± Ei) for all ℓ and i ∈ I.

Indeed, the two sides of the equation have different parity. Therefore the
compatible weight functions {wq}q satisfy the conditions of Proposition 2.12.

In fact, if (C, o) is irreducible, w0(ℓ+Ei) = w0(ℓ)+1 if and only if ℓ ∈ SC

and w0(ℓ+ Ei) = w0(ℓ)− 1 if and only if ℓ ̸∈ SC .

3.1.4. The lattice cohomology and the graded root. The cubi-
cal decomposition of Rr and the weight function ℓ 7→ w0(ℓ) define a lattice
cohomology and a graded root. They are denoted by H∗(C, o) and R(C, o)
respectively. From the very construction we get

Hq(C, o) = 0 for any q ≥ r.

Theorem 3.2. [3]
(a) For any c ≥ c the inclusion Sn ∩R(0, c) ↪→ Sn is a homotopy equiva-

lence. In particular, Sn is contractible for n≫ 0.

(b) One has a graded Z[U ]–module isomorphism H∗(C, o) = H∗(R(0, c), w)
and a graded root isomorphism R(C, 0) = R(R(0, c), w) for any c ≥ c induced
by the natural inclusion map. Therefore, H∗(C, o) and R(C, 0) are determined
by the weighted cubes of the rectangle R(0, c) and H∗

red(C, o) has finite Z–rank.

(c) eu(H∗(C, o)) = δ(C, o), that is, H∗(C, o) is a ‘categorification’ of the
delta invariant δ(C, o).

4. PLANE CURVE SINGULARITIES

4.1. Embedded resolutions of plane curve singularities

Let (C, 0) ⊂ (C2, 0) be an isolated plane curve singularity. This means
that it is the zero set of a single reduced holomorphic germ f ∈ OC2,0.
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In this section we consider certain objects associated with the embed-
ded data and they will be compared with the abstract geometry of the germ
discussed in section 3.

A good embedded resolution of (C, 0) is a proper map ϕ : X̃ → S, where
X̃ is a two dimensional complex manifold, S ⊂ C2 is a small Stein represen-
tative of the space–germ (C2, 0), ϕ∗f is a normal crossing divisor, and the
restriction

ϕ
∣∣
X̃\E : X̃ \ E → S \ {0}

is an analytic isomorphism. The map ϕ is a minimal good embedded resolution,
if any other good embedded resolution dominates it. Any good embedded res-
olution can be achieved by a sequence of blow–ups. For more details regarding
the resolution, the dual graph, etc. see [5, 25].

We assume that (C, 0) is not smooth, hence E is 1–dimensional.

4.2. Lattices for irreducible plane curve singularities

4.2.1. Lattice associated to a resolution. Let ϕ : X̃ → C2 be the
minimal good embedded resolution of (C, 0) ⊂ (C2, 0) — fixed hereinafter
— with dual embedded resolution graph Γ, whose vertices are numbered by
{1, . . . , n} in order of appearance in the blow–up procedure. E.g., E1 is the
exceptional curve of the first blow–up and En of the very last one (which
supports the strict transform of (C, 0)). We also write V for the indexing set
{1, . . . , n}. Let {Ev}v∈V be the corresponding irreducible components of the
exceptional set E = ϕ−1(0). Γ is a connected tree and all Ev are rational. The
link Σ = ∂B4 = ∂X̃ is S3 [5, 25].

Define the lattice L = H2(X̃,Z). It is freely generated by the classes of
the exceptional divisors Ev, v ∈ V, that is, L = ⊕v∈VZ⟨Ev⟩. L carries a natural
negative–definite intersection form ⟨−,−⟩Γ. For more details regarding L, see
[18]. Set L′ := Hom(H2(X̃,Z),Z). L′ can be identified with H2(X̃,Σ,Z) via
the perfect pairing L⊗H2(X̃,Σ,Z) → Z.

By the homology exact sequence of the pair (X̃,Σ) one has

0 → L→ H2(X̃,Σ,Z) → H1(Σ,Z) → 0.

In particular, L′/L ∼= H1(Σ,Z) = 0. It is convenient to introduce the dual
generator set for L′ too, namely L′ = ⊕v∈VZ⟨E∗

v⟩, where ⟨E∗
u, Ev⟩Γ = −δu,v

(Kronecker delta) for any u, v ∈ V. The elements E∗
v have the following ge-

ometrical interpretation: let Dv ⊂ X̃ be a curvetta associated with Ev, that
is, a smooth irreducible curve in X̃ intersecting Ev transversely at a generic
point. Then the divisor Dv+E

∗
v is numerically trivial, i.e. (Dv+E

∗
v , Eu)X̃ = 0

for any u.
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4.2.2. Divisors of functions. If g : (C2, 0) → (C, 0) is the germ of
an analytic function, then the divisor div(g ◦ ϕ) on X̃ is the sum of a divisor
divE(ϕ

∗g) =
∑

vmvEv supported on E (where mv is the vanishing order of
ϕ∗g := g ◦ ϕ along Ev) and of the strict transform str{g = 0} of {g = 0}.

For example, if f is irreducible and ϕ is the minimal good embedded
resolution, then the strict transform str{f = 0} = str(C) intersects E along
En transversely, and divE(ϕ

∗f) = E∗
n.

Note also that if v is the valuation associated with the irreducible plane
curve germ f (cf. subsection 3.1.1), then v(g) = i0(f, g) for any germ g, where
i0(f, g) denotes the intersection multiplicity of f and g at 0 ∈ C2.

Lemma 4.1. (a) For any g ∈ OC2,0 one has i0(g, f) ≥ multEn(divE(ϕ
∗g)),

with equality if and only if str{g = 0} ∩ str{f = 0} = ∅.
(b) If additionally the strict transform of {g = 0} intersects En, then

multEn(divE(ϕ
∗g)) ≥ multEn(divE(ϕ

∗f)).

Proof. Set p := str{f = 0} ∩ En. Then by the projection formula
i0(f, g) = multEn(divE(ϕ

∗g)) + ip(str{f = 0}, str{g = 0}), which implies
(a). The divisor divE(ϕ

∗g) + str{g = 0} is linearly equivalent to zero, hence
divE(ϕ

∗g) =
∑

v(str{g = 0}, Ev)X̃E
∗
v . Since (str{g = 0}, En)X̃ ≥ 1 we get

that divE(ϕ
∗g)−divE(ϕ

∗f) can be written as
∑

v nvE
∗
v with nv ≥ 0. Then use

4.2.3(a).

4.2.3. The Lipman cone. For l1, l2 ∈ L with li =
∑

v livEv (i = 1, 2)
one considers the usual partial ordering: l1 ≥ l2 if and only if l1v ≥ l2v for all
v ∈ V. The cycle l ∈ L is called effective if l ≥ 0 with respect to this ordering.
We also set min{l1, l2} :=

∑
v min{l1v, l2v}Ev.

For any fixed resolution with graph Γ we define the Lipman cone by

SΓ := {l ∈ L | ⟨l, Ev⟩Γ ≤ 0 for all v ∈ V}.

From the definition of the dual base elements {E∗
v}v one deduces that SΓ is

a cone generated over Z≥0 by these {E∗
v}v. Moreover, one has the following

additional properties ((a) follows from the fact that for any v all the entries of
E∗

v are strict positive, see e.g. [18, Corollary 2.1.19]):

(a) if s ∈ SΓ \ {0} then all the entries of s are strict positive;

(b) s1, s2 ∈ SΓ implies min{s1, s2} ∈ SΓ;

(c) for any g ∈ OC2,0 one has divE(ϕ
∗g) ∈ SΓ;

(d) for any s ∈ SΓ \{0} there exists an analytic function germ g ∈ OC2,0 such
that divE(ϕ

∗g) = s, see e.g. [18, 7.1.13]. In fact, we have the following
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additional base-point freeness property as well: for any point p ∈ E one
can choose the germ g in such a way that p ̸∈ str{g = 0}.
Indeed, the cycle s can be completed in X̃ by some curvettas D such
that the divisor s+D is numerically trivial on X̃ and p does not belong
to the support of D. Then, since Pic0(X̃) = 0, there exists g with
div(ϕ∗g) = s+D (cf. [18, Prop. 7.1.10]).

4.2.4. The anticanonical cycle. The anticanonical cycle ZK ∈ L is
characterized uniquely by the linear system of adjunction relations

⟨−ZK + Ev, Ev⟩Γ + 2 = 0, for all v ∈ V.

(Since the intersection matrix is unimodular, the solution is indeed an integral
cycle.) One can define ZK also as the negative of the divisor of the differential
form ϕ∗(dx ∧ dy), where (x, y) are analytic local coordinates of (C2, 0). E.g.
the pullback of dx ∧ dy after the first blow–up is d(st) ∧ dt = tds ∧ dt, hence
multE1(ZK) = −1. By induction, one verifies that −ZK ≥ E.

Lemma 4.2. In fact, −ZK ≥ E∗
1 (and by paragraph 4.2.3, E∗

1 ≥ E).

Proof. Assume that (x, y) are analytic local coordinates, whith x generic.
Then its strict transform is a generic curvetta of E1, so divE(ϕ

∗x) = E∗
1 .

Hence, what we have to show is that divE(ϕ
∗ dx∧dy

x ) is effective. This follows
by induction on the number of blow–ups.

4.2.5. The Riemann–Roch expression. For any non-zero effective
cycle l ∈ L, the analytic Euler characteristic χ(Ol) = h0(Ol) − h1(Ol) can be
computed combinatorially: χ(Ol) = −⟨l, l − ZK⟩Γ/2 by the Riemann–Roch
theorem. This motivates the definition χ(l) := χ(Ol) = −⟨l, l − ZK⟩Γ/2 for
any l ∈ L.

4.3. Generalities about computation sequences

Definition 4.3. Sequences z0, z1, . . . , zt ∈ L with zi+1 = zi + Ev(i) (for
0 ≤ i < t), where v(i) is determined by some principles fixed in each individual
case, are called computation sequences connecting z0 and zt.

Lemma 4.4. [14, Lemma 7.4] For any l ∈ L, there exists a unique minimal
lattice point s ∈ L with the properties s ≥ l and s ∈ SΓ. We call it s(l).
Equivalently, this is the unique minimal element of {s ∈ SΓ : s− l ∈ L≥0}.

Lemma 4.5. (Generalized Laufer’s algorithm [12, 14]) Let l ∈ L.
Construct a computation sequence z0, . . . , zt by the following algorithm. Set
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z0 = l. Assume that zi is already constructed. If zi ̸∈ SΓ, i.e. ⟨zi, Ev(i)⟩Γ > 0
for some index v(i), and write zi+1 = zi+Ev(i). If zi ∈ SΓ, then stop and write
t = i. The procedure necessarily stops after finitely many steps, and zt ∈ SΓ is
exactly s(l) considered in Lemma 4.4.

In the next paragraphs we wish to generalize Lemmas 4.4 and 4.5. We
prefer to write V = {n} ∪ V∗, hence to distinguish the base element En (which
intersects str{f = 0}).

Lemma 4.6. [14] For any integer ℓ ≥ 0, there exists a unique cycle
x(ℓ) ∈ L, in the sequel called ‘universal cycle’, with the following properties:

(a) multEn(x(ℓ)) = ℓ;
(b) ⟨x(ℓ), Ev⟩Γ ≤ 0 for any v ∈ V∗;
(c) x(ℓ) is minimal with properties (a) and (b).

Moreover, the cycle x(ℓ) satisfies x(ℓ) ≥ 0.

Lemma 4.7. (The computation sequence from x(ℓ) to x(ℓ+1) [14])
For any integer ℓ ≥ 0 consider a computation sequence constructed as follows.
Set z0 = x(ℓ), z1 = x(ℓ) + En. Assume that zi (i ≥ 1) is already constructed.
If zi does not satisfy 4.6 (b), then there exists some v ∈ V∗ with ⟨zi, Ev⟩Γ > 0.
Then choose one of these indices for v(i), and write zi+1 = zi + Ev(i). If zi
satisfies 4.6 (b), then stop and write t = i. Then zt is exactly x(ℓ + 1). In
particular, x(ℓ+ 1) > x(ℓ).

Lemma 4.5 has the following easy generalization (with the same proof):

Lemma 4.8. Assume that ℓ ∈ L satisfies multEn(ℓ) = ℓ and ℓ ≤ x(ℓ)
for some ℓ ≥ 0. Consider a similar computation sequence as in Lemma 4.7.
Namely, set z0 = ℓ. Assume that zi is already constructed. If for some v ∈ V∗

one has ⟨zi, Ev⟩Γ > 0 then take zi+1 = zi + Ev(i), where v(i) is such an index
v. If zi satisfies 4.6 (b), then stop and write t = i. Then zt is exactly x(ℓ).

Notice that, even if it is not explicitly emphasized in its notation, the cy-
cles {x(ℓ)}ℓ≥0 depend on the choice of the distinguished vertex En. For the
definition and properties of the cycle x(ℓ) in more general situations see e.g.
[9, 10, 14].

Lemma 4.9 below describes when the two universal cycles s(ℓEn) and x(ℓ)
coincide.

Lemma 4.9. The following facts are equivalent:

(a) ⟨x(ℓ), En⟩Γ ≤ 0,
(b) x(ℓ) ∈ SΓ, i.e. x(ℓ) belongs to the Lipman cone of Γ,
(c) x(ℓ) = s(ℓEn),
(d) ℓ ∈ SC , i.e. ℓ is an element of the numerical semigroup of (C, 0).
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Proof. (c)⇒(a)⇒(b) are clear from the definitions. Assume (b), Lemma
4.8 applied for l = ℓEn and Lemma 4.5 imply (c). Next we prove (b)⇒(d).
Part (d) of subsection 4.2.3 guarantees the existence of some g ∈ OC2,0 such
that divE(ϕ

∗g) = x(ℓ) and str{g = 0} ∩ str{f = 0} = ∅. In particular (see
Lemma 4.1), i0(f, g) = multEn(divE(ϕ

∗g)) = divEn(x(ℓ)) = ℓ, hence ℓ ∈ SC .
Finally we prove (d)⇒(a). For any ℓ ∈ SC there exists a function germ

g such that ℓ = i0(f, g). By [23] we can choose g such that the strict trans-
form of g intersects only those exceptional components Ev with κv = 1. In
particular, str{g = 0} ∩ str{f = 0} = ∅ and multEn(divE(ϕ

∗g)) = ℓ. Since
⟨divE(ϕ∗g), Ev⟩Γ ≤ 0 for any v ∈ V, from the minimality of x(ℓ) we obtain
x(ℓ) ≤ divE(ϕ

∗g). That is, divE(ϕ
∗g) − x(ℓ) is an effective cycle whose sup-

port does not contain En. Therefore, ⟨divE(ϕ∗g) − x(ℓ), En⟩Γ ≥ 0. Hence
⟨x(ℓ), En⟩Γ ≤ ⟨divE(ϕ∗g), En⟩Γ = 0.

4.4. Comparison of the abstract geometry with the embedded one

We fix an irreducible plane curve singularity (C, 0) = ({f = 0}, 0). Recall
that for any ℓ ∈ Z≥0 we can define the ideal F(ℓ) = {g ∈ OC,0 : v(g) ≥ ℓ}, cf.
paragraph 3.1.2. Let q : OC2,0 → OC,0 be the natural projection. This defines
the ideal q−1F(ℓ) = {g ∈ OC2,0 : i0(f, g) ≥ ℓ} in OC2,0.

On the other hand, in the presence of the minimal good embedded res-
olution ϕ of (C, 0) ⊂ (C2, 0) we have the effective cycle x(ℓ) and the ideal
(ϕ∗(OX̃(−x(ℓ))))0 of OC2,0 as well. Here (ϕ∗G)0 denotes the stalk at 0 ∈ C2 of

ϕ∗G for any sheaf G over X̃. [The fact that an element h ∈ (ϕ∗(OX̃))0 belongs
to OC2,0 can be seen by the next well-known argument: h is a holomorphic
function in a neighbourhood of E, but since E is compact, h should be con-
stant along E. Hence it factorizes to a continuous function in a neighbourhood
of 0 ∈ C2, which is holomorphic in a punctured neighbourhood. Hence it is
holomorphic by the normality of OC2,0.]

Lemma 4.10.
(a) (ϕ∗(OX̃(−x(ℓ))))0 ⊂ q−1(F(ℓ)) for any ℓ ≥ 0.
(b) q−1(F(ℓ)) ⊂ (ϕ∗(OX̃(−x(ℓ))))0 for any 0 ≤ ℓ ≤ multEnF , where

F := divE(ϕ
∗f) = E∗

n.

Proof. (a) If g ∈ (ϕ∗(OX̃(−x(ℓ))))0 then divE(ϕ
∗g) ≥ x(ℓ), hence

multEn(divE(ϕ
∗g)) ≥ multEn(x(ℓ)) = ℓ.

Then by Lemma 4.1(a) i0(f, g) ≥ ℓ, that is, g ∈ q−1F(ℓ).
(b) Take g ∈ q−1F(ℓ), i.e. i0(f, g) ≥ ℓ. First we prove that

multEn(divE(ϕ
∗g)) ≥ ℓ.
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If str{f = 0} ∩ str{g = 0} = ∅, then multEn(divE(ϕ
∗g)) = i0(f, g) ≥ ℓ by

Lemma 4.1(a).

If str{f = 0}∩ str{g = 0} ≠ ∅, then multEn(divE(ϕ
∗g)) ≥ multEnF by Lemma

4.1(b), which is greater than or equal to ℓ by assumption.

Finally, we have that x(ℓ) ≤ x(multEn(divE(ϕ
∗g))) by the monotonicity

of the x–operator (cf. Lemma 4.7), and x(multEn(divE(ϕ
∗g))) ≤ divE(ϕ

∗g) by
the fact that divE(ϕ

∗g) ∈ SΓ and by the universality of the x–operator.

Remark 4.11. The inclusion from part (b) is not true in general without
the assumption ℓ ≤ multEnF . Take e.g. g ∈ OC2,0 such that its strict transform
is smooth, it intersects En transversely at the point p = En∩str{f = 0}. Then
divE(ϕ

∗g) = F . Choose ℓ as

i0(f, g) = multEn(F ) + ip(str{f = 0}, str{f = 0}) > multEn(F ),

hence x(ℓ) > F (use e.g. Example 4.12). Then we have g ∈ q−1F(ℓ) but
g ̸∈ (ϕ∗(OX̃(−x(ℓ)))0.

4.4.1. The universal cycle associated to the conductor. In some
cases the cycle x(ℓ) is a distinguished geometrical cycle closely related with the
geometry of f , or with the cycle F .

Example 4.12. If ℓ = multEnF then x(ℓ) = F . Indeed, since ℓ = multEnF
and F ∈ SΓ, we get x(ℓ) ≤ F . Set y := F − x(ℓ). It is effective and it is sup-
ported on ∪v ̸=nEv. Also, ⟨y,Ev⟩Γ = ⟨E∗

n−x(ℓ), Ev⟩Γ ≥ 0 for any v ̸= n. Hence,
by summation, ⟨y, y⟩Γ ≥ 0, which together with the negative definiteness of
the intersection form implies y = 0.

Example 4.13. (The computation of x(c)) Let c be the conductor of SC .
Note that

multEn(F + ZK) = ⟨−E∗
n, F + ZK⟩Γ = ⟨−F, F + ZK⟩Γ = 2χ(−F ).

But, from [18, page 188] we know that 2χ(−F ) = 2δ(C, 0) (this is basically
A’Campo’s formula for the Milnor number µ(C, 0) = 2δ(C, 0)). Moreover, in
this plane curve case 2δ(C, 0) = c (see also subsection 5.2). It follows that
multEn(F + ZK) = c. On the other hand, multEn(ZK) < 0 (cf. Lemma 4.2).
Therefore, c < multEn(F ). Since F(c) = c, the conductor ideal, from Lemma
4.10 we deduce that

(3) q−1c = (ϕ∗(OX̃(−x(c)))0.

Our goal is to prove the following fact: in the minimal good embedded resolu-
tion of (C, 0)

(4) x(c) = F + ZK .
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The proof runs over several steps. Using F ∈ SΓ and the adjunction formulae
for ZK , one verifies that F +ZK ∈ SΓ too. This, together with the minimality
of x(c) and the fact that multEn(F + ZK) = c, implies that x(c) ≤ F + ZK .

In order to show the opposite inequality, we first prove that

q−1c = (ϕ∗(OX̃(−F − ZK)))0,

the analogue of (3). Note that F + ZK ∈ SΓ and multEn(F + ZK) = c > 0,
hence F + ZK is non-zero and effective (cf. paragraph 4.2.3). In particular,
(ϕ∗(OX̃(−F − ZK)))0 is an ideal in OC2,0.

Now, we compare the ideals (ϕ∗(OX̃(−F − ZK)))0 and q−1c.
Take some g ∈ (ϕ∗(OX̃(−F − ZK)))0. That is, g ∈ OC2,0 satisfies

divE(ϕ
∗g) ≥ F + ZK . Then, from Lemma 4.1, we have

i0(f, g) ≥ multEn(divE(ϕ
∗g)) ≥ multEn(F + ZK) = c.

Thus, via (2), (ϕ∗(OX̃(−F − ZK)))0 ⊂ q−1c. Next we prove that both ideals
(ϕ∗(OX̃(−F − ZK)))0 and q−1c of OC2,0 have the same finite codimension in
OC2,0.

Indeed, consider the exact sequence of the higher direct image sheaves

0 (ϕ∗(OX̃(−F − ZK)))0 (ϕ∗(OX̃))0 = OC2,0 H0(OF+ZK
)

(R1ϕ∗(OX̃(−F − ZK)))0︸ ︷︷ ︸
=0 by Grauert–Riemenschneider

(R1ϕ∗(OX̃))0︸ ︷︷ ︸
=0, since pg(C2,0)=0

H1(OF+ZK
)︸ ︷︷ ︸

=0 by exactness

0.

For the Grauert–Riemenschneider vanishing theorem see [7] (or [18, Theorem
6.4.3]). Thus

dimC
OC2,0

(ϕ∗(OX̃(−F − ZK)))0
= χ(F + ZK) = χ(−F ) = δ(C, 0) = dimC

OC2,0

q−1c
.

This last equality follows from Gorenstein property [22]. Therefore, we have
q−1c = (ϕ∗(OX̃(−F − ZK)))0.

Since c ∈ SC , from Lemma 4.9 we get x(c) ∈ SΓ. However, paragraph
4.2.3 (d) guarantees the existence of a holomorphic function g ∈ OC2,0 with
divE(ϕ

∗g) = x(c). Then, again, i0(f, g) ≥ multEn(divE(ϕ
∗g)) = c, hence

g ∈ q−1c ⊂ (ϕ∗(OX̃(−F − ZK)))0. Thus x(c) = divE(ϕ
∗g) ≥ F + ZK .

4.4.2. The weight function w0(ℓ) via embedded data. Let (C, 0)
be an irreducible plane curve singularity. Recall that the original definition of
the analytic weight function w(ℓ) was given in terms of an abstract analytic in-
variant of (C, 0), (namely its Hilbert function h), as w(ℓ) = 2h(ℓ)−ℓ. The next
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theorem provides a new formula for w(ℓ) in terms of the embedded topology,
in particular via the graph Γ and the universal cycles x(ℓ) discussed in Lemma
4.6. The existence of this expression was first realized by Tamás László and
the second author in a private discussion. For its generalization see [11].

Theorem 4.14. Let (C, 0) = ({f = 0}, 0) be an irreducible plane curve
singularity. Then

w(ℓ) = ⟨x(ℓ), F + ZK − x(ℓ)⟩Γ for every 0 ≤ ℓ ≤ multEn(F ).

Proof. By Lemma 4.10 we have

h(ℓ) = dimC
(ϕ∗(OX̃))0

(ϕ∗(OX̃(−x(ℓ))))0
.

From this and the long exact sequence of the higher direct image sheaves one
gets the following exact sequence

0 → (ϕ∗(OX̃(−x(ℓ))))0 → (ϕ∗(OX̃))0 →
→ H0(Ox(ℓ)) → (R1ϕ∗(OX̃(−x(ℓ))))0 → 0

(via the vanishing (R1ϕ∗(OX̃))0 = H1(Ox(ℓ)) = 0 from the rationality of
(C2, 0)). We get

h(ℓ) = χ(x(ℓ))− dimC (R
1ϕ∗(OX̃(−x(ℓ))))0.

Next, ⟨F, x(ℓ)⟩Γ = ⟨E∗
n, x(ℓ)⟩Γ = −ℓ, so

w(ℓ) = 2h(ℓ)− ℓ = 2χ(x(ℓ)) + ⟨F, x(ℓ)⟩Γ − 2 · dimC (R1ϕ∗(OX̃(−x(ℓ))))0.

Thus, what remains to prove is the next vanishing along the sequence {x(ℓ)}ℓ:

Claim 4.15. (R1ϕ∗(OX̃(−x(ℓ))))0 = 0 for all ℓ = 0, 1, . . . ,multEn(F ).

We use induction on ℓ. For ℓ = 0 the vanishing (R1ϕ∗(OX̃))0 = 0 pro-
vides the statement. Next, suppose that we know the vanishing for some
ℓ < multEn(F ) and we have to prove it for ℓ + 1. We will instead prove this
for every intermediary step of the generalized Laufer algorithm. First we step
from x(ℓ) to x(ℓ) + En: we have the following exact sequence:

0 (ϕ∗(OX̃(−x(ℓ)− En)))0 (ϕ∗(OX̃(−x(ℓ))))0 H0 (OEn(−x(ℓ)))

(R1ϕ∗(OX̃(−x(ℓ)− En)))0 (R1ϕ∗(OX̃(−x(ℓ))))0 H1(OEn(−x(ℓ))) 0.

First case. Assume that ⟨En, x(ℓ)⟩Γ > 0. Then H0(OEn(−x(ℓ))) = 0, thus
by the inductive hypothesis all terms from the next exact sequence vanish:
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0 (R1ϕ∗(OX̃(−x(ℓ)− En)))0 (R1ϕ∗(OX̃(−x(ℓ))))0 H1(OEn(−x(ℓ))) 0.

In particular, (R1ϕ∗(OX̃(−x(ℓ) − En)))0 = 0 and H1 (OEn(−x(ℓ))) = 0
too. From this last vanishing OEn(−x(ℓ)) equals OP1(−1), hence, in fact,
⟨En, x(ℓ)⟩Γ = 1 (compare with Corollary 4.16).

Second case. Assume that ⟨En, x(ℓ)⟩Γ ≤ 0. In this case, by Lemma 4.9
x(ℓ) ∈ SΓ, hence by paragraph 4.2.3 (d), x(ℓ) = divE(ϕ

∗g) for some function
g ∈ OC2,0. Since ℓ < multEn(F ), by Lemma 4.1(b), str{g = 0} ∩ En = ∅,
therefore ⟨En, x(ℓ)⟩Γ = 0. In particular, we have the following exact sequence:

0 (ϕ∗(OX̃(−x(ℓ)− En)))0 (ϕ∗(OX̃(−x(ℓ))))0 C

(R1ϕ∗(OX̃(−x(ℓ)− En)))0 (R1ϕ∗(OX̃(−x(ℓ))))0 = 0.

φ

But, the above germ g ∈ (ϕ∗(OX̃(−x(ℓ))))0 \ (ϕ∗(OX̃(−x(ℓ) − En)))0, hence
the mapping φ is onto, and (R1ϕ∗(OX̃(−x(ℓ)− En)))0 = 0.

Finally, we consider those steps of the Laufer algorithm which connect
x(ℓ) +En to x(ℓ+ 1): we have to go along z1 := x(ℓ) +En, zi+1 := zi +Ev(i),
where ⟨zi, Ev(i)⟩Γ > 0. Here we can prove the vanishing (R1ϕ∗(OX̃(−zi)))0
inductively in a similar way as in the first case from above.

The previous proof combined with Lemma 4.9 gives the following facts
as well.

Corollary 4.16. For any 0 ≤ ℓ < multEn(F ) we have the following
characterizations:

• ℓ ∈ SC ⇐⇒ ⟨En, x(ℓ)⟩Γ = 0;

• ℓ /∈ SC ⇐⇒ ⟨En, x(ℓ)⟩Γ = 1.

5. THE SEMIGROUP AND THE APÉRY SET

5.1. The Apéry set of a numerical semigroup [4]

The Apéry set of a numerical semigroup (monoid) with respect to one
of its elements is a standard invariant commonly used in semigroup theory.
It consists of the smallest elements of the semigroup from each (nonempty)
residue class of the given element. For more on semigroup theory see e.g. [21].
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Definition 5.1. The Apéry set of a numerical semigroup S with respect
to an element m ∈ S of it is a set Ap(S,m) = {b0, b1, . . . , bm−1} of semigroup
elements, where 0 = b0 < b1 < · · · < bm−1 form a complete residue system
modulo m and for each i (0 ≤ i ≤ m− 1) we have bi ∈ S but bi −m /∈ S.

Example 5.2. If S is minimally generated by the relatively prime numbers
m and n, then Ap(S,m) = {0, n, 2n, . . . , (m− 1)n}.

Remark 5.3. (a) The definition guarantees that S = Ap(S,m)+m ·Z≥0.
It is also clear, that b0 = 0 and bm−1 = c +m − 1, where c is the conductor
of S (the smallest c such that c + Z≥0 ⊂ S). (This last identity is one of the
Selmer’s formulae.)

(b) Any numerical semigroup S has a unique finite minimal set of genera-
tors, namely S∗ \(S∗+S∗), where S∗ = S \{0}. Let us denote these generators
(as usually in the literature) by β̄0 < . . . < β̄g. Then β̄0 is the smallest element
of S∗ and is called the multiplicity of S.

(c) One can see that if we consider the Apéry set with respect to β̄0, then
b1 = β̄1.

5.2. The semigroup of irreducible plane curve singularities

Let (C, 0) be an irreducible plane curve singularity. Below we collect some
properties of SC , the numerical semigroup of values of (C, 0) ⊂ (C2, 0).

(a) SC satisfies the following (Gorenstein) symmetry:

ℓ ∈ SC ⇔ c− 1− ℓ ̸∈ SC for any ℓ ∈ Z.

(b) This symmetry implies that 2δ = c.

(c) SC determines the Hilbert function h as follows:

h(ℓ) = #{s ∈ SC : s < ℓ}, ℓ ∈ Z.

(d) The weight function w0 : Z→ Z is defined as

w0(ℓ) := 2h(ℓ)− ℓ = #{s ∈ SC : s < ℓ} −#{s ̸∈ SC : 0 ≤ s < ℓ}.

It is also symmetric with respect to the involution ℓ ↔ c − ℓ. Consequently,
we have w0(c) = 0.

(e) The local minima of the weight function w0 are exactly the elements
s ∈ SC such that s − 1 ̸∈ SC . Equivalently, they are exactly those elements
s ∈ SC for which c− s ∈ SC as well.

For several other properties of the semigroup SC see e.g. [23].
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5.3. The Apéry set of an irreducible plane curve singularity

Let m be the multiplicity of (C, 0), which in fact equals the multiplicity
of the semigroup SC . We call the Apéry set of the irreducible plane curve
singularity (C, 0) the Apéry set of SC with respect to m.

The following lemma will be used in the third proof, see section 7.

Lemma 5.4. If m ≥ 3, then bm−2 > δ = c/2.

Proof. By definition of the Apéry set it is clear that the m–tuple

B = (bm−2 −m+ 1, bm−2 −m+ 2, . . . , bm−2)

contains exactly m− 1 semigroup elements. Even more, for every nonnegative
integer n ∈ N

(bm−2 −m+ 1 + n, bm−2 −m+ 2 + n, . . . , bm−2 + n)

contains at least m− 1 semigroup elements. Consider the m–tuple

(c− 1− bm−2, c− bm−2, . . . , c− bm−2 +m− 2),

the symmetrical of B. By the Gorenstein symmetry it contains exactly 1
semigroup element. Since 1 <m− 1, we conclude that

c− 1− bm−2 < bm−2 −m+ 1

hence 2bm−2 > c+m− 2 > c.

5.3.1. Apéry theorem. Next we recall a theorem of Apéry, which con-
nects the Apéry sets of (C, 0) and the germ obtained from (C, 0) as the strict
transform of a single blow–up.

Let S ′
C denote the semigroup of the strict transform under blow–up of the

singularity (C, 0). Now m ∈ S ′
C . Indeed, the strict transform of the singular

curve after the blow–up and the reduced exceptional divisor have intersection
multiplicity m. Let Ap(S ′

C ,m) = {b′0, b′1, . . . , b′m−1} denote the Apéry set of
S ′
C with respect to m.

Theorem 5.5. (Apéry theorem [4]) The Apéry sets of SC and S ′
C

(with respect to the multiplicity m of SC) are related by the following formulae:

bj = b′j + jm (j = 0, . . . ,m− 1).

6. FIRST TWO PROOFS

Let (C, 0) =
(
{f = 0}, 0) ⊂ (C2, 0) be an irreducible plane curve singu-

larity with multiplicity m and semigroup SC . Recall that our goal is to prove
the next Main Theorem.
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Theorem 6.1. Let s ̸∈ {0, c} be a local minimum of the weight function
w. Then

w(s) ≤ 2−m,

and equality holds (at least) for the local minimum point s = m.

We start with the following observation of Tamás Ágoston and the second
author, which motivated our approach:

Proposition 6.2. If for some nonnegative integer ℓ ∈ N the weight
w(ℓ) ≥ 2, then ℓ > c. Furthermore, the following facts also hold:

(a) the local minimum values of the weight function are no higher then 0;

(b) the local minimum points are realized for 0 ≤ s ≤ c;

(c) and, finally, the Sn spaces for n ≥ 1 are all contractible.

Remark 6.3. A more general treatment of this last statement regarding
the contractibility of the spaces Sn, n ≥ 1, for (non-necessarily irreducible)
curve singularities will appear in [8].

Next we provide a short possible proof of Proposition 6.2, which inspired
the constructions of the second proof presented in subsection 6.0.1.

Proof of Proposition 6.2. Suppose indirectly that ℓ has the property that
w(ℓ) ≥ 2. By the definition of the analytic weight function this means that

(5) #
(
[0, ℓ) ∩ SC

)
−#

(
[0, ℓ) ∩ (Z≥0 \ SC)

)
≥ 2.

First notice, that it is enough to prove that ℓ ∈ SC . Indeed, that would imply
that w(ℓ+1) = w(ℓ) + 1 ≥ 3 ≥ 2, thus by induction ℓ+1 ∈ SC , and so on, for
every n ≥ ℓ we would have n ∈ SC with w(n) ≥ 2. Therefore, we obtain that
ℓ ≥ c, even more — as w(c) = 0 —, ℓ > c.

In order to prove that ℓ ∈ SC we argue as follows: inequality (5) guar-
antees that the set {1, 2, . . . , ℓ− 1} contains strictly more semigroup elements
than non–semigroup elements. Therefore, there exists a pair of a natural num-
bers (k, ℓ− k), 1 ≤ k ≤ ⌊ℓ/2⌋, with k, ℓ− k ∈ SC , hence ℓ = k + (ℓ− k) ∈ SC

as well.

Another proof for Proposition 6.2 can be given through the following
lemma as well (cf. Remark 6.5), which will also be used in the proof of the
Main Theorem 6.1.

Lemma 6.4. Let S ⊂ N be a symmetric numerical semigroup with con-
ductor c and let a < b ≤ c/2 be natural numbers such that b − a ∈ S. Then
w(a) ≥ w(b).
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Proof. We observe that given k ∈ N and ℓ ∈ S,
#
(
S ∩ [k, k + ℓ)

)
≤ #

(
S ∩ [k + 1, k + ℓ+ 1)

)
,

since the failure of this inequality would imply that k ∈ S but k + ℓ ̸∈ S.
Assume by contradiction that w(a) < w(b). This is equivalent to the

inequality #
(
S ∩ [a, b)

)
> b−a

2 , cf. subsection 5.2 (d). Applying the above
observation inductively and using the symmetry of S we get

b− a

2
< #

(
S ∩ [a, b)

)
≤ #

(
S ∩ [a+ 1, b+ 1)

)
≤ · · ·

≤ #
(
S ∩ [c− b, c− a)

)
= (b− a)−#

(
S ∩ [a, b)

)
< (b− a)− b− a

2
=
b− a

2
,

a contradiction.

Remark 6.5. Lemma 6.4 implies Proposition 6.2 as follows. Assume that
ℓ ∈ SC and ℓ ≤ c/2. Then by the above Lemma 6.4 w(ℓ) ≤ w(0) = 0. This
means that w(k) ≤ 1 for any k ≤ c/2 (hence, by symmetry, for any 0 ≤ k ≤ c)).
Indeed, let n be the smallest integer such that w(n) = 2. Then ℓ = n−1 should
belong to SC with w(ℓ) = 1 (cf. Remark 3.1), a contradiction.

First proof of Theorem 6.1. We will use some well–known properties of the
generators of SC (consult e.g. paragraph 9.1.1). If m = 2 or 3 then (C, 0) has
exactly one Puiseux pair and SC = ⟨m, n⟩. In fact, in the case of m = 2 all
the local minimum values are 0, and for m = 3 via Lemma 5.4 one has n > δ,
and the local minima have the form 3k with weight −k.

If m,m+1 ∈ SC , then (C, o) has exactly one Puiseux pair (m,m+1) and
SC is generated only by m and m + 1. In this case one checks that the local
minima of w occur at the points {km}k=0,...,m−1 with w(km) = k(k+ 1−m),
so w(s) ≤ 2−m if s ̸= 0 or c.

For all remaining cases, set SC := Z≥0\SC . Assume by contradiction that
there exists a local minimum s ∈ SC with w(m) < w(s). This is equivalent to

#
(
SC ∩ [m, s)

)
> #

(
SC ∩ [m, s)

)
.

Let m = β0 < β1 < · · · < βg denote the set of minimal generators of SC .

It is known that 2β0 < β2 (this can be proved using the ‘edge determinant
positivity’ and the expressions of the semigroup generators in paragraph 9.1.1;
but the reader might also consult [23, 24]), whence

#
(
SC ∩ (m, 2m)

)
≤ 1.

Together with the assumption that m ≥ 4 and m + 1 /∈ SC , this implies that
s > 2m, since w(s) ≤ w(m) for any possible local minimum s ∈ SC ∩ [m, 2m].
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Consider the set I of the intervals

[m, s) ⊃ [m, s− 1) ⊃ [m+ 1, s− 1) ⊃ [m+ 2, s− 1) ⊃ · · · ⊃ [2m− 2, s− 1).

We have the following sequence of inequalities:

#
(
SC ∩ [m, s)

)
≥ #

(
SC ∩ [m, s)

)
+ 1 by assumption

#
(
SC ∩ [m, s− 1)

)
≥ #

(
SC ∩ [m, s− 1)

)
+ 2 since s− 1 ̸∈ SC

#
(
SC ∩ [m+ 1, s− 1)

)
≥ #

(
SC ∩ [m+ 1, s− 1)

)
+ 1 since m ∈ SC

#
(
SC ∩ [m+ 2, s− 1)

)
≥ #

(
SC ∩ [m+ 2, s− 1)

)
+ 2 since m+ 1 ̸∈ SC

#
(
SC ∩ [m+ 3, s− 1)

)
≥ #

(
SC ∩ [m+ 3, s− 1)

)
+ 1

...

#
(
SC ∩ [2m− 2, s− 1)

)
≥ #

(
SC ∩ [2m− 2, s− 1)

)
+ 1,

where the inequalities concerning the intervals [m+3, s−1), . . . , [2m−2, s−1)
follow from the fact that #

(
SC ∩ (m, 2m)

)
≤ 1. This means that all intervals

[a, b) ∈ I satisfy w(a) < w(b). The lengths of the intervals in I attain all
possible m values between s− 2m+ 1 and s−m. Hence there must exist an
interval [a, b) ∈ I with b− a ∈ SC , contradicting Lemma 6.4. □

6.0.1. Second proof. We give here another combinatorial proof of the
Main Theorem 6.1 using techniques from the proofs of Proposition 6.2 and
Lemma 6.4.

Second proof of Theorem 6.1. Assume by contradiction that there exists
a local minimum point s with value w(s) > 2 −m. We can also assume, due
to the properties of SC (e.g. Gorenstein symmetry), that m < s < δ = c/2.

Then, by Lemma 6.4 (for a = s−m and b = s) we have w(s−m) ≥ w(s),
i.e. (see 5.2(d))

#
(
SC ∩ [s−m, s)

)
≤ #

(
Z≥0 \ SC ∩ [s−m, s)

)
.

Therefore #
(
SC ∩ [s − m, s)

)
≤ ⌊m/2⌋. On the other hand, the indirect

assumption asking for w(s) = 2#
(
SC∩[0, s)

)
−s > 2−m implies the inequality

#
(
SC ∩ [0, s)

)
> ⌊ s+2−m

2 ⌋. Now these two combined give that

#
(
SC ∩ [m, s−m)

)
>

⌊s+ 2−m

2

⌋
− ⌊m/2⌋ − 1 ≥

⌊s− 2m

2

⌋
.

Similarly to the proof of Proposition 6.2, this inequality implies that there
exists a pair of integers (k, s− 1− k), m ≤ k ≤ ⌊ s−1

2 ⌋, with k, s− 1− k ∈ SC .
Hence s− 1 = k+ s− 1 + k ∈ SC , which contradicts the local minimality of s,
characterized in subsection 5.2 (e).
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7. THIRD PROOF

This section contains the third proof of the Main Theorem 1.4. We will
use the notations of subsection 5.3.

Lemma 7.1. The intervals (bj−1, bj ], j = 1, . . . ,m−1, have the following
property:

for any s ∈ (bj−1, bj ] ∩ Z one has the equivalence: s ∈ SC ⇔ s− jm ∈ S ′
C .

Thus, the weight functions corresponding to SC and S ′
C in the regions (bj−1, bj ]

and (b′j−1 −m, b′j ] make the same ‘up and down’ movements. More precisely:

(6) if s ∈ (bj−1, bj ] ∩ Z, then w(s) = w′(s− jm)−
( j∑

i=1

(m− 2i)
)
;

where w′ denotes the weight function of the blown–up curve.

Example 7.2. For s = m ∈ (b0, b1]: w(m) = w′(0)− (m− 2) = 2−m.

Proof of Lemma 7.1. By definition, for any s ∈ (bj−1, bj ] : s ∈ SC if and
only if s ≡ bi (mod m) for some i = 0, 1, . . . , j − 1 or s = bj . Similarly, for any
s − jm ∈ (b′j−1 −m, b′j ] : s − jm ∈ S ′

C ⇐⇒ s − jm ≡ b′i (mod m) for some
i = 0, 1, . . . , j − 1 or s − jm = b′j = bj − jm. But s ≡ s − jm (mod m) and
b′i ≡ bi (mod m), so the two conditions agree.

As w(s) = 2 · #
(
[0, s) ∩ SC

)
− s, in view of the previous paragraph, it

is enough to prove (6) for every bi ∈ Ap(SC ,m). We use induction on i. For
b0 = 0 : w(0) = w′(0) = 0. Now, suppose that (6) holds for bj , then we have
to prove it for bj+1:

w(bj+1) = w(bj) + 2 ·#
(
[bj , bj+1) ∩ SC

)
− (bj+1 − bj) =

= w(bj) + 2 ·#
(
(bj , bj+1] ∩ SC

)
− (bj+1 − bj) =

= w′(bj − jm)−
j∑

i=1

(m− 2i) + 2 ·
(
j + 1 +#

(
(b′j , b

′
j+1] ∩ S ′

C

))
−m− (b′j+1 − b′j) =

= w′(b′j) + 2 ·#
(
(b′j , b

′
j+1] ∩ S ′

C

)
− (b′j+1 − b′j)−

j∑
i=1

(m− 2i)

− (m− 2(j + 1)) =

= w′(b′j+1)−
j+1∑
i=1

(m− 2i) = w′(bj+1 − (j + 1)m)−
j+1∑
i=1

(m− 2i).

Therefore, by induction, the lemma follows.
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Remark 7.3. The statement of (6) is also true for s ≤ b0 = 0 with j = 0
and s > bm−1 with j = m− 1, though one can easily see that in these regions
the weight function behaves trivially.

Remark 7.4. Notice that

j∑
i=1

(m− 2j) =


0 for j = 0;

≥ m− 2 for j = 1, . . . ,m− 2;

0 for j = m− 1.

Therefore, the weight function of the irreducible plane curve singularity
is never higher then the weight function of the blown–up curve at the corre-
sponding place.

Remark 7.5. As the integers bj for j = 0, . . . ,m − 1 are semigroup ele-
ments, the lattice points of the form bj+1, j = 0, . . . ,m−1, are not local min-
imum points of the weight function w, see subsection 5.2(e). Therefore, if some
s ∈ [bj−1+2, bj ] is a local minimal point of w, then so is s− jm ∈ [b′j−1+2, b′j ]
in the weight distribution w′ of the blown–up curve.

The previous remarks yield the Main Theorem 1.4:

Corollary 7.6. If s ∈ (0, c) is a local minimum point of the weight
function w, then w(s) ≤ 2−m. Example 7.2 then shows, that for non-smooth
germs 2 − m is indeed the highest local minimum value apart from the two
obvious ones at level 0 (m− 1 /∈ SC ,m ∈ SC).

Proof. For smooth germs this statement is empty. In the non-smooth
setting, due to the Gorenstein symmetry, it is enough to prove the statement
in the s < δ case.

Let us compare the weight function w of the irreducible plane curve sin-
gularity (C, 0) with w′ of its blow–up (C ′, 0). From Remark 7.5 we get that
the local minimum points of w correspond to those of w′, i.e. if s ∈ (bj−1, bj ] is
a local minimum point, then so is s− jm. If m ≥ 3, then by Lemma 5.4 we see
that for s < δ the relevant cases of equations (6) are that of j = 1, . . . ,m− 2.
Then by Remark 7.4 we have

w(s) ≤ w′(s− jm) + 2−m ≤ 2−m,

where the last inequality comes from Proposition 6.2 using the local minimality
of s − jm. If m = 2, then 2 − m = 0, so the assertion is clear again due to
Proposition 6.2.
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8. FOURTH PROOF

8.1. Idea of the proof

Let (C, 0) =
(
{f = 0}, 0) ⊂ (C2, 0) be an irreducible plane curve singu-

larity with multiplicity m and semigroup SC . Again, recall that our goal is to
prove the Main Theorem 1.4, i.e. that for any local minimum s ̸∈ {0, c} of the
weight function w,

w(s) ≤ 2−m,
and equality holds (at least) for the local minimum point s = m. Note that by
the Gorenstein symmetry of the semigroup (and hence of the weight function
w) it is enough to prove this for local minima s with s ≤ δ.

A sufficient condition for this statement is given in Proposition 8.1. For
ease of reading, several technical lemmas used in its proof have been moved to
subsection 8.2.

Fix the minimal good embedded resolution ϕ : X̃ → S. We adopt all the
notations of previous sections. Additionally, we set m1(ℓ) := multE1(x(ℓ)) for
every ℓ ≥ 0.

Following Theorem 4.14, we want ⟨x(s), F +ZK −x(s)⟩Γ ≤ 2−m for any
local minimum point s. Notice that it is sufficient to show that

⟨x(s), F + ZK − x(s)⟩Γ ≤ −m1(s)(m− 1−m1(s)),

as by Lemma 8.3 we have that −m1(s)(m− 1−m1(s)) ≤ 2−m.

Proposition 8.1. ⟨x(s), F +ZK − x(s)⟩Γ ≤ −m1(s)(m− 1−m1(s)) for
any s ∈ SC .

Proof. Let X1 be the partial resolution obtained from S ⊂ C2 via a single
blow–up and denote by π : X̃ → X1 the composition of the other ones. Denote
by Γ1 = {E1} the dual graph of this first blow–up and by Γ′ the dual graph of
the resolution π, with irreducible exceptional divisors {Ev}v∈V\{1}. We remark
that π is an embedded resolution of the once blown–up curve (C ′, 0) (considered
above in the Apéry theorem 5.5 and in the third proof).

Notice that

−m1(s)(m− 1−m1(s)) =
〈
π∗x(s), π∗(F + ZK − x(s))

〉
Γ1

=
〈
π∗π∗x(s), π

∗π∗(F + ZK − x(s))
〉
Γ
,

so the inequality to be shown becomes

⟨x(s), F + ZK − x(s)⟩Γ ≤
〈
π∗π∗x(s), π

∗π∗(F + ZK − x(s))
〉
Γ
.

This can be rewritten as

(7)
〈
x(s)− π∗π∗x(s), F + ZK − x(s)− π∗π∗(F + ZK − x(s))

〉
Γ
≤ 0
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through a computation using the projection formula. Since

⟨x(s)− π∗π∗x(s), Ev⟩Γ = ⟨x(s), Ev⟩Γ − ⟨π∗x(s), π∗Ev⟩Γ1 ≤ 0

for all v ̸= 1 (use π∗Ev = 0 and ⟨x(s), Ev⟩Γ ≤ 0 due to x(s) ∈ SΓ) and
F + ZK − x(s) − π∗π∗(F + ZK − x(s)) is supported on E′ := ∪v ̸=1Ev, it is
enough to show that F + ZK − x(s) − π∗π∗(F + ZK − x(s)) is an effective
divisor, i.e. that

(8) F + ZK − π∗π∗(F + ZK) ≥ x(s)− π∗π∗x(s).

Both sides of (8) are supported on the divisor E′ with corresponding graph
Γ′ = Γ \ {E1}. Let F ′ := (En)

∗
Γ′ be the Γ′–dual of En and let Z ′

K be the
anticanonical cycle of the graph Γ′. A computation shows that

F − π∗π∗F
∣∣
Γ′ = F ′ and ZK − π∗π∗ZK

∣∣
Γ′ = Z ′

K .

As for the right-hand side of (8), x(s) − π∗π∗x(s)
∣∣
Γ′ = x′(s − m · m1(s)) by

Lemma 8.4, where x′ : Z≥0 → Zn−1 denotes the sequence of universal cycles
of the graph Γ′ with respect to En. Hence, after restricting to Γ′, the desired
identity (8) becomes

F ′ + Z ′
K ≥ x′(s−m ·m1(s)).

Finally, by Example 4.13, F ′ + Z ′
K = x′(c′), where c′ is the conductor of the

semigroup S ′
C . The Proposition hence follows from Lemma 8.5 (stating that

s−m ·m1(s) ≤ c′) and the monotoneity of the x′ operator (see 4.7).

Remark 8.2. Notice that in Lemma 7.1 we have shown that if s ∈ (bj−1, bj ],
then

w(s) = w′(s− jm)− j(m− 1− j).

On the other hand the left-hand side of (7) is w′(s −m1(s)m), thus one can
derive the formula

w(s) = w′(s−m ·m1(s))−m1(s)(m− 1−m1(s)).

This suggests (but does not prove) that j = m1(s). This equality is in fact
true and we give a proof of this fact in section 9. This has a beautiful geo-
metric interpretation: notice that the function m1 : SC → Z≥0 can be defined
equivalently as

m1(s) = min{mult(g) : g ∈ OC,0, with i0(g, f) = s}.

Then m1 is an increasing function on SC , and j = m1 means that m1 jumps
exactly at the elements of the Apéry set Ap(SC ,m).
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8.2. The Lemmas used in the proof of Proposition 8.1

Lemma 8.3. In the case of any non-zero semigroup element s ≤ δ we
have that 1 ≤ m1(s) ≤ m− 2.

Proof. It is sufficient to construct a cycle D ∈ SΓ with the properties
that 1 ≤ multE1(D) ≤ m − 2 and multEn(D) ≥ δ ≥ s, because in this case
x(s) ≤ x(multEn(D)) ≤ D. If (C, 0) has r Puiseux pairs, set D = kE∗

v , where
v is the end–vertex of the leg corresponding to the last Puiseux pair, and k
equals pr − 1 if r ≥ 2 or p1 − 2 if r = 1, for notations see paragraph 9.1.1.
A simple computation on the resolution graph (or the corresponding splice
diagram) now shows that D satisfies the desired properties.

Lemma 8.4. Let π, Γ and Γ′ denote the same resolution and resolution
graphs as in the proof of Proposition 8.1. Let x and x′ denote the universal
cycle operators associated with the graphs Γ and Γ′ and the exceptional divisor
En. Then for any integer ℓ ≥ 0:

x(ℓ)− π∗π∗x(ℓ)
∣∣
Γ′ = x′(ℓ−m ·m1(ℓ)),

where m1(ℓ) = multE1(x(ℓ)).

Notice that this combined with Remark 8.2 can be thought of as an inductive
formula for the computation of x(ℓ).

Proof. First we prove that

(9) multEn

(
x(ℓ)− π∗π∗x(ℓ)

∣∣
Γ′

)
= ℓ−m ·m1(ℓ).

Since π∗x(ℓ) = m1(ℓ)E1, it is sufficient to show that multEn(π
∗E1) = m.

Observe that π∗E1 = E∗
1 , since ⟨π∗E1, Ev⟩Γ = ⟨E1, π∗Ev⟩Γ1 = −δ1,v by the

projection formula. We compute

multEn(π
∗E1) = −⟨E∗

n, π
∗E1⟩Γ = −⟨F, π∗E1⟩Γ =

=− ⟨F,E∗
1⟩Γ = multE1(F ) = m.(10)

Next, we show that x(ℓ) − π∗π∗x(ℓ)
∣∣
Γ′ ≥ x′(ℓ − m · m1(ℓ)). For every

v ∈ V \ {1, n}:

⟨x(ℓ)− π∗π∗x(ℓ)
∣∣
Γ′ , Ev⟩Γ′ =

= ⟨x(ℓ)− π∗π∗x(ℓ), Ev⟩Γ since multE1

(
x(ℓ)− π∗π∗x(ℓ)

)
= 0

= ⟨x(ℓ), Ev⟩Γ − ⟨π∗x(ℓ), π∗Ev⟩Γ1 by the projection formula

= ⟨x(ℓ), Ev⟩Γ ≤ 0 by definition of the x operator.
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Through equation (9), the universality property (4.6(c)) of the x′ operator
gives indeed

(11) x′(ℓ−m ·m1(ℓ)) ≤ x(ℓ)− π∗π∗x(ℓ)
∣∣
Γ′ .

Finally, we prove that x(ℓ) ≤ x′(ℓ − m · m1(ℓ)) + π∗π∗x(ℓ), where we
extend x′(ℓ−m ·m1(ℓ)) to Γ by setting its value on E1 to zero (we will use the
same notation for the extended version). Now we want to use the universality
property of the operator x. If v ∈ V \ {1, n}, then

⟨x′(ℓ−m ·m1(ℓ))+π
∗π∗x(ℓ), Ev⟩Γ =

= ⟨x′(ℓ−m ·m1(ℓ)), Ev⟩Γ′︸ ︷︷ ︸
≤0

+⟨π∗x(ℓ), π∗Ev︸ ︷︷ ︸
0

⟩Γ1 ≤ 0.

For the v = 1 case, observe that multE1

(
x(ℓ)−π∗π∗x(ℓ)−x′(ℓ−m ·m1(ℓ))

)
= 0

and by inequality (11) we have x(ℓ)−π∗π∗x(ℓ)−x′(ℓ−m·m1(ℓ)) ≥ 0. Therefore

⟨x(ℓ)− π∗π∗x(ℓ)− x′(ℓ−m ·m1(ℓ)), E1⟩Γ ≥ 0 ⇔
⇔ ⟨x′(ℓ−m ·m1(ℓ)) + π∗π∗x(ℓ), E1⟩Γ ≤ ⟨x(ℓ), E1⟩Γ ≤ 0.

Identity (10) implies that multEn(x
′(ℓ−m ·m1(ℓ))+π

∗π∗x(ℓ)) = ℓ. So, by the
universality property of the x operator

x(ℓ) ≤ x′(ℓ−m ·m1(ℓ)) + π∗π∗x(ℓ).

This concludes the proof.

Lemma 8.5. Let s ∈ Z be a local minimum of the weight function w of
the irreducible plane curve singularity (C, 0). Then s−m ·m1(s) ≤ c′, where
c′ is the conductor of the once blown–up curve (C ′, 0).

Proof. First note that by Remark 5.3 and the Apéry theorem 5.5 the
conductor c′ = c−m(m− 1), therefore it is enough to prove that

m(m− 1−m1(s)) ≤ c− s.

Notice that by identity (4), we have m−1 = m1(c). It is also useful to observe,
that by the minimality property (c) from Lemma 4.6 of the x operator we have
x(s) + x(c − s) ≥ x(c), thus m1(c) −m1(s) ≤ m1(c − s). So it is enough to
prove the inequality

m ·m1(c− s) ≤ c− s.
Here we use the fact that s is a local minimum, and hence both s and c−s ∈ SC .
Then, by Lemma 4.9, we know that x(c−s) ∈ SΓ and by Lemma 4.2.3 (d) there
exists g ∈ OC2,0 with divE(ϕ

∗g) = x(c − s) and str{g = 0} ∩ str{f = 0} = ∅.
Therefore, by Lemma 4.1(a) we have i0(g, f) = multEn(divE(ϕ

∗g)) = c − s.
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Now we can find a generic linear function l ∈ OC2,0, with i0(l, f) = m and
i0(l, g) = multE1(divE(ϕ

∗g)) = m1(c − s). Thus, in conclusion we have that
m1(c− s) ·m = i0(l, g) · i0(l, f) ≤ i0(f, g) = c− s.

9. APÉRY SET AND JUMPING LOCI

9.1. Semigroup via the splice diagram

The main result of this section, Theorem 9.1, connects the third and the
fourth proofs of the Main Theorem, via the comments of Remark 8.2.

Furthermore, this theorem provides a new characterization of the Apéry
set of an irreducible plane curve singularity and might be the starting point of
generalizations.

9.1.1. Splice diagrams. The simplest presentation of certain parts of
the proof can be realized using the combinatorial properties of the decorations
of the splice diagramS associated with the minimal embedded resolution graph
Γ of (C, 0) [6], with which we assume some familiarity. The procedure how one
constructs S from Γ is shown in the next diagram.

det = p1 p2 pr

a1

a2

det = ar

E1 = Ev0

Ev1 Ev2

En = Evr

a1
v1

p1 p2 pr

1 1 1a2
v2

ar
vr

Here the integers ai, pi (i = 1, . . . , r; gcd(ai, pi) = 1 for all i) are the
absolute values of the determinants of the corresponding subgraphs, and they
appear as the decorations on the edges of the splice diagram. Using these
decorations {ai, pi}i one also reads directly the entries of the inverse of the
intersection matrix −⟨E∗

v , E
∗
w⟩Γ = multEv(E

∗
w) as the product of all splice

diagram decorations along but not on the shortest path connecting v and w (the
corresponding vertices of the splice diagram), cf. [6]. Furthermore, they satisfy
the edge determinant positivity, namely ai > ai−1pi−1pi for any 1 < i ≤ r,
cf. [6]. In terms of {ai, pi}i the minimal set of generators of the numerical
semigroup SC are the following (cf. [23]):

• β0 = m = p1p2 . . . pr;
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• βl = alpl+1pl+2 . . . pr for all 1 ≤ l ≤ r − 1;

• βr = ar.

These generators are represented by divisors of functions with one smooth and
transverse strict transform (arrow) at the end of the corresponding leg of the
embedded resolution graph (or at the corresponding end–vertex of the splice
diagram).

Furthermore, by a theorem of Teissier–Zariski [23], every semigroup ele-
ment s ∈ SC can be written uniquely in the form:

s = k0β0 +

r∑
i=1

kiβi with k0 ≥ 0 and 0 ≤ ki < pi for all i = 1, . . . , r.

9.2. A new characterization of the Apéry set

Recall the notation m1(ℓ) := multE1(x(ℓ)), and let J denote the set of
the ‘jumping loci’ of the sequence ℓ 7→ x(ℓ), namely:

J = {ℓ ∈ Z : 0 ≤ ℓ < multEn(F ), m1(ℓ) < m1(ℓ+ 1)}.

As multE1(x(0)) = 0 and multE1(F ) = m (cf. 4.12), it follows that the cardi-
nality #(J ) ≤ m.

We claim the following:

Theorem 9.1. J = Ap(SC ,m) (and as such, #(J ) = m).

It is enough to prove that Ap(SC ,m) ⊂ J . Let us start with the following
observation.

The largest Apéry element bm−1 satisfies bm−1 = c+m− 1 (cf. Remark
5.3), by Example 4.13 multEn(F + ZK) = c, and by Lemma 4.2 and (10)
multEn(−ZK) ≥ m. Hence

(12) multEn(F ) ≥ c+m,

and

(13) Ap(SC ,m) ⊂ {0, 1, . . . ,multEn(F )− 1}.

In the proof we will use the following terminology.

Definition 9.2. The spine of the minimal embedded resolution graph Γ is
the unique path from E1 to En with En removed from the end at the right.

We say that a cycle l ∈ L has no arrow on the spine, if ⟨l, Ev⟩Γ = 0 for
any vertex on the spine.

We start the proof of Theorem 9.1 with the following lemma.
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Lemma 9.3. If for some ℓ ∈ {0, . . . ,multEn(F )−1} the cycle x(ℓ) has no
arrows on the spine of the minimal embedded resolution graph, then ℓ ∈ J .

Proof. To get x(ℓ+1) from x(ℓ) we apply the Laufer algorithm to the cycle
z1 = x(ℓ) +En, cf. Lemma 4.7. Now, if Ew1 , Ew2 , . . . , Ewk

are the exceptional
divisors corresponding to the vertices on the spine of the embedded resolution
graph Γ ‘from left to right’ (Ew1 = E1, and Ewk

is adjacent to En), then we
can make the following choices in the Laufer algorithm:

• ⟨x(ℓ), Ewk
⟩Γ = 0 ⇒ ⟨z1, Ewk

⟩Γ = 1 > 0 ⇒ z2 := z1 + Ewk
;

• ⟨x(ℓ), Ewk−1
⟩Γ = 0 ⇒ ⟨z2, Ewk−1

⟩Γ = 1 > 0 ⇒ z3 := z2 + Ewk−1
;

• and so on: ⟨x(ℓ), Ewk−j+1
⟩Γ = 0 ⇒ ⟨zj , Ewk−j+1

⟩Γ = 1 > 0 ⇒
⇒ zj+1 := zj + Ewk−j+1

;

therefore zk+1 = zk + E1, and x(ℓ+ 1) = zt ≥ zk+1, so indeed, ℓ ∈ J .

Therefore, via (13) and the previous lemma it is enough to prove that

Ap(SC ,m) ⊂ {ℓ : 0 ≤ ℓ < multEn(F ), x(ℓ) has no arrows on the spine}.

Choose any element s ∈ Ap(SC ,m) ⊂ SC . Then the universal cycle x(s)
belongs to the Lipman cone (cf. Lemma 4.9), therefore it can be given as the
divisor of some (non-unique) function g ∈ OC2,0. Hence, it is sufficient to show
that if a function g ∈ OC2,0 satisfies multEn(divE(ϕ

∗g)) ∈ Ap(SC ,m), then
divE(ϕ

∗g) cannot have any arrows on the spine of the embedded resolution
graph.

Let us rewrite this statement as follows.

Lemma 9.4. If for some g ∈ OC2,0 the cycle divE(ϕ
∗g) has some arrows

on the spine of Γ, then multEn(divE(ϕ
∗g)) /∈ Ap(SC ,m).

It is enough to prove this for a divisor with a single arrow on the spine of
the embedded resolution graph.

We will denote the exceptional divisors corresponding to the nodes of the
resolution graph by Ev1 , Ev2 , . . . , Evr−1 and in this context let Ev0 := E1 and
Evr := En.

Suppose now that the single arrow is supported on Ev between Evl and
Evl+1

(including Evl but not Evl+1
). Then we prove the following technical

version of Lemma 9.4.

Claim 9.5. Let Cl = {gl = 0} be a generic plane curve singularity whose
dual resolution graph is the first part of Γ truncated after the vertex corre-
sponding to Evl (this corresponds to a transverse smooth curvetta through some
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generic point of Evl in X̃). Then its multiplicity is ml = p1p2 . . . pl and let us
denote its conductor by cl. Then

1. multEvl
(E∗

v) ≥ multEvl
(E∗

vl
) = multEvl

(divE(ϕ
∗gl)) ≥ cl +ml;

2. multEvl+1
(E∗

v) ≥ multEvl+1
(E∗

vl
) =

= multEvl+1
(divE(ϕ

∗gl)) = multEvl
(divE(ϕ

∗gl)) · pl+1;

3. multEvl+1
(E∗

v) = k0p1p2 . . . pl+1 +
∑l

i=1 kiaipi+1 . . . pl+1 with k0 ≥ 0 and
0 ≤ ki < pi;

4. The previous three combined give the assertion, that k0 cannot be 0. Thus
there exists a system of positive arrows/curvettas (the strict transform of
a not necessarily irreducible curve h) on the end vertices of the legs of Γ
with determinants a1, p1, . . . , pl, whose corresponding multiplicity system
satisfies the following equality:

multEvl+1
(divE(ϕ

∗h)) = multEvl+1
(E∗

v)− p1p2 . . . pl+1;

5. i0(f, h) = multEvr
(divE(ϕ

∗h)) = multEvr
(E∗

v)−p1p2 . . . pl+1pl+2 . . . pr =
= multEvr

(E∗
v) −m, therefore multEvr

(E∗
v) cannot be an element of the

Apéry set.

Proof.

1. If we add an arrow at vertex v to the embedded resolution graph we get
the following (non-minimal) splice diagram:

a1

p1 pr

1 1ar

pl

1al al+1

pl+1

1

1

av bv

v1 vl v vl+1 vr

Now, multEvl
(E∗

vl
) = al ·pl and multEvl

(E∗
v) = al ·pl · bv, which shows the

first inequality. For the second one use (12) for the singularity (Cl, 0).

2. One has the following:

multEvl+1
(E∗

v) = av · pl+1;

multEvl+1
(E∗

vl
) = al · pl · pl+1 = pl+1multEvl

(divE(ϕ
∗gl)).

Then the edge–determinant positivity applied for the edge (vl, v) gives
av > al · pl · bv (cf. [6]).
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3. We use the Teissier–Zariski theorem for (Cl+1, 0), a generic plane curve
singularity whose dual resolution graph is the first part of Γ truncated
after the vertex corresponding to Evl+1

. (Its splice diagram is similar
to the diagram of (C, 0) but now the nodes are v1, . . . , vl+1, and this
last node supports the arrow.) Its numerical semigroup is generated by
p1 . . . pl+1 , a1p2 . . . pl+1 , . . . , alpl+1 , al+1, so

multEvl+1
(E∗

v) = k0p1p2 . . . pl+1 +

l+1∑
i=1

kiaipi+1 . . . pl+1

with k0 ≥ 0 and 0 ≤ ki < pi. We only need to prove that kl+1 = 0.
Indeed, this is true, because multEvl+1

(E∗
v) = av · pl+1 is divisible by pl+1

just as all the other generators of this semigroup apart from al+1.

4. The fact that cl is the conductor of

SCl
= Z≥0⟨p1 . . . pl, a1p2 . . . pl, . . . , al−1pl, al⟩

means that every integer n ≥ cl is contained in the semigroup. Therefore,
every integer not less than clpl+1 and divisible by pl+1 is contained in
the semigroup

pl+1 · SCl
= Z≥0⟨ p1 . . . plpl+1 , a1p2 . . . plpl+1 , . . . , al−1plpl+1 , alpl+1 ⟩

and pl+1 · SCl
⊂ SCl+1

. Now, by parts 1. and 2.

multEvl+1
(E∗

v)− p1p2 . . . plpl+1 ≥ clpl+1

and, by part 3., it is divisible by pl+1, thus multEvl+1
(E∗

v)−p1p2 . . . plpl+1

is contained in pl+1 · SCl
. So by the uniqueness of the Teissier–Zariski

decomposition of multEvl+1
(E∗

v) in SCl+1
we get that k0 ̸= 0 and there

exists an arrow system as in the statement, represented by a germ h,
with

multEvl+1
(divE(ϕ

∗h)) = multEvl+1
(E∗

v)− p1p2 . . . pl+1.

5. As h does not have any arrows on the vertices starting from vl+1, the
intersection calculations on the splice diagram show that

i0(f, h) = multEvr
(divE(ϕ

∗h)) = by Lemma 4.1(a)

= multEvl+1
(divE(ϕ

∗h))pl+2 . . . pr =

= multEvl+1
(E∗

v)pl+2 . . . pr − p1p2 . . . pl+1pl+2 . . . pr =

= multEvr
(E∗

v)−m.

This concludes the proof.
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HUN-REN Alfréd Rényi Institute of Math.
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