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ABSTRACT
In this paper we introduce a construction for a weighted CW complex (and the associated lattice cohomology) corres-

ponding to partially ordered sets with some additional structure. This is a generalization of the construction seen in [4]

where we started from a system of subspaces of a given vector space. We then proceed to prove some basic properties

of this construction that are in many ways analogous to those seen in the case of subspaces, but some aspects of the

construction result in complexities not present in that scenario.
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1. INTRODUCTION
The lattice cohomology of a singularity was originally defined in the context of a complex nor-

mal surface singularity (𝑋, 𝑜), whenever the link is a rational homology sphere. The link of such

a singularity is a plumbed (graph) 3-manifold, where the plumbing graph can be chosen as one

of the resolution graphs of the germ. In particular, it is connected and negative definite. In such

a situation, using the combinatorics of the graph, a lattice cohomologyℍ
∗

𝑡𝑜𝑝
(𝑋, 𝑜)was construc-

ted, with an extra grading (the spin
𝑐
-structures of the link), with the Euler characteristic of the

cohomology being the Seiberg–Witten invariant of the link [16]. In [16] it was conjectured (and

in some cases verified) and in [25] proved that it coincides with the Heegaard Floer cohomology

of the link. For some more connections with topology (e.g. applications of the graded roots) see

[5, 9, 10, 11].

In order to define a lattice cohomology, one usually needs a lattice ℤ
𝑠
, or more generally a

CW complex and a suitable integer-valued weight function on the set of cells (see Section 2.1).

In various geometric contexts the lattice itself arises rather clearly and naturally, however how

to retrieve a useful weight function from the geometric structure can often bemuch less obvious.

E.g. in the classical case, the lattice is generated by the vertices of the graph, while the weight

function is obtained from a Riemann–Roch expression.

The analytic version ℍ
∗

𝑎𝑛
(𝑋, 𝑜) of the lattice cohomology associated with a normal surface

singularity was defined in [1, 2], and even a graded ℤ[𝑈]-module morphism ℍ
∗

𝑎𝑛
(𝑋, 𝑜) →

ℍ
∗

𝑡𝑜𝑝
(𝑋, 𝑜)was provided. In this analytic case the Euler characteristic equals the geometric genus

of the germ.

Later, in [3], for any 𝑛-dimensional complex isolated singularity (𝑛 ≥ 2) an analytic lattice

cohomology was constructed — though its topological analogue is not currently known (conjec-

turally it is the embedded contact homology of the link). Also, an invariant applicable to isolated

curve singularities was constructed in [4], which is a categorification of the 𝛿-invariant, and

presents a variety of useful properties on top of that, like a connection with flat deformations

of the singularities.

In the case of all these analytic constructions, the weight functions arise from particular ℤ
𝑠
-

filtrations connected to the analytic structure (e.g. the multivariable divisorial filtration in the

higher dimensional case), with a more general derivation of the weights and the cohomology

induced by a filtration described in [4].

When proving functoriality under deformations, it was necessary to further abstract away

the combinatorial structure to which we associate a lattice cohomology. Filtrations were re-

placed with systems of subspaces of a given vector space (the set of subspaces that comprise

the filtration), and a CW complex with a weight function was defined purely based on the prop-

erties of this set.

In the present paper,wewill even further generalize this construction to partially ordered sets

equipped with additional structure corresponding to the codimensions of pairs of subspaces.

The original aim of this generalization was to be used when proving the aforementioned

functoriality in [4]. Though this more general construction turned out not to be ultimately

necessary for proving it on the ℍ
0
level — which is what ended up being included in the final
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version of that paper — we expect it to still be useful further down the line, e.g. when dealing

with the higher cohomologies. For further details about that application, see Theorem 4.4. Also,

due to the generality of the setting, we hope that the construction of the CW complex and its

cohomology could be applicable in a variety of topics when these kinds of partially ordered sets

naturally occur.

We now provide a quick summary of the concepts involved in this construction (for the

details, see Section 3).

DEFINITION 1.1. A(n integrally) metrized poset is a poset (𝑃, <) together with a function

𝑑 ∶ {(𝑥, 𝑦) ∈ 𝑃 × 𝑃 ∣ 𝑥 ≥ 𝑦 or 𝑥 ≤ 𝑦} → ℤ≥0 ∪ {∞}

such that

(M1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;

(M2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);

(M3) max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)) ≤ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥 ≥ 𝑦 ≥ 𝑧.

We call such a function a partial metric on (𝑃, <) (as it is only defined between comparable pairs

of elements).

DEFINITION 1.2. Consider an integrally metrized poset (𝑃, <, 𝑑) as above. We call a subset 𝐶 ⊆ 𝑃

a combinatorial (𝑃, <, 𝑑)-cell (or (𝑃, 𝑑)-cell for short) if it is of the form

𝐶 =

{

⋀

𝐺∈
𝐺 ∣ ∅ ≠  ⊆ 

}

∪ {𝑥} (∗)

for some 𝑥 ∈ 𝑃 and a finite set  ⊆ 𝑃 with 𝑑(𝑥, 𝐺) = 1 for all 𝐺 ∈ , where ∧ denotes the meet

operation — thus, in particular, the meet needs to exist for all non-empty sets  ⊆ .
We define the root, tip and generators of a (𝑃, 𝑑)-cell 𝐶 as

𝑅(𝐶) = ∨𝐶,

𝑇 (𝐶) = ∧𝐶,

(𝐶) =
{

𝑦 ∈ 𝐶 ∣ 𝑑(𝑅(𝐶), 𝑦) = 1

}

respectively. Note that the join and meet above always exist: for the set 𝐶 of the form (∗), they

would be 𝑥 and ∧ respectively.

Furthermore, we define the dimension and height of the (𝑃, 𝑑)-cell 𝐶 as

dim𝐶 =
|
|
(𝐶)|

|
, ht 𝐶 = 𝑑(𝑅(𝐶), 𝑇 (𝐶)).

Using this purely combinatorial definition, we proceed to construct a CW complex where to

each of these cells 𝐶, we associate a topological cell □(𝐶) in that CW complex, and the above

defined “dimension” of a combinatorial cell will correspond to the dimension of the topological

one. These topological cells will be glued together in a way that respects the following (com-

binatorial) notion of faces:

DEFINITION 1.3. For a given combinatorial (𝑃, 𝑑)-cell 𝐶, its faces are the elements of

{

𝐷 ⊆ 𝐶 ∣ 𝐷 is a combinatorial (𝑃, 𝑑)-cell

}

.
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The construction gives us the CW complex (𝑃, <, 𝑑). Since we intend to consider a lattice

cohomology on this complex (for the definition, see Section 2.1), we add weights to the original

poset that are compatible with the metrized structure, as well as to cells of the associated CW

complex. This is also where the height of a cell comes into play: it is used to determine the

weights of the higher dimensional cells.

DEFINITION 1.4. We call (𝑃, <, 𝑑, 𝑤) a weighted (integrally) metrized poset (WIMP) if (𝑃, <, 𝑑) is

an integrally metrized poset, and 𝑤∶ 𝑃 → ℤ is a function bounded from below, where for any

𝑥, 𝑦 ∈ 𝑃 with 𝑥 ≥ 𝑦, we have

𝑤(𝑦) ≤ 𝑤(𝑥) + 𝑑(𝑥, 𝑦). (∗∗)

The weighted CW complex associated to (𝑃, <, 𝑑, 𝑤) is the complex (𝑃, 𝑑) together with the

weight function

𝑤̃(□(𝐶)) = 𝑤(𝑅(𝐶)) + ht 𝐶.

This definition of the weights is inspired by the construction in [4]. The condition (∗∗) is re-

quired to ensure the compatibility of the weight function on the CW complex (cf. Definition 2.2).

Putting all of this together:

DEFINITION 1.5. Given a WIMP (𝑃, <, 𝑑, 𝑤), we define its lattice cohomology ℍ
∗
(𝑃, <, 𝑑, 𝑤) as

that of the weighted CW complex ((𝑃, <, 𝑑), 𝑤) (cf. Definition 2.3).

2. PRELIMINARY
2.1. The lattice cohomology associated with a system of weights [16]
The construction of the lattice cohomology associates a graded ℤ[𝑈]-module to a CW complex

 endowed with a set of weights. For a more detailed description, refer to [4]. The original

definition can be seen in [16, 17, 18],where is a cubical complex generated by a freeℤ-module,

i.e., a lattice.

Now let us summarize the definitions, first setting some notations regarding ℤ[𝑈]-modules.

NOTATION2.1. Let be aCWcomplex (for definitions andproperties see e.g. [24]). Let {sk𝑞 }𝑞≥0

be the skeleton decomposition of  . The ‘𝑞-dimensional cells’ of  , i.e., the images of the

characteristic maps 𝜅𝑞,𝛼 ∶ 𝐷
𝑞
→  , constitute the set 𝑞 = 𝑞(), and this forms a basis in

𝑞 = 𝑞() = ℤ⟨𝑞⟩, the free ℤ-module generated by them.

The elements of 𝑞 will also be referred to as ‘closed cells in  ’ to differentiate them from

their relative interiors □
◦

𝑞
∶= □𝑞 ⧵ sk𝑞−1  , which we call the ‘open cells’.

Using the above setting, in order to define an ‘interesting’ cohomology theory, we consider

a set of compatible weight functions {𝑤𝑞}𝑞 .

DEFINITION 2.2. A set of functions 𝑤𝑞 ∶ 𝑞 → ℤ is called a set of compatible weight functions if
(a) 𝑤0 is bounded from below;

(b) for any □𝑞 ∈ 𝑞 and any point 𝑝 ∈ □𝑞 ⧵ □
◦

𝑞
, consider 𝑟 < 𝑞 such that 𝑝 ∈ sk𝑟  ⧵ sk𝑟−1  ,

and □
◦

𝑟
, the unique open cell of sk𝑟  with 𝑝 ∈ □

◦

𝑟
. Then in any such case we require

𝑤𝑞(□𝑞) ≥ 𝑤𝑟 (□𝑟 ).
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The index 𝑞 of 𝑤𝑞 may be omitted henceforth if it causes no confusion, i.e., we set 𝑤 = ∪𝑞𝑤𝑞 .

Such a pair ( , 𝑤) is called a weighted CW complex.
Let 𝑛 = 𝑛(𝑤) ⊆ ∗ denote the set of closed cells □𝑞 (of any dimension) with 𝑤(□𝑞) ≤ 𝑛. By

property (b), these form a subcomplex of  , as such the weighted structure can also be viewed

as a ℤ-filtration 𝑚𝑤
⊆ 𝑚𝑤+1

⊆ ⋯ where 𝑚𝑤 = min𝑤0 (𝑛 = ∅ for all 𝑛 < 𝑚𝑤).

To a CW complex  and compatible weight function 𝑤, we associate the lattice cohomology

ℍ
∗
( , 𝑤) (or when the pair ( , 𝑤) is clear from the context,ℍ

∗
for short). Here we summarize a

geometric realization of this cohomology. For amore complete picture and another construction

as the homology of a cochain complex, see [16, 4].

DEFINITION 2.3. For each 𝑛 ∈ ℤ define 𝑆𝑛 = 𝑆𝑛(𝑤) = ⋃
□∈𝑛

□ ⊆  . We have 𝑆𝑛 = ∅ whenever

𝑛 < 𝑚𝑤 = min𝑤0, and 𝑆𝑚𝑤
⊆ 𝑆𝑚𝑤+1

⊆ ⋯ form an increasing chain of subsets of  .

For any 𝑞 ≥ 0, set

ℍ
𝑞
( , 𝑤) ∶= ⨁

𝑛≥𝑚𝑤

𝐻
𝑞
(𝑆𝑛, ℤ).

Thenℍ
𝑞
isℤ (in fact, conventionally 2ℤ)-graded: the 𝑑 = 2𝑛-homogeneous elementsℍ

𝑞

𝑑
consist

of 𝐻
𝑞
(𝑆𝑛, ℤ).

Furthermore, ℍ
𝑞
has a ℤ[𝑈]-module structure: the 𝑈 -action is given by the restriction map

𝑟𝑛+1 ∶ 𝐻
𝑞
(𝑆𝑛+1, ℤ) → 𝐻

𝑞
(𝑆𝑛, ℤ). Namely, 𝑈 ∗ (𝛼𝑛)𝑛 = (𝑟𝑛+1𝛼𝑛+1)𝑛. Thus, we obtain a doubly

graded ℤ[𝑈]-module

ℍ
∗
( , 𝑤) = ⨁

𝑞≥0

ℍ
𝑞
( , 𝑤).

Moreover, for 𝑞 = 0, the choice of a fixed base point 𝑥𝑤 ∈ 𝑆𝑚𝑤
⊆ 𝑆𝑛 provides an augmentation

(splitting) 𝐻
0
(𝑆𝑛, ℤ) = ℤ ⊕ 𝐻

0
(𝑆𝑛, ℤ), hence an augmentation of the graded ℤ[𝑈]-modules

ℍ
0
=
(
⨁

𝑛≥𝑚𝑤

ℤ
)
⊕
(
⨁

𝑛≥𝑚𝑤

𝐻
0
(𝑆𝑛, ℤ)

)
=
(
⨁

𝑛≥𝑚𝑤

ℤ
)
⊕ℍ

0

𝑟𝑒𝑑
.

2.2. Weighted systems of subspaces [4]
In [4, Section 6.1], we introduced the concept of a (weighted) system of subspaces, and construc-

ted an associated (weighted) CW complex. First, we recall the definitions essentially as-is, but

we will then immediately note where some of the restrictions may be omitted or relaxed.

DEFINITION 2.4. Given a fixed vector space , we say that a set  is a ‘system of subspaces’

(of ) if  ∈ ,  is closed under intersection (i.e., if 𝑉1, 𝑉2 ∈ , then 𝑉1 ∩ 𝑉2 ∈ ), and

codim(𝑉 ⊂ ) < ∞ for any 𝑉 ∈ .
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DEFINITION 2.5. Given a system of subspaces  in a vector space , we call a subset 𝐶 ⊆  a

combinatorial -cell if it is of the form

𝐶 =

{

⋂

𝐺∈
𝐺
|
|
|
∅ ≠  ⊆ 

}

∪ {𝑉 }

for some 𝑉 ∈  and a finite set  ⊂  with codim(𝐺 ⊆ 𝑉 ) = 1 for all 𝐺 ∈ . We emphasize that

all partial intersections must be contained within .

We define the dimension of the combinatorial-cell as dim𝐶 = ||. We call the spaces 𝑉 and

𝐺 ∈  the root and the generators respectively, while ∩𝐺∈𝐺 (or 𝑉 if  = ∅) will be referred to as

the tip of 𝐶. The root, tip and the set of generators are respectively denoted as 𝑅(𝐶), 𝑇 (𝐶), and

(𝐶), while the combinatorial-cell obtained from a root 𝑅 and set of generators  as 𝐶(𝑅,).
We further define the height of the-cell 𝐶 as ht 𝐶 = codim(𝑇 (𝐶) ⊆ 𝑅(𝐶)).

REMARK 2.6. (a) Note that the root, tip, and generators are uniquely determined by the set

𝐶, so the above Definition 2.5 makes sense. Indeed,

𝑅(𝐶) = ∑
𝑉∈𝐶

𝑉 , 𝑇 (𝐶) = ⋂
𝑉∈𝐶

𝑉 , (𝐶) = {𝑊 ∈ 𝐶 ∣ codim(𝑊 ⊆ 𝑅(𝐶)) = 1}.

The last identity holds since all intersections of some distinct 𝐺, 𝐺
′
∈  have codimen-

sion ≥ 2.

(b) We always have ht 𝐶 ≤ dim𝐶. The inequality can be strict e.g. in the case when all the

generators are distinct subspaces of some 𝑉 = 𝑅(𝐶) containing a fixed codimension-2

subspace 𝑊 = 𝑇 (𝐶), and their number is dim𝐶 ≥ 3.

DEFINITION 2.7. For a given combinatorial -cell 𝐶, its faces are the elements of

{𝐷 ⊆ 𝐶 ∣ 𝐷 is a combinatorial-cell}.

We then proceed to construct a CW complex () where to each of the above defined com-

binatorial cells 𝐶 we associate a cube □(𝐶) of the same dimension, and glue these together in

such a way that the geometry of the CW complex corresponds to the above described, purely

combinatorial notion of one cell being the face of another. Since most of the construction will

be done later in a more general form (cf. Section 3.2), we omit it from here.

Note instead that merely for Definition 2.5 to work, basically all the conditions on  that

we introduced in Definition 2.4 are superfluous: neither  ∈ , nor  being closed under

intersection, or elements of having finite codimension is required. Omitting the intersection-

closed property means that we need to be generally more careful about what is and is not in

 though. In particular, in this case the existence of some 𝑉 ∈  and a finite set  ⊂  with

codim(𝐺 ⊆ 𝑉 ) = 1 for all 𝐺 ∈  does not guarantee that a corresponding combinatorial cell

with root 𝑉 and set of generators  exists.

In the generalization defined in Section 3, we will indeed make no analogous assumptions.

REMARK 2.8. If we do keep the assumptions in Definition 2.4, then the homotopy type of ()

is quite simple: all connected components will be contractible (for a proof, see [4, Lemma 6.1.12]).
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EXAMPLE 2.9. Otherwise this is not the case: assume that 𝑉 = ⟨𝑒1, 𝑒2, 𝑒3⟩ is 3-dimensional, and

(the non-intersection-closed)  consists of the subspaces 0, ⟨𝑒1⟩, ⟨𝑒1, 𝑒3⟩, 𝑉 , ⟨𝑒2, 𝑒3⟩, ⟨𝑒2⟩. Then

() ∼ 𝑆
1
.

Next, we add weights to the picture:

DEFINITION 2.10. We call (, 𝑤) a weighted system of vector spaces (WSS) if  is a system of

subspaces as in Definition 2.4, and 𝑤∶  → ℤ is a function bounded from below. Additionally,

for any 𝑉 ,𝑊 ∈  with 𝑊 ⊆ 𝑉 , we require

𝑤(𝑊 ) ≤ 𝑤(𝑉 ) + codim(𝑊 ⊆ 𝑉 ). (2.1)

DEFINITION 2.11. Let (, 𝑤) be a weighted system of vector spaces, and consider the associated

complex  = (). For an-cell 𝐶, let

𝑤̃(□(𝐶)) = 𝑤(𝑅(𝐶)) + ht 𝐶.

This forms a set of compatible weight functions on  , and the resulting pair ( , 𝑤̃) is called the

weighted CW complex associated to (, 𝑤).

In the original case of (intersection-closed) systems of subspaces, the weight function will

give us most of the interesting structure, see Remark 2.8. In particular, we get a lattice cohomo-

logy:

DEFINITION 2.12. The lattice cohomology of a WSS (, 𝑤) is the lattice cohomology of its asso-

ciated weighted CW complex, and is denoted by ℍ
∗
(, 𝑤).

3. METRIZED POSETS AND THEIR CW COMPLEXES
Observe that for the concepts in Section 2.2, what we need is essentially a set with a partial or-

dering (containment), and a way to measure how far away two comparable elements are (codi-

mension). In the following pages, we will abstract away the particular setup used in 2.2, and

then proceed to adapt the construction of the CW complex accordingly.

3.1. Combinatorial structure
To begin with, we introduce the following concepts, describing the kind of structures to which

we aim to associate a CW complex, as well the class of subsets within such a structure that will

give us the cells in that complex.

DEFINITION 3.1. A(n integrally) metrized poset is a poset (𝑃, <) together with a function

𝑑 ∶ {(𝑥, 𝑦) ∈ 𝑃 × 𝑃 ∣ 𝑥 ≥ 𝑦 or 𝑥 ≤ 𝑦} → ℤ≥0 ∪ {∞}

such that

(M1) 𝑑(𝑥, 𝑦) = 0 if and only if 𝑥 = 𝑦;

(M2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥);

(M3) max(𝑑(𝑥, 𝑦), 𝑑(𝑦, 𝑧)) ≤ 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧) for all 𝑥 ≥ 𝑦 ≥ 𝑧.
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We call such a function a partial metric on (𝑃, <) (as it is only defined between comparable pairs

of elements).

A graded poset is a poset (𝑃, <) together with a function 𝑔 ∶ 𝑃 → ℤ such that

(G1) if 𝑥 ≥ 𝑦, then 𝑔(𝑥) ≤ 𝑔(𝑦);

(G2) if 𝑥 ≥ 𝑦 and 𝑔(𝑥) = 𝑔(𝑦), then 𝑥 = 𝑦.

In particular, this grading naturally induces ametrized structure aswell,with the choice 𝑑(𝑥,𝑦) =

|𝑔(𝑥) − 𝑔(𝑦)|.

For the sake of simplicity, we sometimes omit the ordering < from the notation for the poset

(and objects constructed from it) when it is obvious from the context.

DEFINITION 3.2. Consider an integrally metrized poset (𝑃, <, 𝑑) as above. We call a subset 𝐶 ⊆ 𝑃

a combinatorial (𝑃, <, 𝑑)-cell (or (𝑃, 𝑑)-cell for short) if it is of the form

𝐶 =

{

⋀

𝐺∈
𝐺 ∣ ∅ ≠  ⊆ 

}

∪ {𝑥} (∗)

for some 𝑥 ∈ 𝑃 and a finite set  ⊆ 𝑃 with 𝑑(𝑥, 𝐺) = 1 for all 𝐺 ∈ , where ∧ denotes the meet

operation — thus, in particular, the meet needs to exist for all non-empty sets  ⊆ .
We define the root, tip and generators of a (𝑃, 𝑑)-cell 𝐶 as

𝑅(𝐶) = ∨𝐶,

𝑇 (𝐶) = ∧𝐶,

(𝐶) = {𝑦 ∈ 𝐶 ∣ 𝑑(𝑅(𝐶), 𝑦) = 1}

respectively. Note that the join and meet above always exist: for the set 𝐶 of the form (∗), they

would be 𝑥 and ∧ respectively. The set (𝐶) may in fact be larger than  though, but starting

from the entire (𝐶) instead would still ultimately give us the same set 𝐶 (cf. Remark 3.3). The

(𝑃, 𝑑)-cell obtained from a given root 𝑅 and a set  in the manner described in (∗) is denoted as

𝐶(𝑅,).
Furthermore, we define the dimension and height of the (𝑃, 𝑑)-cell 𝐶 as

dim𝐶 =
|
|
(𝐶)|

|
, ht 𝐶 = 𝑑(𝑅(𝐶), 𝑇 (𝐶)).

REMARK 3.3. The generators of 𝐶 needed to be explicitly defined as those elements 𝑦 ∈ 𝐶 with

𝑑(𝑥, 𝑦) = 1 where 𝑥 is the root. That is because unlike with the original case of a system of

subspaces and 𝑑 = codim (see Section 2.2, in particular part (a) of Remark 2.6), here potentially

not all elements of (𝐶) are needed to “generate” the entire 𝐶 as meets: 𝑑(𝑥, 𝑦 ∧ 𝑦
′
) = 𝑑(𝑥, 𝑦) =

𝑑(𝑥, 𝑦
′
) = 1 can occur for some 𝑦 ≠ 𝑦

′
. Nonetheless, we do still want to include all of these in

(𝐶); and starting from this (potentially larger) set to begin with in place of  in (∗) will still

yield the same set𝐶 since the extra elements would be obtained as meets anyway. Consequently,

we can mostly dispense with this seeming ambiguity and declare the generators of a cell 𝐶 to

mean (𝐶) as defined above.

A simple application of the property (M3) from Definition 3.1 yields the following statement,

similar to how it works for a system of subspaces:
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PROPOSITION 3.4. We always have ht 𝐶 ≤ dim𝐶 for a combinatorial (𝑃, 𝑑)-cell 𝐶.

For constructing a CW complex, we introduce the following, still purely combinatorial concept:

DEFINITION 3.5. For a given combinatorial (𝑃, 𝑑)-cell 𝐶, its faces are the elements of

{𝐷 ⊆ 𝐶 ∣ 𝐷 is a combinatorial (𝑃, 𝑑)-cell}.

3.2. Construction of the CW complex
Now, we start the recursive construction of a CW complex  associated with (𝑃, 𝑑)whose cells

will correspond to the combinatorial (𝑃, 𝑑)-cells of appropriate dimensions. The gluing of these

cells will be compatible with the above combinatorial notion of faces.

NOTATION 3.6. For any combinatorial (𝑃, 𝑑)-cell 𝐶, let

□
◦
(𝐶) =

{

𝑅(𝐶)

}

× (0, 1)
(𝐶)

, and □(𝐶) =

{

𝑅(𝐶)

}

× [0, 1]
(𝐶)

.

Wewill glue the boundaries of the cubes □(𝐶) to the lower dimensional skeleta when construct-

ing the CW complex. Hence, the sets □
◦
(𝐶) will serve as the open cells of  . We call □

◦
(𝐶) the

topological open (𝑃, 𝑑)-cell associated to the combinatorial cell 𝐶. We may view this as just the

open cube (0, 1)
(𝐶)

. Or in the case of dim𝐶 = 0, this vertex is simply representing 𝑅(𝐶) ∈ 𝑃 .

However, in the above notation of □
◦
(𝐶) we wished to insert the root of the cube as well.

The closed cubes □(𝐶) will be called topological closed (𝑃, 𝑑)-cells.
The exact method of gluing will be defined in the sequel. The general principle is that in

[0, 1]
(𝐶)

, each vertex 𝑢∶ (𝐶) → {0, 1} will be glued to the 0-cell representing ⋂{𝐺 ∣ 𝐺 ∈

(𝐶), 𝑢(𝐺) = 1} for 𝑢 ≠ 0, and 𝑅(𝐶) for 𝑢 = 0.

For the 0-dimensional skeleton, set

sk0  = 𝑃 × {∅},

i.e., the vertices of sk0  are essentially the elements of 𝑃 .

Assume that we have already defined the (𝑞 −1)-dimensional skeleton sk𝑞−1  . For any □(𝐶)

of dimension less than 𝑞 let 𝜅𝐶 ∶ □(𝐶) → sk𝑞−1  be the characteristic map of □(𝐶) into sk𝑞−1 
with attaching map 𝜅𝐶 |𝜕□(𝐶).

Next, we wish to define the attaching map of a fixed topological (𝑃, 𝑑)-cell 𝐶 of dimension 𝑞

(i.e., with |(𝐶)| = 𝑞). We need to give a continuous map

𝜕𝜅𝐶 ∶ 𝜕□(𝐶) =

{

𝑅(𝐶)

}

× 𝜕[0, 1]
(𝐶)

→ sk𝑞−1  .

Let us fix 𝑢 ∈ 𝜕[0, 1]
(𝐶)

= {𝑢∶ (𝐶) → [0, 1] ∣ ∃ 𝐺 ∈ (𝐶)∶ 𝑢(𝐺) ∈ {0, 1}}, and set

0(𝑢) = 𝑢
−1
(0), 1(𝑢) = 𝑢

−1
(1), ∗(𝑢) = 𝑢

−1

((0, 1)).

Define also 𝑅𝑢 = ∩𝑊∈1(𝑢)∪{𝑅(𝐶)}
𝑊 . (If 1(𝑢) ≠ ∅, then 𝑅𝑢 = ∩𝑊∈1(𝑢)

𝑊 ; otherwise 𝑅𝑢 = 𝑅(𝐶).)

Finally, set

̃∗(𝑢) = {𝑅𝑢 ∩ 𝐺 ∣ 𝐺 ∈ ∗(𝑢)} ⧵ {𝑅𝑢} ⊂ 𝑃.

Since 0(𝑢) ∪ 1(𝑢) ≠ ∅, |∗(𝑢)| < 𝑞. Furthermore, the map 𝐺 ↦ 𝑅𝑢 ∩ 𝐺 (𝐺 ∈ ∗(𝑢)) is usually

not injective, and the intersection 𝑅𝑢 ∩ 𝐺 can also be equal to 𝑅𝑢. In particular, |̃∗(𝑢)| ≤ |∗(𝑢)|,
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but the inequality in some cases can be strict. The element 𝑢 defines the proper face 𝐶𝑢 of 𝐶,

with root 𝑅𝑢 and generator set ̃∗(𝑢). Furthermore, the point (𝑅(𝐶), 𝑢) from the boundary of the

topological cell □(𝐶) is sent to the topological cell □(𝐶𝑢) = □(𝑅𝑢, ̃∗(𝑢)) by the map

(𝑅(𝐶), 𝑢) ↦ (𝑅𝑢, 𝑢̃) ∈ {𝑅𝑢} × (0, 1)
̃∗(𝑢)

= □
◦

(𝑅𝑢, ̃∗(𝑢)),

where 𝑢̃∶ ̃∗(𝑢) → (0, 1) is defined as

𝑢̃(𝐺) = max{𝑢(𝐺) ∣ 𝐺 ∈ ∗(𝑢), 𝑅𝑢 ∩ 𝐺 = 𝐺}, 𝐺 ∈ ̃∗(𝑢). (3.1)

Finally, the value 𝜕𝜅𝐶((𝑅(𝐶), 𝑢)) via the attaching map of 𝜕□(𝐶) is given by

𝜕𝜅𝐶((𝑅(𝐶), 𝑢)) = 𝜅𝐶𝑢
((𝑅𝑢, 𝑢̃)) ∈ sk𝑞−1  . (3.2)

This, in the case ̃∗(𝑢) = ∅, says that 𝜕𝜅𝐶 sends (𝑅(𝐶), 𝑢) to the vertex 𝑅𝑢 ∈ sk0  .

REMARK 3.7. Let us summarize and refine some details. The element 𝑢 ∈ 𝜕[0, 1]
(𝐶)

defines two

topological cubes at two different levels and also a cell of sk𝑞−1  .

The first cube is a |∗(𝑢)|-face sitting in the boundary of □(𝐶) = [0, 1]
(𝐶)

. Its interior is

𝐷̃
◦
(𝑢) ∶= {𝑣∶ (𝐶) → [0, 1] ∣ 0(𝑣) = 0(𝑢),1(𝑣) = 1(𝑢)},

while its closure is

𝐷̃(𝑢) = {𝑣∶ (𝐶) → [0, 1] ∣ 0(𝑣) ⊇ 0(𝑢),1(𝑣) ⊇ 1(𝑢)}.

The second cube is the topological cube/cell □(𝑅𝑢, ̃∗(𝑢)) associated with a face of 𝐶, namely

with the combinatorial |̃∗(𝑢)|-cube 𝐶𝑢 = (𝑅𝑢, ̃∗(𝑢)). Its interior is □
◦
(𝑅𝑢, ̃∗(𝑢)).

The map from (3.1) (with the substitutions 𝑢⇝𝑣) defines a map 𝑣 ∈𝐷̃
◦
(𝑢) ↦ 𝑣̃∈□

◦
(𝑅𝑢, ̃∗(𝑢)).

This extends naturally to a continuous map 𝛿
𝐷̃(𝑢)

∶ 𝐷̃(𝑢) → □(𝑅𝑢, ̃∗(𝑢)) by the very same for-

mula (3.1) (we simply allow 𝑣 to take values of 0 or 1 for elements in (𝐶) ⧵ (0(𝑢) ∪ 1(𝑢))

too).

If ̃∗(𝑢) = ∗(𝑢), then 𝛿
𝐷̃(𝑢)

basically is the identity, however, if |̃∗(𝑢)| < |∗(𝑢)|, then 𝛿
𝐷̃(𝑢)

is

a non-linear topological surjective contraction with all fibers contractible. For a concrete case

see Example 3.10.

The third object is the image of □(𝑅𝑢, ̃∗(𝑢)) via 𝜅𝐶𝑢
in sk𝑞−1  , it is a |̃∗(𝑢)|-cell of this

CW complex. Its interior is homeomorphic with □
◦
(𝑅𝑢, ̃∗(𝑢)), but the boundary of □(𝑅𝑢, ̃∗(𝑢))

might be contracted under the gluing procedure.

Regarding the gluing map 𝜕𝜅𝐶 , for any fixed 𝑢, the gluing principle is the following: among

the coordinates of 𝑢, the 1’s determine the root 𝑅𝑢 of the open cell we are gluing into, the 0’s

determine which codimension-1 subspaces we omit from the old generators, and the values in

(0, 1) identify the exact point in the face □
◦
(𝑅𝑢, ̃∗(𝑢)) to which we attach the point (𝑅(𝐶), 𝑢).

Finally, the map ∗(𝑢) → ̃∗(𝑢), 𝐺 ↦ 𝑅𝑢 ∩ 𝐺, guides the cube-contraction 𝛿
𝐷̃(𝑢)

via 𝑣 ↦ 𝑣̃

(cf. (3.1)).
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REMARK 3.8. Once the continuity of 𝜕𝜅𝐶 ∶ 𝜕□𝑞(𝐶) → sk𝑞−1  is verified (cf. Proposition 3.9),

we can also consider the inclusion 𝜄𝐶 ∶ 𝜕□𝑞(𝐶) → □𝑞(𝐶) too. The fibered coproduct of these two

maps gives the following commutative diagram (which defines/identifies 𝜅𝐶 as well)

𝜕□𝑞(𝐶)

𝜄𝐶

��

𝜕𝜅𝐶 //
sk𝑞−1 

��

□𝑞(𝐶)

𝜅𝐶 //
sk𝑞−1  ⊔ □𝑞(𝐶)

From the continuity of 𝜕𝜅𝐶 the continuity of 𝜅𝐶 follows automatically.

Regarding the map 𝜅𝐶 note the following fact as well. The formula (3.1) can be considered

even if 𝑢 ∈ □
◦
(𝐶), i.e., for 𝑢 not on the boundary. In that case, we simply have 0(𝑢) = 1(𝑢) = ∅,

and 𝑅𝑢 = 𝑅(𝐶), ̃∗(𝑢) = (𝐶), with the map leaving such points fixed. This extension of 𝜕𝜅𝐶 to

□𝑞(𝐶) is the map 𝜅𝐶 in the diagram.

Once the inductive construction of  is completed, we can consider the composition

□𝑞(𝐶)

𝜅𝐶

⟶ sk𝑞−1  ⊔ □𝑞(𝐶) ↪ sk𝑞  ↪  .

This is the characteristic map of the cell □𝑞(𝐶) in  = (𝑃, 𝑑), also denoted by 𝜅𝐶 .

In order to finish the inductive construction of the CW complex  , we verify the following:

PROPOSITION 3.9. Assume that sk𝑞−1 ̃ was already constructed (hence all the maps 𝜕𝜅𝐶 and 𝜅𝐶

are continuous for any (𝑃, 𝑑)-cell 𝐶 of dimension < 𝑞). Then, for any 𝐶 with |(𝐶)| = 𝑞, 𝜕𝜅𝐶 is
continuous.

Proof. Let us write 𝑅 = 𝑅(𝐶) and  = (𝐶).
In order to prove the statement, it is enough to prove that the restriction of 𝜕𝜅𝐶 to any closed

face of □(𝐶) is continuous. The interior of such a face can be defined as

𝐷̃
◦
= 𝐷̃

◦

0 ,1

= {𝑢 ∈ [0, 1]

∣ 0(𝑢) = 0, 1(𝑢) = 1} ⊆ 𝜕[0, 1]


,

for some fixed 0,1 ⊆ , not both of them empty. Let 𝐷̃ be its closure in the cube [0, 1]

. They

can be identified with 𝐷̃
◦
(𝑢) and 𝐷̃(𝑢) for a certain 𝑢 considered in Remark 3.7.

Also, let ∗ =  ⧵ (0 ∪ 1).

If one only considers 𝜕𝜅𝐶 |𝐷̃◦ , we see that 𝑅𝑢 and ̃∗(𝑢) are fixed, and thus the continuity can

be seen directly from the continuity of the max-function in (3.1). In other words, 𝜕𝜅𝐶 would

be continuous if the topology on sk𝑞−1  was obtained simply via taking the disjoint union of

its open cells. Now we need to check that 𝜕𝜅𝐶 is in fact compatible with the attaching maps

corresponding to the cells in sk𝑞−1  . That is to say, for any given such open face 𝐷̃
◦
= 𝐷̃

◦

0 ,1

,

let 𝑅
𝐷̃
and ̃∗(𝐷̃) be the values of 𝑅𝑢 and ̃∗(𝑢) for all 𝑢 ∈ 𝐷̃

◦
, 𝐶

𝐷̃
= 𝐶(𝑅𝐷̃

, ̃∗(𝐷̃)), and extend
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continuously the formula in (3.1) to a map

𝛿
𝐷̃
∶ 𝐷̃ → □(𝐶

𝐷̃
)

as in Remark 3.7 (we simply allow 𝑣 to take values of 0 or 1 for elements in  ⧵ (0 ∪ 1) too as

in the definition of 𝛿
𝐷̃(𝑢)

). Then, we claim that this map satisfies the identity

𝜅𝐶
𝐷̃

◦ 𝛿
𝐷̃
= 𝜅𝐶 |𝐷̃

. (3.3)

This can be checked directly: for any element (𝑅, 𝑣) ∈ 𝐷̃ = {𝑅} × {𝑣 ∈ [0, 1]

∣ 𝑣|0

= 0, 𝑣|1
= 1},

𝛿
𝐷̃(

(𝑅, 𝑣)) = (𝑅
′
, 𝑣

′
) ∈ {𝑅

′
} × [0, 1]

′

, 𝑅
′
= 𝑅

𝐷̃
, ′

= ̃∗(𝐷̃), 𝑣
′
(𝐺

′
) = max{𝑣(𝐺) ∣ 𝑅

′
∩ 𝐺 = 𝐺

′
}.

That point (𝑅
′
, 𝑣

′
) is in turn taken by 𝜅𝐶

𝐷̃

to some (𝑅
′′
, 𝑣

′′
) ∈ [0, 1]

′′

, where

𝑅
′′
= ∩ ({𝑅

′
} ∪ {𝐺

′
∣ 𝑣

′
(𝐺

′
) = 1}) = ∩ ({𝑅

′
} ∪ {𝐺

′
∈ ′

∣ ∃𝐺 ∶ 𝑣(𝐺) = 1, 𝑅
′
∩ 𝐺 = 𝐺

′
, 𝐺 ∈ ∗}) =

= ∩ ({𝑅
′
} ∪ {𝑅

′
∩ 𝐺 ∣ 𝐺 ∈ ∗, 𝑣(𝐺) = 1, 𝐺 ⊉ 𝑅

′
}) = ∩ ({𝑅} ∪ 1 ∪ {𝐺 ∈ ∗ ∣ 𝑣(𝐺) = 1}) = 𝑅𝑣 ,

′′
= {𝑅

′′
∩ 𝐺

′
∣ 𝐺

′
∈ ′

, 𝑣
′
(𝐺

′
) ∈ (0, 1)} ⧵ {𝑅

′′
} =

= {𝑅𝑣 ∩ (𝑅
𝐷̃
∩ 𝐺) ∣ 𝐺 ∈ ∗, 𝐺 ⊉ 𝑅

𝐷̃
, 𝑣(𝐺) ∈ (0, 1)} ⧵ {𝑅𝑣} = {𝑅𝑣 ∩ 𝐺 ∣ 𝐺 ∈ ∗(𝑣)} ⧵ {𝑅𝑣} =

= ̃∗(𝑣),

and for any 𝐺
′′
∈ ′′

= ̃∗(𝑣), we have

𝑢
′′
(𝐺

′′
) = max{𝑣

′
(𝐺

′
) ∣ 𝐺

′
∈ ′

, 𝑅
′′
∩ 𝐺

′
= 𝐺

′′
} = max{𝑣(𝐺) ∣ 𝐺 ∈ , 𝑅′′

∩ 𝐺 = 𝐺
′′
} =

= max{𝑣(𝐺) ∣ 𝐺 ∈ , 𝑅𝑣 ∩ 𝐺 = 𝐺
′′
}.

So, the equality (3.3) is indeed true.

From (3.3), the continuity of 𝜅𝐶 |𝐷̃
follows because bothmaps on the left hand side are continu-

ous: 𝜅𝐶
𝐷̃

because of the induction hypothesis (since 𝐶
𝐷̃
is lower dimensional), 𝛿

𝐷̃
by its definition

(see above). Thus, 𝜅𝐶 is continuous when restricted to any closed face, and as these sets cover

𝜕□(𝐶), the map 𝜅𝐶 is continuous on the whole. □

EXAMPLE3.10. For a better intuition about the above picture, it is worth considering an example

(this is the same as the one provided in [4]). Let 𝑃 be a system of subspaces of a 2-dimensional

space, with {𝑒1, 𝑒2} the canonical basis, and 𝑅 = ⟨𝑒1, 𝑒2⟩, 𝐺1 = ⟨𝑒1⟩, 𝐺2 = ⟨𝑒2⟩, 𝐺3 = ⟨𝑒1 + 𝑒2⟩,

𝑇 = {0} are all elements of 𝑃 (and set 𝑑 = codim).

These vertices together form a 3-dimensional combinatorial cell 𝐶 of height 2: the names

of vertices reflect that. Between them we also have 6 edges in total: one connecting each (1-

dimensional) generator to both 𝑅 and 𝑇 . There will also be 3 different 2-dimensional cells.

Since ht 𝐶 < dim𝐶, we can see that some of the contraction maps onto the boundary to-

pological cells will be nontrivial: some nontrivial configurations of points on the boundary of

□(𝐶) = [0, 1]
3
will be mapped to the same point. Figure 1 illustrates this.

The black dots and the set of 3 thick black edges on the first diagram represent what will

collapse into a single vertex each upon the gluing: the latter ones will be attached to the vertex

𝑇 . The 3 blue edges and 3 blue faces (one in the back) will collapse onto a single edge each. The
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𝐺3

𝑅 𝐺1

𝐺2

𝑇

𝐺3

𝑅 𝑇

𝐺1

𝐺2

Figure 1.

dotted lines on the rightmost blue face show some points that will be glued to the same point

on that edge. Lastly, the red faces will become the 2-cells.

Thus, we end up with a single 3-cell looking like what is seen on the second diagram. This

is the image of □(𝐶) in  . (The black edges 𝐺1𝐺2, 𝐺2𝐺3, 𝐺3𝐺1 in the middle are not cells in  ,

they serve only to illustrate the spatial arrangement of the faces.)

DEFINITION3.11. For a metrized poset (𝑃, <, 𝑑), its associated CW complex(𝑃, <, 𝑑) (or(𝑃, 𝑑)

for short) is that obtained by repeating the above described gluing for each integer 𝑞 ≥ 0 (in

increasing order, taking the limit if the set of dimensions is not bounded).

3.3. Adding the weights
Finally, we introduce weights to this complex as well.

DEFINITION 3.12. We call (𝑃, <, 𝑑, 𝑤) a weighted (integrally) metrized poset (WIMP) if (𝑃, <, 𝑑) is

an integrally metrized poset, and 𝑤∶ 𝑃 → ℤ is a function bounded from below, where for any

𝑥, 𝑦 ∈ 𝑃 with 𝑥 ≥ 𝑦, we have

𝑤(𝑦) ≤ 𝑤(𝑥) + 𝑑(𝑥, 𝑦). (3.4)

For anyWIMP (𝑃, <, 𝑑, 𝑤),we introduce aweight function (cf. Definition 2.2) on its associated

CW complex from Definition 3.11.

DEFINITION 3.13. Let (𝑃, <, 𝑑, 𝑤) be a weighted metrized poset, and consider the associated com-

plex  = (𝑃, 𝑑). For a (𝑃, 𝑑)-cell 𝐶, let

𝑤̃(□(𝐶)) = 𝑤(𝑅(𝐶)) + ht 𝐶.

The resulting pair ( , 𝑤̃) is called the weighted CW complex associated to (𝑃, <, 𝑑, 𝑤).
REMARK 3.14. This definition of the weights on the higher dimensional cells is inspired by the

construction in [4]. There it arises naturally upon collapsing a cubical lattice with weights into

a CW complex of this kind: the weights of the cells in the resulting complex in that scenario

are the respective minimuma of the weights of cells collapsing onto them.

We can also now see that the condition (3.4) is needed to ensure the compatibility of the

weight function on the CW complex (cf. Definition 2.2):
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PROPOSITION 3.15. The above 𝑤̃ forms a set of compatible weight functions on (𝑃, 𝑑).

Proof. This is a consequence of Definition 3.12, since for any face 𝐷 of a (𝑃, 𝑑)-cell 𝐶,

𝑤̃(□(𝐷)) = 𝑤(𝑅(𝐷)) + ht𝐷 ≤ 𝑤(𝑅(𝐶)) + 𝑑(𝑅(𝐶), 𝑅(𝐷)) + 𝑑(𝑅(𝐷), 𝑇 (𝐷)) ≤

≤ 𝑤(𝑅(𝐶)) + 𝑑(𝑅(𝐶), 𝑇 (𝐶)) = 𝑤̃(□(𝐶)). □

DEFINITION 3.16. Given a WIMP (𝑃, <, 𝑑, 𝑤), we define its lattice cohomology ℍ
∗
(𝑃, <, 𝑑, 𝑤) as

that of the weighted CW complex ((𝑃, <, 𝑑), 𝑤) (cf. Definition 2.3).

4. EXAMPLES
We illustrate how the presented the concept behaves through some simple examples.

EXAMPLE 4.1. Given a metrized poset (𝑃, <, 𝑑) with the weight function 𝑤 being identically 0,

we have

rkℍ
0

2𝑛
(𝑃, 𝑑, 0) =

{

|𝑃|, if 𝑛 = 0

rk𝐻
0

((𝑃, 𝑑)), if 𝑛 > 0.

Indeed, 𝑤̃(□(𝐶)) = 0 for dim𝐶 = 0 but 𝑤̃(□(𝐶)) = ht 𝐶 > 0 otherwise, since then 𝑅(𝐶) > 𝑇 (𝐶),

so the level set 𝑆0 just contains the vertices. But 1-cells can only have height 1, therefore two

vertices (elements of the poset 𝑃 ) are in the same component of 𝑆1 if and only if they are in the

same component of (𝑃, 𝑑), i.e., one can connect them with down- or upward steps where the

distance (given by 𝑑) is 1. In particular, for connected (𝑃, 𝑑), we have ℍ
0

red
= ℍ

0

red,0
.

By a similar reasoning,

ℍ
𝑞−1

2𝑛
(𝑃, 𝑑, 0) = 𝐻

𝑞−1

((𝑃, 𝑑)) if 𝑛 ≥ 𝑞.

This follows from the fact that all (≤ 𝑞)-cells have height at most 𝑞, as per Proposition 3.4.

Note that this is drastically different from the case we are used to, i.e., defining the weights

of higher dimensional cells to be the respective maxima of the weights of their vertices: setting

𝑤 = 0 everywhere on 𝑃 does not imply the contractibility of all level sets. That is because in

this construction, we explicitly set the weights of higher dimensional cells to always be bigger

than that of their vertices, as motivated by the construction in [4]. The vertices here do not

correspond to the vertices in the original, cubical lattice, rather the one where “superfluous”

cells have been already collapsed, as described in section 6. The vertices that remain are only

those where something interesting is happening (the filtration jumps), and the cohomology

reflects that.

EXAMPLE4.2. Let (𝑃, <, 𝑔) be a graded poset (togetherwith the induced partial metric 𝑑𝑔(𝑥, 𝑦) =

|𝑔(𝑥) − 𝑔(𝑦)|), and set the weights to be 𝑤 = 𝑔 . Then

rkℍ
𝑞

2𝑛
(𝑃, 𝑑𝑔 , 𝑔) ≤ rk𝐻

𝑞

((𝑃, 𝑑𝑔))

for all 𝑞 ≥ 0 and 𝑛 ∈ ℤ. Furthermore, if 𝑤 is bounded from above, then we have equality for all

sufficiently large 𝑛.
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We can observe that

𝑤̃(□(𝐶)) = 𝑤(𝑅(𝐶)) + ht 𝐶 = 𝑔(𝑅(𝐶)) + 𝑔(𝑇 (𝐶)) − 𝑔(𝑅(𝐶)) = 𝑤(𝑇 (𝐶)),

which is exactly the maximum of the weight function on the vertices (since the weight function

𝑤 = 𝑔 is increasing on 𝑃 ). Thus,we can essentially “push down” the level sets within themselves

(i.e., construct a suitable deformation retract) wheneverwe can do sowithin(𝑃, 𝑑𝑔). A rigorous

proof of this fact is left to the reader.

After seeing these two examples, we can make the following basic observation:

PROPOSITION 4.3. Let (𝑃, <, 𝑑, 𝑤) be a WIMP with 𝑤 bounded from above. Then

ℍ
𝑞−1

2𝑛
(𝑃, 𝑑, 𝑤) = 𝐻

𝑞−1

((𝑃, 𝑑))

whenever 𝑛 ≥ max𝑤 + 𝑞.

This simply follows from the fact that all (≤ 𝑞)-cells have height at most 𝑞, thus their weight

is bounded by 𝑛 ≥ max𝑤 + 𝑞, and gluing higher dimensional cells does not affect the lower

singular cohomologies.

We will also mention a case that arises when studying the lattice cohomologies of systems

of subspaces, as in [4]; in particular when aiming to prove the functoriality of ℍ
∗
with respect

to deformations of curve singularities. This was, in fact, the original motivation for introducing

the generalized construction described in the present paper. Though neither the present gener-

alization to metrized posets nor the following example are included in the final version of [4]

as they were ultimately not needed for the statement proved (the functoriality of ℍ
0
), it could

still be useful for e.g. dealing with the higher cohomologies.

EXAMPLE 4.4. When aiming to associate a map between lattice cohomologies to any deforma-

tion of an isolated curve singularity 𝑋𝑡≠0 → 𝑋0, one observes that the limits of the vector spaces

in the filtration  we consider (that form the vertices of the associated CW complex 𝑡 ) can

end up being nontrivial subspaces of the corresponding vertices in 0.

To define a map, we might wish to extend the system  = Im by incorporating the sub-

spaces below each element. One obvious option would be to consider the set

 = {𝑉 ⊕ 𝑊 ⊆  ⊕  ∣ 𝑉 ∈ , 𝑊 ⊂ 𝑉 }.

We would then find a copy of the original () within () by looking at the subcomplex

spanned by the diagonal elements (𝑉 , 𝑉 ) — except that this is not the case. By Definition 2.5,

there will be no higher dimensional cells at all in this subcomplex, since the codimensions are

always at least 2 (or 0) for diagonal elements.

To fix that, we need to modify the definition. Consider the function

cd(𝑉 ⊕ 𝑊 , 𝑉
′
⊕𝑊

′
) = codim(𝑉

′
⊆ 𝑉 ) + codim(𝑊

′
⊆ 𝑊 ∩ 𝑉

′
)

instead of

codim(𝑉 ⊕ 𝑊 , 𝑉
′
⊕𝑊

′
) = codim(𝑉

′
⊆ 𝑉 ) + codim(𝑊

′
⊆ 𝑊)

for some 𝑉 ⊕ 𝑊 , 𝑉
′
⊕ 𝑊

′
∈  with 𝑉

′
⊕ 𝑊

′
⊆ 𝑉 ⊕ 𝑊 . Intuitively, since we are only consider-

ing pairs (𝑉 , 𝑊 ) where 𝑊 ⊆ 𝑉 , when measuring the “distance” between 𝑉 ⊕ 𝑊 and 𝑉
′
⊕ 𝑊

′
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(previously done simply via taking the codimension), we force the second component to be a

subspace of 𝑉
′
before seeing how much further away 𝑊

′
is.

For the weight function, we set 𝑤(𝑉 ,𝑊 ) = 𝑤(𝑉 ) + codim(𝑉 ,𝑊 ).

One can verify that (, ⊂, cd, 𝑤) is indeed a WIMP. Also, since

cd((𝑉 , 𝑉 ), (𝑊 ,𝑊 )) = codim(𝑉 ,𝑊 ),

we will naturally get an embedding

(, cd) → (, codim)

via a kind of diagonal map.

We now state this in a more precise manner.

DEFINITION 4.5. Given a weighted system of subspaces (, 𝑤) with all 𝑉 ∈  being subspaces

of , consider the set

 = {𝜄1(𝑉 ) + 𝜄2(𝑊 ) ≤  ⊕  ∣ 𝑉 ∈ , 𝑊 ≤ 𝑉 }

where 𝜄1, 𝜄2 ∶  → ⊕ are the standard embeddings of the two components in the direct sum.

For simplicity, we write 𝜄(𝑉 , 𝑊 ) = 𝜄1(𝑉 ) + 𝜄2(𝑊 ). Also, let

𝑑(𝜄(𝑉 , 𝑊 ), 𝜄(𝑉
′
, 𝑊

′
)) = codim(𝑉

′
⊆ 𝑉 ) + codim(𝑊

′
⊆ 𝑊 ∩ 𝑉

′
)

and

𝑤∶  → ℤ, 𝑤(𝜄(𝑉 ,𝑊 )) = 𝑤(𝑉 ) + codim(𝑉 ,𝑊 ).

These form a WIMP (, 𝑑, 𝑤).

Let us further consider the weighted CW complexes ( , 𝑤) and ( , 𝑤) associated to (, 𝑤)

and (, 𝑑, 𝑤) respectively. Then the diagonal map → , 𝑉 ↦ 𝜄(𝑉 , 𝑉 ) gives us an embedding

𝛿 ∶  →  , □(𝑉 ,) ∋ (𝑉 , 𝑢)

𝛿

↦
(
𝜄(𝑉 , 𝑉 ), (𝜄(𝐺, 𝐺)

𝑢

↦ 𝑢(𝐺)))
∈ □(𝜄(𝑉 , 𝑉 ), {𝜄(𝐺, 𝐺) ∣ 𝐺 ∈ }).

In fact, one can show that this diagonal map is a (weighted) homotopy equivalence, i.e., it re-

spects the filtration of the CW complex induced by the weight and induces a homotopy equival-

ence on each level set. Indeed, this is exactly the reason it is worth considering: from a weighted

cellular map into such an “extended” CW complex, one can also naturally get a morphism into

the lattice cohomology of the original.

Do note, however, that  as defined here is usually extremely large (infinite dimensional,

and has uncountably many cells). It is still a CW complex: the definition of the attaching maps

ensures that the closure of each open cell is covered by a finite number of open cells, those

associated to the faces of the corresponding combinatorial cell. Still, this is not a complex that

is practical for any kind of computation. One can observe that this is rather similar to how sin-

gular homology is useful when dealing with maps between topological spaces, but for concrete

calculations, one tends to use, say, cellular or simplicial homology. We also see why it can be

advisable to relax some of the finiteness conditions imposed on weight functions in the clas-

sical construction of lattice cohomology — which we indeed did as a side effect of generalizing

to arbitrary CW complexes.
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